bims-micesi Biomed News
on Mitotic cell signalling
Issue of 2022‒06‒12
fifteen papers selected by
Valentina Piano
Max Planck Institute of Molecular Physiology


  1. Cell Death Dis. 2022 Jun 07. 13(6): 534
      CCAR2 (cell cycle and apoptosis regulator 2) is a multifaceted protein involved in cell survival and death following cytotoxic stress. However, little is known about the physiological functions of CCAR2 in regulating cell proliferation in the absence of external stimuli. The present study shows that CCAR2-deficient cells possess multilobulated nuclei, suggesting a defect in cell division. In particular, the duration of mitotic phase was perturbed. This disturbance of mitotic progression resulted from premature loss of cohesion with the centromere, and inactivation of the spindle assembly checkpoint during prometaphase and metaphase. It resulted in the formation of lagging chromosomes during anaphase, leading ultimately to the activation of the abscission checkpoint to halt cytokinesis. The CCAR2-dependent mitotic progression was related to spatiotemporal regulation of active Aurora B. In conclusion, the results suggest that CCAR2 governs mitotic events, including proper chromosome segregation and cytokinetic division, to maintain chromosomal stability.
    DOI:  https://doi.org/10.1038/s41419-022-04990-8
  2. Biochim Biophys Acta Mol Cell Res. 2022 Jun 06. pii: S0167-4889(22)00098-2. [Epub ahead of print] 119306
      Genome stability depends on chromosome congression and alignment during cell division. Kinesin-7 CENP-E is critical for kinetochore-microtubule attachment and chromosome alignment, which contribute to genome stability in mitosis. However, the functions and mechanisms of CENP-E in the meiotic division of male spermatocytes remain largely unknown. In this study, by combining the use of chemical inhibitors, siRNA-mediated gene knockdown, immunohistochemistry, and high-resolution microscopy, we have found that CENP-E inhibition results in chromosome misalignment and metaphase arrest in dividing spermatocyte during meiosis. Strikingly, we have revealed that CENP-E regulates spindle organization in metaphase I spermatocytes and cultured GC-2 spd cells. CENP-E depletion leads to spindle elongation, chromosome misalignment, and chromosome instability in spermatocytes. Together, these findings indicate that CENP-E mediates the kinetochore recruitment of BubR1, spindle assembly checkpoint and chromosome alignment in dividing spermatocytes, which finally contribute to faithful chromosome segregation and chromosome stability in the male meiotic division.
    Keywords:  CENP-E; Chromosome; Kinesin-7; Meiosis; Spermatocyte; Spindle
    DOI:  https://doi.org/10.1016/j.bbamcr.2022.119306
  3. J Cell Sci. 2022 Jun 01. pii: jcs255802. [Epub ahead of print]135(11):
      Lysosomes exert pleiotropic functions to maintain cellular homeostasis and degrade autophagy cargo. Despite the great advances that have boosted our understanding of autophagy and lysosomes in both physiology and pathology, their function in mitosis is still controversial. During mitosis, most organelles are reshaped or repurposed to allow the correct distribution of chromosomes. Mitotic entry is accompanied by a reduction in sites of autophagy initiation, supporting the idea of an inhibition of autophagy to protect the genetic material against harmful degradation. However, there is accumulating evidence revealing the requirement of selective autophagy and functional lysosomes for a faithful chromosome segregation. Degradation is the most-studied lysosomal activity, but recently described alternative functions that operate in mitosis highlight the lysosomes as guardians of mitotic progression. Because the involvement of autophagy in mitosis remains controversial, it is important to consider the specific contribution of signalling cascades, the functions of autophagic proteins and the multiple roles of lysosomes, as three entangled, but independent, factors controlling genomic stability. In this Review, we discuss the latest advances in this area and highlight the therapeutic potential of targeting autophagy for drug development.
    Keywords:  Autophagy; Cancer; Chromosomal instability; Chromosome segregation; Lysosomes; Mitosis
    DOI:  https://doi.org/10.1242/jcs.255802
  4. PLoS Comput Biol. 2022 Jun 03. 18(6): e1010165
      We introduce a Stochastic Reaction-Diffusion-Dynamics Model (SRDDM) for simulations of cellular mechanochemical processes with high spatial and temporal resolution. The SRDDM model is mapped into the CellDynaMo package, which couples the spatially inhomogeneous reaction-diffusion master equation to account for biochemical reactions and molecular transport within the Langevin Dynamics (LD) framework to describe dynamic mechanical processes. This computational infrastructure allows the simulation of hours of molecular machine dynamics in reasonable wall-clock time. We apply the model to test performance of the Search-and-Capture model of mitotic spindle assembly by simulating, in three spatial dimensions, dynamic instability of elastic microtubules anchored in two centrosomes, movement and deformations of geometrically realistic centromeres with flexible kinetochores and chromosome arms. Furthermore, the SRDDM model describes the mechanics and kinetics of Ndc80 linkers mediating transient attachments of microtubules to the chromosomal kinetochores. The rates of these attachments and detachments depend upon phosphorylation states of the Ndc80 linkers, which are regulated in the model by explicitly accounting for the reactions of Aurora A and B kinase enzymes, which undergo restricted diffusion. We find that there is an optimal rate of microtubule-kinetochore detachments which maximizes the accuracy of the chromosome connections, that adding chromosome arms to kinetochores improve the accuracy by slowing down chromosome movements, that Aurora A and kinetochore deformations have a small positive effect on the attachment accuracy, and that thermal fluctuations of the microtubules increase the rates of kinetochore capture and also improve the accuracy of spindle assembly.
    DOI:  https://doi.org/10.1371/journal.pcbi.1010165
  5. EMBO J. 2022 Jun 09. e108739
      Red blood cells are produced by terminal erythroid differentiation, which involves the dramatic morphological transformation of erythroblasts into enucleated reticulocytes. Microtubules are important for enucleation, but it is not known if the centrosome, a key microtubule-organizing center, is required as well. Mice lacking the conserved centrosome component, CDK5RAP2, are likely to have defective erythroid differentiation because they develop macrocytic anemia. Here, we show that fetal liver-derived, CDK5RAP2-deficient erythroid progenitors generate fewer and larger reticulocytes, hence recapitulating features of macrocytic anemia. In erythroblasts, but not in embryonic fibroblasts, loss of CDK5RAP2 or pharmacological depletion of centrosomes leads to highly aberrant spindle morphologies. Consistent with such cells exiting mitosis without chromosome segregation, tetraploidy is frequent in late-stage erythroblasts, thereby giving rise to fewer but larger reticulocytes than normal. Our results define a critical role for CDK5RAP2 and centrosomes in spindle formation specifically during blood production. We propose that disruption of centrosome and spindle function could contribute to the emergence of macrocytic anemias, for instance, due to nutritional deficiency or exposure to chemotherapy.
    Keywords:  blood; centrosome; enucleation; erythropoiesis; mitotic spindle
    DOI:  https://doi.org/10.15252/embj.2021108739
  6. Biol Open. 2022 Jun 09. pii: bio.059277. [Epub ahead of print]
      Haspin is a histone kinase that promotes error-free chromosome segregation by recruiting the Chromosomal Passenger Complex (CPC) to mitotic and meiotic chromosomes. Haspin remains less well studied than other M-phase kinases and the models explaining Haspin function have been developed primarily in mitotic cells. Here, we generate strains containing new conditional or nonsense mutations in the C. elegans Haspin homologs hasp-1 and hasp-2 and characterize their phenotypes. We show that hasp-1 is responsible for all predicted functions of Haspin and that loss of function of hasp-1 using classical and conditional alleles produces defects in germline stem cell proliferation, spermatogenesis, and confirms its role in oocyte meiosis. Genetic analysis suggests hasp-1 acts downstream of the Polo-like kinase plk-2 and shows synthetic interactions between hasp-1 and two genes expected to promote recruitment of the CPC by a parallel pathway that depends on the kinase Bub1. This work adds to the growing understanding of Haspin function by characterizing a variety of roles in an intact animal.
    Keywords:  Chromosome segregation; Germline; Inner centromere; Meiosis; Mitosis; Spermatogenesis
    DOI:  https://doi.org/10.1242/bio.059277
  7. Cell Death Dis. 2022 Jun 04. 13(6): 526
      Abnormal expression of p120 catenin is associated with the malignant phenotype in human lung cancer. Numerous studies have focused on the function of p120 catenin in the juxta-membrane compartment. However, the role of nuclear p120 catenin remains unclear. In this study, the dynamic changes in nuclear p120 catenin localization during cell cycle progression were investigated. Immunofluorescent staining, FACS analysis, and western blotting revealed that nuclear p120 catenin is a major architectural constituent of the chromosome periphery during mitosis. During mitosis, granule-like p120 catenin dispersed into a cloudy-like structure and formed cordon-like structures surrounding the condensed chromosomes to create the peri-chromosomal layer. Interestingly, lumican and p120 catenin colocalized at the spindle fiber where the perichromosomal layer connects to the condensed chromosomes during mitosis. Furthermore, downregulation of p120 catenin using a specific siRNA induced cell cycle stalling in the G2/M phase and promoted aneuploidy. This study validates the role of nuclear p120 catenin in the formation of the chromosome periphery and reveals the p120 catenin-lumican interaction may couple orientation of cell division with the segregation of sister chromatids during mitosis. Our data suggest the protective role of p120 catenin in maintaining the integrity of chromosomes, and also warrants further studies to evaluate the contribution of the loss of p120 catenin to the creation of gene rearrangement in cancer evolution and tumor progression.
    DOI:  https://doi.org/10.1038/s41419-022-04929-z
  8. Methods Mol Biol. 2022 ;2472 95-108
      The sequence-specific transcription factor RBPJ, also known as CSL (CBF1, Su(H), Lag1), is an evolutionarily conserved protein that mediates Notch signaling to guide cell fates. When cells enter mitosis, DNA is condensed and most transcription factors dissociate from chromatin; however, a few, select transcription factors, termed bookmarking factors, remain associated. These mitotic chromatin-bound factors are believed to play important roles in maintaining cell fates through cell division. RBPJ is one such factor that remains mitotic chromatin associated and therefore could function as a bookmarking factor. Here, we describe how to obtain highly purified mitotic cells from the mouse embryonal carcinoma cell line F9, perform chromatin immunoprecipitation with mitotic cells, and measure the first run of RNA synthesis upon mitotic exit. These methods serve as basis to understand the roles of mitotic bookmarking by RBPJ in propagating Notch signals through cell division.
    Keywords:  Chromatin immunoprecipitation; Mitotic bookmarking; Mouse embryonal carcinoma cells; Nascent RNA transcription; Notch signaling; Purification of mitotic cells; RBPJ
    DOI:  https://doi.org/10.1007/978-1-0716-2201-8_9
  9. EMBO J. 2022 Jun 10. e110472
      Microtubules tightly regulate various cellular activities. Our understanding of microtubules is largely based on experiments using microtubule-targeting agents, which, however, are insufficient to dissect the dynamic mechanisms of specific microtubule populations, due to their slow effects on the entire pool of microtubules. To overcome this technological limitation, we have used chemo and optogenetics to disassemble specific microtubule subtypes, including tyrosinated microtubules, primary cilia, mitotic spindles, and intercellular bridges, by rapidly recruiting engineered microtubule-cleaving enzymes onto target microtubules in a reversible manner. Using this approach, we show that acute microtubule disassembly swiftly halts vesicular trafficking and lysosomal dynamics. It also immediately triggers Golgi and ER reorganization and slows the fusion/fission of mitochondria without affecting mitochondrial membrane potential. In addition, cell rigidity is increased after microtubule disruption owing to increased contractile stress fibers. Microtubule disruption furthermore prevents cell division, but does not cause cell death during interphase. Overall, the reported tools facilitate detailed analysis of how microtubules precisely regulate cellular architecture and functions.
    Keywords:  intercellular bridge; microtubule; mitotic spindle; primary cilium; spastin
    DOI:  https://doi.org/10.15252/embj.2021110472
  10. Nature. 2022 Jun 08.
      Cyclin-dependent kinases (CDKs) lie at the heart of eukaryotic cell cycle control, with different cyclin-CDK complexes initiating DNA replication (S-CDKs) and mitosis (M-CDKs)1,2. However, the principles on which cyclin-CDK complexes organize the temporal order of cell cycle events are contentious3. One model proposes that S-CDKs and M-CDKs are functionally specialized, with substantially different substrate specificities to execute different cell cycle events4-6. A second model proposes that S-CDKs and M-CDKs are redundant with each other, with both acting as sources of overall CDK activity7,8. In this model, increasing CDK activity, rather than CDK substrate specificity, orders cell cycle events9,10. Here we reconcile these two views of core cell cycle control. Using phosphoproteomic assays of in vivo CDK activity in fission yeast, we find that S-CDK and M-CDK substrate specificities are remarkably similar, showing that S-CDKs and M-CDKs are not completely specialized for S phase and mitosis alone. Normally, S-CDK cannot drive mitosis but can do so when protein phosphatase 1 is removed from the centrosome. Thus, increasing S-CDK activity in vivo is sufficient to overcome substrate specificity differences between S-CDK and M-CDK, and allows S-CDK to carry out M-CDK function. Therefore, we unite the two opposing views of cell cycle control, showing that the core cell cycle engine is largely based on a quantitative increase in CDK activity through the cell cycle, combined with minor and surmountable qualitative differences in catalytic specialization of S-CDKs and M-CDKs.
    DOI:  https://doi.org/10.1038/s41586-022-04798-8
  11. Mol Cell. 2022 Jun 02. pii: S1097-2765(22)00445-2. [Epub ahead of print]82(11): 1976-1978
      Structures of the reconstituted human inner kinetochore complex by Pesenti et al. (2022) and Yatskevich et al. (2022) raise the question of whether it is the CENP-A nucleosome or the CCAN complex itself that provides the foundation for kinetochore assembly.
    DOI:  https://doi.org/10.1016/j.molcel.2022.05.011
  12. J Nat Prod. 2022 Jun 10.
      Aurora kinases (Aurora A, B, and C) are a family of serine/threonine kinases that play critical roles during mitotic initiation and progression. Aurora A and B kinases are ubiquitously expressed, and their overexpression and/or amplification in many cancers have been associated with poor prognosis. Several inhibitors that target Aurora kinases A, B, or both have been developed during the past decade with efficacy in different in vitro and in vivo models for a variety of cancers. Recent studies have also identified Aurora A as a synthetic lethal target for different tumor suppressors, including RB1, SMARCA4, and ARID1A, which signifies the need for Aurora-A-selective inhibitors. Here, we report the screening of a small library of quinones (nine naphthoquinones, one orthoquinone, and one anthraquinone) in a biochemical assay for Aurora A kinase that resulted in the identification of several quinones as inhibitors. IC50 determination against Aurora A and B kinases revealed the inhibition of both kinases with selectivity toward Aurora A. Two of the compounds, natural quinone naphthazarin (1) and a pseudo anthraquinone, 2-(chloromethyl)quinizarin (11), potently inhibited the proliferation of various cancer cell lines with IC50 values ranging from 0.16 ± 0.15 to 1.7 ± 0.06 and 0.15 ± 0.04 to 6.3 ± 1.8 μM, respectively. Treatment of cancer cells with these compounds for 24 h resulted in abrogated mitosis and apoptotic cell death. Direct binding of both the compounds with Aurora A kinase was also confirmed through STD NMR analysis. Docking studies predicted the binding of both compounds to the ATP binding pocket of Aurora A kinase. We have, therefore, identified quinones as Aurora kinase inhibitors that can serve as a lead for future drug discovery endeavors.
    DOI:  https://doi.org/10.1021/acs.jnatprod.1c01222
  13. FEBS Lett. 2022 Jun 09.
      The development of male and female gametophytes is a prerequisite for successful propagation of angiosperms. The small GTPases RAN play fundamental roles in numerous cellular processes. Although RAN GTPases have been characterized in plants, their roles in cellular processes are far from understood. We report here that RAN GTPases in Arabidopsis are critical for gametophytic development. RAN1 loss-of-function showed no defects in gametophytic development likely due to redundancy. However, the expression of a dominant negative (DN) or constitutively active (CA) RAN1 resulted in gametophytic lethality. Genetic interference of RAN GTPases caused the arrest of pollen mitosis I and of mitosis of functional megaspores, implying a key role of properly regulated RAN activity in mitosis during gametophytic development.
    Keywords:  Arabidopsis; RAN GTPases; gametogenesis; mitosis; plant reproduction
    DOI:  https://doi.org/10.1002/1873-3468.14422
  14. Biochem Soc Trans. 2022 06 08. pii: BST-2021-1131C. [Epub ahead of print]
      Cyclin-dependent kinase (CDK) sensors have facilitated investigations of the cell cycle in living cells. These genetically encoded fluorescent biosensors change their subcellular location upon activation of CDKs. Activation is primarily regulated by their association with cyclins, which in turn trigger cell-cycle progression. In the absence of CDK activity, cells exit the cell cycle and become quiescent, a key step in stem cell maintenance and cancer cell dormancy. The evolutionary conservation of CDKs has allowed for the rapid development of CDK activity sensors for cell lines and several research organisms, including nematodes, fish, and flies. CDK activity sensors are utilized for their ability to visualize the exact moment of cell-cycle commitment. This has provided a breakthrough in understanding the proliferation-quiescence decision. Further adoption of these biosensors will usher in new discoveries focused on the cell-cycle regulation of development, ageing, and cancer.
    Keywords:  cell cycle; biosensors; cyclin-dependent kinases; live imaging
    DOI:  https://doi.org/10.1042/BST20211131
  15. Cancers (Basel). 2022 May 27. pii: 2658. [Epub ahead of print]14(11):
      Cyclin-dependent kinase 1 (CDK1) is essential for cell division by regulating the G2/M phase and mitosis. CDK1 overexpression can also promote the development and progression of a variety of cancers. However, the significance of CDK1 in the formation, progression, and prognosis of human pan-cancer remains unclear. In the present study, we used The Cancer Genome Atlas database, Clinical Proteomic Tumor Analysis Consortium, Human Protein Atlas, Genotype-Tissue Expression, and other well-established databases to comprehensively examine CDK1 genetic alterations and gene/protein expression in various cancers and their relationships with the prognosis, immune reactivities, and clinical outcomes for 33 tumor types. Gene set enrichment analysis was also conducted to examine the potential mechanisms of CDK1 in tumorigenesis. The data showed that CDK1 mutation was frequently present in multiple tumors. CDK1 expression was significantly increased in various types of tumors as compared with normal tissues and was associated with poor overall and disease-free survival. In addition, CDK1 expression was significantly correlated with oncogenic genes, proteins, cellular components, myeloid-derived suppressor cell infiltration, ESTMATEScore, and signaling pathways associated with tumor development and progression and tumor microenvironments. These data indicate that CDK1 could serve as a promising biomarker for predicting tumor prognosis and a potential target for cancer treatment.
    Keywords:  CDK1; enrichment analysis; immune infiltration; pan-cancer; prognosis; tumor
    DOI:  https://doi.org/10.3390/cancers14112658