bims-mibica Biomed News
on Mitochondrial bioenergetics in cancer
Issue of 2023‒07‒30
24 papers selected by
Kelsey Fisher-Wellman
East Carolina University


  1. J Am Chem Soc. 2023 Jul 25.
      Complex I is a redox-driven proton pump that drives electron transport chains and powers oxidative phosphorylation across all domains of life. Yet, despite recently resolved structures from multiple organisms, it still remains unclear how the redox reactions in Complex I trigger proton pumping up to 200 Å away from the active site. Here, we show that the proton-coupled electron transfer reactions during quinone reduction drive long-range conformational changes of conserved loops and trans-membrane (TM) helices in the membrane domain of Complex I from Yarrowia lipolytica. We find that the conformational switching triggers a π → α transition in a TM helix (TM3ND6) and establishes a proton pathway between the quinone chamber and the antiporter-like subunits, responsible for proton pumping. Our large-scale (>20 μs) atomistic molecular dynamics (MD) simulations in combination with quantum/classical (QM/MM) free energy calculations show that the helix transition controls the barrier for proton transfer reactions by wetting transitions and electrostatic effects. The conformational switching is enabled by re-arrangements of ion pairs that propagate from the quinone binding site to the membrane domain via an extended network of conserved residues. We find that these redox-driven changes create a conserved coupling network within the Complex I superfamily, with point mutations leading to drastic activity changes and mitochondrial disorders. On a general level, our findings illustrate how catalysis controls large-scale protein conformational changes and enables ion transport across biological membranes.
    DOI:  https://doi.org/10.1021/jacs.3c03086
  2. Blood Adv. 2023 Jul 28. pii: bloodadvances.2023009967. [Epub ahead of print]
      Acute myeloid leukemia (AML) is initiated and propagated by leukemia stem cells (LSCs), a self-renewing population of leukemia cells responsible for therapy resistance. Hence, there is an urgent need to identify new therapeutic opportunities targeting LSCs. Here we performed an in vivo CRISPR knockout screen to identify potential therapeutic targets by interrogating cell surface dependencies of LSCs. The facilitated glucose transporter type 1 (GLUT1) emerged as a critical in vivo metabolic dependency for LSCs in a murine MLL::AF9-driven model of AML. GLUT1 disruption by genetic ablation or pharmacological inhibition led to suppression of leukemia progression and improved survival of mice transplanted with LSCs. Metabolic profiling revealed that Glut1 inhibition suppressed glycolysis, decreased levels of tricarboxylic acid (TCA) cycle intermediates, and increased the levels of amino acids. This metabolic reprogramming was accompanied by an increase in autophagic activity and apoptosis. Moreover, Glut1 disruption caused transcriptional, morphological and immunophenotypic changes consistent with differentiation of AML cells. Notably, dual inhibition of GLUT1 and oxidative phosphorylation (OXPHOS) exhibited synergistic anti-leukemic effects in the majority of primary AML patient samples tested by restraining their metabolic plasticity. In particular, RUNX1-mutated primary leukemia cells displayed striking sensitivity to the combination treatment compared to normal CD34+ bone marrow and cord blood cells. Collectively, our study reveals a GLUT1 dependency of murine LSCs in the bone marrow microenvironment, and demonstrates that dual inhibition of GLUT1 and OXPHOS is a promising therapeutic approach for AML.
    DOI:  https://doi.org/10.1182/bloodadvances.2023009967
  3. Res Sq. 2023 Jul 10. pii: rs.3.rs-3029860. [Epub ahead of print]
      The uptake of Ca 2+ into and extrusion of calcium from the mitochondrial matrix, regulated by the mitochondrial Ca 2+ uniporter (MCU), is a fundamental biological process that has crucial impacts on cellular metabolism, signaling, growth and survival. Herein, we report that the embryonic lethality of Mcu -deficient mice is fully rescued by orally supplementing ferroptosis inhibitor lipophilic antioxidant vitamin E and ubiquinol. Mechanistically, we found MCU promotes acetyl-CoA-mediated GPX4 acetylation at K90 residue, and K90R mutation impaired the GPX4 enzymatic activity, a step that is crucial for ferroptosis. Structural analysis supports the possibility that GPX4 K90R mutation alters the conformational state of the molecule, resulting in disruption of a salt bridge formation with D23, which was confirmed by mutagenesis studies. Finally, we report that deletion of MCU in cancer cells caused a marked reduction in tumor growth in multiple cancer models. In summary, our study provides a first direct link between mitochondrial calcium level and sustained GPX4 enzymatic activity to regulate ferroptosis, which consequently protects cancer cells from ferroptosis.
    DOI:  https://doi.org/10.21203/rs.3.rs-3029860/v1
  4. J Transl Med. 2023 Jul 28. 21(1): 512
      Mitochondria are the only organelles regulated by two genomes. The coordinated translation of nuclear DNA (nDNA) and mitochondrial DNA (mtDNA), which together co-encode the subunits of the oxidative phosphorylation (OXPHOS) complex, is critical for determining the metabolic plasticity of tumor cells. RNA-binding protein (RBP) is a post-transcriptional regulatory factor that plays a pivotal role in determining the fate of mRNA. RBP rapidly and effectively reshapes the mitochondrial proteome in response to intracellular and extracellular stressors, mediating the cytoplasmic and mitochondrial translation balance to adjust mitochondrial respiratory capacity and provide energy for tumor cells to adapt to different environmental pressures and growth needs. This review highlights the ability of RBPs to use liquid-liquid phase separation (LLPS) as a platform for translation regulation, integrating nuclear-mitochondrial positive and retrograde signals to coordinate cross-department translation, reshape mitochondrial energy metabolism, and promote the development and survival of tumor cells.
    Keywords:  Cytoplasmic translation; LLPS; Mitochondrial translation; OXPHOS; Retrograde signals
    DOI:  https://doi.org/10.1186/s12967-023-04373-3
  5. Genes (Basel). 2023 Jul 18. pii: 1465. [Epub ahead of print]14(7):
      Although it has gained more attention in recent years, the relationship between breast cancer (BC) and mitochondrial oxidative phosphorylation (OXPHOS) is still not well understood. Importantly, Complex IV or Cytochrome C Oxidase (COX) of OXPHOS is one of the key players in mitochondrial balance. An in silico investigation of mutations in structural genes of Complex IV was conducted in BC, comprising 2107 samples. Our findings show four variants (rs267606614, rs753969142, rs199476128 and rs267606884) with significant pathogenic potential. Moreover, we highlight nine genes (MT-CO1, MT-CO2, MT-CO3, CO4I2, COX5A, COX5B, COX6A2, COX6C and COX7B2) with a potential impact on BC.
    Keywords:  breast cancer; complex IV; mitochondria; oxidative phosphorylation
    DOI:  https://doi.org/10.3390/genes14071465
  6. EMBO Rep. 2023 Jul 27. e57372
      How cells coordinate their metabolism with division determines the rate of cell proliferation. Dynamic patterns of metabolite synthesis during the cell cycle are unexplored. We report the first isotope tracing analysis in synchronous, growing budding yeast cells. Synthesis of leucine, a branched-chain amino acid (BCAA), increases through the G1 phase of the cell cycle, peaking later during DNA replication. Cells lacking Bat1, a mitochondrial aminotransferase that synthesizes BCAAs, grow slower, are smaller, and are delayed in the G1 phase, phenocopying cells in which the growth-promoting kinase complex TORC1 is moderately inhibited. Loss of Bat1 lowers the levels of BCAAs and reduces TORC1 activity. Exogenous provision of valine and, to a lesser extent, leucine to cells lacking Bat1 promotes cell division. Valine addition also increases TORC1 activity. In wild-type cells, TORC1 activity is dynamic in the cell cycle, starting low in early G1 but increasing later in the cell cycle. These results suggest a link between BCAA synthesis from glucose to TORC1 activation in the G1 phase of the cell cycle.
    Keywords:  BCAA; BCAT; TORC1; cell size; isotope tracing
    DOI:  https://doi.org/10.15252/embr.202357372
  7. Genome Res. 2023 Jul 24. pii: gr.277755.123. [Epub ahead of print]
      A complex interplay between mRNA translation and cellular respiration has been recently unveiled, but its regulation in humans is poorly characterized in either health or disease. Cancer cells radically reshape both biosynthetic and bioenergetic pathways to sustain their aberrant growth rates. In this regard, we have shown that the molecular chaperone TRAP1 not only regulates the activity of respiratory complexes, behaving alternatively as an oncogene or a tumor suppressor, but also plays a concomitant moonlighting function in mRNA translation regulation. Herein we identify the molecular mechanisms involved, demonstrating that TRAP1: i) binds both mitochondrial and cytosolic ribosomes as well as translation elongation factors, ii) slows down translation elongation rate, and iii) favors localized translation in the proximity of mitochondria. We also provide evidence that TRAP1 is coexpressed in human tissues with the mitochondrial translational machinery, which is responsible for the synthesis of respiratory complex proteins. Altogether, our results show an unprecedented level of complexity in the regulation of cancer cell metabolism, strongly suggesting the existence of a tight feedback loop between protein synthesis and energy metabolism, based on the demonstration that a single molecular chaperone plays a role in both mitochondrial and cytosolic translation, as well as in mitochondrial respiration.
    DOI:  https://doi.org/10.1101/gr.277755.123
  8. Proc Natl Acad Sci U S A. 2023 08;120(31): e2300475120
      Eukaryotes organize cellular contents into membrane-bound organelles and membrane-less condensates, for example, protein aggregates. An unsolved question is why the ubiquitously distributed proteins throughout the cytosol give rise to spatially localized protein aggregates on the organellar surface, like mitochondria. We report that the mitochondrial import receptor Tom70 is involved in the localized condensation of protein aggregates in budding yeast and human cells. This is because misfolded cytosolic proteins do not autonomously aggregate in vivo; instead, they are recruited to the condensation sites initiated by Tom70's substrates (nascent mitochondrial proteins) on the organellar membrane using multivalent hydrophobic interactions. Knocking out Tom70 partially impairs, while overexpressing Tom70 increases the formation and association between cytosolic protein aggregates and mitochondria. In addition, ectopic targeting Tom70 and its substrates to the vacuole surface is able to redirect the localized aggregation from mitochondria to the vacuolar surface. Although other redundant mechanisms may exist, this nascent mitochondrial proteins-based initiation of protein aggregation likely explains the localized condensation of otherwise ubiquitously distributed molecules on the mitochondria. Disrupting the mitochondrial association of aggregates impairs their asymmetric retention during mitosis and reduces the mitochondrial import of misfolded proteins, suggesting a proteostasis role of the organelle-condensate interactions.
    Keywords:  condensate; mitochondria; protein aggregation
    DOI:  https://doi.org/10.1073/pnas.2300475120
  9. J Biol Chem. 2023 Jul 24. pii: S0021-9258(23)02115-4. [Epub ahead of print] 105087
      Mutations in the DNA helicase RECQL4 lead to Rothmund-Thomson Syndrome (RTS), a disorder characterized by mitochondrial dysfunctions, premature aging, and genomic instability. However, the mechanisms by which these mutations lead to pathology are unclear. Here we report that RECQL4 is ubiquitylated by a mitochondrial E3 ligase, MITOL, at two lysine residues (K1101, K1154) via K6 linkage. This ubiquitylation hampers the interaction of RECQL4 with mitochondrial importer Tom20, thereby restricting its own entry into mitochondria. We show the RECQL4 2K mutant (where both K1101 and K1154 are mutated) has increased entry into mitochondria and demonstrates enhanced mtDNA replication. We observed that the three tested RTS patient mutants were unable to enter the mitochondria and showed decreased mtDNA replication. Furthermore, we found that RECQL4 in RTS patient mutants are hyper-ubiquitylated by MITOL and form insoluble aggregate-like structures on the outer mitochondrial surface. However, depletion of MITOL allows RECQL4 expressed in these RTS mutants to enter mitochondria and rescue mtDNA replication. Finally, we show increased accumulation of hyper-ubiquitylated RECQL4 outside the mitochondria leads to the cells being potentiated to increased mitophagy. Hence, we conclude regulating the turnover of RECQL4 by MITOL may have a therapeutic effect in RTS patients.
    Keywords:  E3 ligases; RecQ helicases; Rothmund Thomson Syndrome; autophagy; mitochondrial replication
    DOI:  https://doi.org/10.1016/j.jbc.2023.105087
  10. Free Radic Biol Med. 2023 Jul 26. pii: S0891-5849(23)00558-0. [Epub ahead of print]
      Heritable renal cancer syndromes (RCS) are associated with numerous chromosomal alterations including inactivating mutations in von Hippel-Lindau (VHL) gene. Here we identify a novel aspect of the phenotype in VHL-deficient human renal cells. We call it reductive stress as it is characterised by increased NADH/NAD+ ratio that is associated with impaired cellular respiration, impaired CAC activity, upregulation of reductive carboxylation of glutamine and accumulation of lipid droplets in VHL-deficient cells. Reductive stress was mitigated by glucose depletion and supplementation with pyruvate or resazurin, a redox-reactive agent. This study demonstrates for the first time that reductive stress is a part of the phenotype associated with VHL-deficiency in renal cells and indicates that the reversal of reductive stress can augment respiratory activity and CAC activity, suggesting a strategy for altering the metabolic profile of VHL-deficient tumours.
    Keywords:  HIF; Reductive stress; Renal cell carcinoma; Respiration; VHL; VHL syndrome
    DOI:  https://doi.org/10.1016/j.freeradbiomed.2023.07.029
  11. Res Sq. 2023 Jul 18. pii: rs.3.rs-3088175. [Epub ahead of print]
      Calcium (Ca2+) uptake by mitochondria is essential in regulating bioenergetics, cell death, and cytosolic Ca2+ transients. Mitochondrial Calcium Uniporter (MCU) mediates the mitochondrial Ca2+ uptake. MCU is a hetero-oligomeric complex with a pore-forming component and accessory proteins required for channel activity. Though MCU regulation by MICUs is unequivocally established, there needs to be more knowledge of whether divalent cations regulate MCU. Here we set out to understand the mitochondrial matrix Mg2+-dependent regulation of MCU activity. We showed Mrs2 as the authentic mammalian mitochondrial Mg2+ channel using the planar lipid bilayer recordings. Using a liver-specific Mrs2 KO mouse model, we showed that decreased matrix [Mg2+] is associated with increased MCU activity and matrix Ca2+ overload. The disruption of Mg2+-dependent MCU regulation significantly prompted mitochondrial permeability transition pore opening-mediated cell death during tissue IR injury. Our findings support a critical role for mMg2+ in regulating MCU activity and attenuating mCa2+ overload.
    DOI:  https://doi.org/10.21203/rs.3.rs-3088175/v1
  12. J Biol Chem. 2023 Jul 26. pii: S0021-9258(23)02118-X. [Epub ahead of print] 105090
      Folate-mediated one-carbon metabolism (FOCM) is crucial in sustaining rapid proliferation and survival of cancer cells. The folate cycle depends on a series of key cellular enzymes, including ALDH1L2 (aldehyde dehydrogenase 1 family member L2) that is usually overexpressed in cancer cells, but the regulatory mechanism of ALDH1L2 remains undefined. In this study, we observed the significant overexpression of ALDH1L2 in colorectal cancer (CRC) tissues, which is associated with poor prognosis. Mechanistically, we identified that the acetylation of ALDH1L2 at the K70 site is an important regulatory mechanism inhibiting the enzymatic activity of ALDH1L2 and disturbing cellular redox balance. Moreover, we revealed that sirtuins 3 (SIRT3) directly binds and deacetylates ALDH1L2 to increase its activity. Interestingly, the chemotherapeutic agent 5-fluorouracil (5-Fu) inhibits the expression of SIRT3 and increases the acetylation levels of ALDH1L2 in CRC cells. 5-Fu-induced ALDH1L2 acetylation sufficiently inhibits its enzymatic activity and the production of NADPH and glutathione (GSH), thereby leading to oxidative stress-induced apoptosis and suppressing tumor growth in mice. Furthermore, the K70Q mutant of ALDH1L2 sensitizes cancer cells to 5-Fu both in vitro and in vivo through perturbing cellular redox and serine metabolism. Our findings reveal an unknown 5-Fu-SIRT3-ALDH1L2 axis regulating redox homeostasis, and suggest that targeting ALDH1L2 is a promising therapeutic strategy to sensitize tumor cells to chemotherapeutic agents.
    Keywords:  ALDH1L2; Acetylation; Drug resistance; One carbon metabolism; Posttranslational modification; SIRT3
    DOI:  https://doi.org/10.1016/j.jbc.2023.105090
  13. J Biol Chem. 2023 Jul 21. pii: S0021-9258(23)02107-5. [Epub ahead of print] 105079
      Fuel interactions in contracting muscle represent a complex interplay between enzymes regulating carbohydrate and fatty acid catabolism, converging in the mitochondrial matrix. While increasing exercise intensity promotes carbohydrate use at the expense of fatty acid oxidation, the mechanisms underlying this effect remain poorly elucidated. As a potential explanation, we investigated whether exercise-induced reductions in intramuscular pH (acidosis) attenuate carnitine palmitoyltransferase-I (CPT-I) supported bioenergetics, the rate-limiting step for fatty acid oxidation within mitochondria. Specifically, we assessed the effect of a physiologically relevant reduction in pH (pH 7.2 vs 6.8) on single and mixed substrate respiratory responses in murine skeletal muscle isolated mitochondria and permeabilized fibers. While pH did not influence OXPHOS stoichiometry (ADP/O ratios), coupling efficiency, oxygen affinity or ADP respiratory responses, acidosis impaired lipid bioenergetics by attenuating respiration with L-carnitine and palmitoyl-CoA, while enhancing the inhibitory effect of malonyl-CoA on CPT-I. These acidotic effects were largely retained following a single bout of intense exercise. At rest, pyruvate and succinate supported respiration were also impaired by acidosis. However, providing more pyruvate and ADP at pH 6.8 to model increases in glycolytic flux and ATP turnover with intense exercise, overcame the acidotic attenuation of carbohydrate-linked OXPHOS. Importantly, this situation is fundamentally different from lipids where CPT-I substrate sensitivity and availability is impaired at higher power outputs suggesting lipid metabolism may be more susceptible to the effects of acidosis, possibly contributing to fuel shifts with increasing exercise intensity.
    Keywords:  CPT-I; Mitochondrial bioenergetics; exercise; fuel metabolism; lipid metabolism; pH; skeletal muscle
    DOI:  https://doi.org/10.1016/j.jbc.2023.105079
  14. bioRxiv. 2023 Jul 07. pii: 2023.07.06.547932. [Epub ahead of print]
      Although the intestinal tract is a major site of reactive oxygen species (ROS) generation, the mechanisms by which antioxidant defense in gut T cells contribute to intestinal homeostasis are currently unknown. Here we show, using T cell-specific ablation of the catalytic subunit of glutamate cysteine ligase (Gclc), that the ensuing loss of glutathione (GSH) impairs the production of gut-protective IL-22 by Th17 cells within the lamina propria. Although Gclc ablation does not affect T cell cytokine secretion in the gut of mice at steady-state, infection with C. rodentium increases ROS, inhibits mitochondrial gene expression and mitochondrial function in Gclc-deficient Th17 cells. These mitochondrial deficits affect the PI3K/AKT/mTOR pathway, leading to reduced phosphorylation of the translation repressor 4E-BP1. As a consequence, the initiation of translation is restricted, resulting in decreased protein synthesis of IL-22. Loss of IL-22 results in poor bacterial clearance, enhanced intestinal damage, and high mortality. ROS-scavenging, reconstitution of IL-22 expression or IL-22 supplementation in vivo prevent the appearance of these pathologies. Our results demonstrate the existence of a previously unappreciated role for Th17 cell-intrinsic GSH coupling to promote mitochondrial function, IL-22 translation and signaling. These data reveal an axis that is essential for maintaining the integrity of the intestinal barrier and protecting it from damage caused by gastrointestinal infection.
    DOI:  https://doi.org/10.1101/2023.07.06.547932
  15. Commun Biol. 2023 Jul 25. 6(1): 775
      Nuclear factor I B (NFIB) plays an important role in tumors. Our previous study found that NFIB can promote colorectal cancer (CRC) cell proliferation in acidic environments. However, its biological functions and the underlying mechanism in CRC are incompletely understood. Nicotinamide adenine dinucleotide (NAD+) effectively affects cancer cell proliferation. Nevertheless, the regulatory mechanism of NAD+ synthesis in cancer remains to be elucidated. Here we show NFIB promotes CRC proliferation in vitro and growth in vivo, and down-regulation of NFIB can reduce the level of NAD+. In addition, supplementation of NAD+ precursor NMN can recapture cell proliferation in CRC cells with NFIB knockdown. Mechanistically, we identified that NFIB promotes CRC cell proliferation by inhibiting miRNA-182-5p targeting and binding to NAMPT, the NAD+ salvage synthetic rate-limiting enzyme. Our results delineate a combination of high expression of NFIB and NAMPT predicted a clinical poorest prognosis. This work provides potential therapeutic targets for CRC treatment.
    DOI:  https://doi.org/10.1038/s42003-023-05143-z
  16. Cell Discov. 2023 Jul 25. 9(1): 76
      IscU2 is a scaffold protein that is critical for the assembly of iron-sulfur (Fe-S) clusters and the functions of Fe-S-containing mitochondrial proteins. However, the role of IscU2 in tumor development remains unclear. Here, we demonstrated that IscU2 expression is much higher in human pancreatic ductal adenocarcinoma (PDAC) tissues than in adjacent normal pancreatic tissues. In PDAC cells, activated KRAS enhances the c-Myc-mediated IscU2 transcription. The upregulated IscU2 stabilizes Fe-S cluster and regulates the activity of tricarboxylic acid (TCA) cycle enzymes α-ketoglutarate (α-KG) dehydrogenase and aconitase 2, which promote α-KG catabolism through oxidative and reductive TCA cycling, respectively. In addition to promoting mitochondrial functions, activated KRAS-induced and IscU2-dependent acceleration of α-KG catabolism results in reduced α-KG levels in the cytosol and nucleus, leading to an increase in DNA 5mC due to Tet methylcytosine dioxygenase 3 (TET3) inhibition and subsequent expression of genes including DNA polymerase alpha 1 catalytic subunit for PDAC cell proliferation and tumor growth in mice. These findings underscore a critical role of IscU2 in KRAS-promoted α-KG catabolism, 5mC-dependent gene expression, and PDAC growth and highlight the instrumental and integrated regulation of mitochondrial functions and gene expression by IscU2 in PDAC cells.
    DOI:  https://doi.org/10.1038/s41421-023-00558-8
  17. J Transl Med. 2023 07 26. 21(1): 504
      BACKGROUND: Ovarian cancer (OC) is the most lethal malignant gynecological tumor type for which limited therapeutic targets and drugs are available. Enhanced mitochondrial oxidative phosphorylation (OXPHOS), which enables cell growth, migration, and cancer stem cell maintenance, is a critical driver of disease progression and a potential intervention target of OC. However, the current OXPHOS intervention strategy mainly suppresses the activity of the electron transport chain directly and cannot effectively distinguish normal tissues from cancer tissues, resulting in serious side effects and limited efficacy.METHODS: We screened natural product libraries to investigate potential anti-OC drugs that target OXPHOS. Additionally, LC-MS, qRT-PCR, western-blot, clonogenic assay, Immunohistochemistry, wound scratch assay, and xenograft model was applied to evaluate the anti-tumor mechanism of small molecules obtained by screening in OC.
    RESULTS: Gossypol acetic acid (GAA), a widely used gynecological medicine, was screened out from the drug library with the function of suppressing OXPHOS and OC progression by targeting the leucine-rich pentatricopeptide repeat containing (LRPPRC) protein. Mechanically, LRPPRC promotes the synthesis of OXPHOS subunits by binding to RNAs encoded by mitochondrial DNA. GAA binds to LRPPRC directly and induces LRPPRC rapid degradation in a ubiquitin-independent manner. LRPPRC was overexpressed in OC, which is highly correlated with the poor outcomes of OC and could promote the malignant phenotype of OC cells in vitro and in vivo. GAA management inhibits cell growth, clonal formation, and cancer stem cell maintenance in vitro, and suppresses subcutaneous graft tumor growth in vivo.
    CONCLUSIONS: Our study identified a therapeutic target and provided a corresponding inhibitor for OXPHOS-based OC therapy. GAA inhibits OC progression by suppressing OXPHOS complex synthesis via targeting LRPPRC protein, supporting its potential utility as a natural therapeutic agent for ovarian cancer.
    Keywords:  Gossypol acetic acid; LRPPRC; Ovarian cancer; Oxidative phosphorylation
    DOI:  https://doi.org/10.1186/s12967-023-04349-3
  18. Cell Rep. 2023 Jul 26. pii: S2211-1247(23)00906-3. [Epub ahead of print]42(8): 112895
      Mitochondrial morphology is regulated by the post-translational modifications of the dynamin family GTPase proteins including mitofusin 1 (MFN1), MFN2, and dynamin-related protein 1 (DRP1). Mitochondrial phosphatase phosphoglycerate mutase 5 (PGAM5) is emerging as a regulator of these post-translational modifications; however, its precise role in the regulation of mitochondrial morphology is unknown. We show that PGAM5 interacts with MFN2 and DRP1 in a stress-sensitive manner. PGAM5 regulates MFN2 phosphorylation and consequently protects it from ubiquitination and degradation. Further, phosphorylation and dephosphorylation modification of MFN2 regulates its fusion ability. Phosphorylation enhances fission and degradation, whereas dephosphorylation enhances fusion. PGAM5 dephosphorylates MFN2 to promote mitochondrial network formation. Further, using a Drosophila genetic model, we demonstrate that the MFN2 homolog Marf and dPGAM5 are in the same biological pathway. Our results identify MFN2 dephosphorylation as a regulator of mitochondrial fusion and PGAM5 as an MFN2 phosphatase.
    Keywords:  CP: Molecular biology; DRP1; MFN2; PGAM5; mitochondrial morphology
    DOI:  https://doi.org/10.1016/j.celrep.2023.112895
  19. Nat Commun. 2023 Jul 27. 14(1): 4524
      The inhibition of protein tyrosine phosphatases 1B (PTP1B) and N2 (PTPN2) has emerged as an exciting approach for bolstering T cell anti-tumor immunity. ABBV-CLS-484 is a PTP1B/PTPN2 inhibitor in clinical trials for solid tumors. Here we have explored the therapeutic potential of a related small-molecule-inhibitor, Compound-182. We demonstrate that Compound-182 is a highly potent and selective active site competitive inhibitor of PTP1B and PTPN2 that enhances T cell recruitment and activation and represses the growth of tumors in mice, without promoting overt immune-related toxicities. The enhanced anti-tumor immunity in immunogenic tumors can be ascribed to the inhibition of PTP1B/PTPN2 in T cells, whereas in cold tumors, Compound-182 elicited direct effects on both tumor cells and T cells. Importantly, treatment with Compound-182 rendered otherwise resistant tumors sensitive to α-PD-1 therapy. Our findings establish the potential for small molecule inhibitors of PTP1B and PTPN2 to enhance anti-tumor immunity and combat cancer.
    DOI:  https://doi.org/10.1038/s41467-023-40170-8
  20. iScience. 2023 Jul 21. 26(7): 107159
      Inter-organelle membrane contacts are highly dynamic and act as central hubs for many biological processes, but the protein compositions remain largely unknown due to the lack of efficient tools. Here, we developed BiFCPL to analyze the contact proteome in living cells by a bimolecular fluorescence complementation (BiFC)-based proximity labeling (PL) strategy. BiFCPL was applied to study mitochondria-endoplasmic reticulum contacts (MERCs) and mitochondria-lipid droplet (LD) contacts. We identified 403 highly confident MERC proteins, including many transiently resident proteins and potential tethers. Moreover, we demonstrated that mitochondria-LD contacts are sensitive to nutrient status. A comparative proteomic analysis revealed that 60 proteins are up- or downregulated at contact sites under metabolic challenge. We verified that SQLE, an enzyme for cholesterol synthesis, accumulates at mitochondria-LD contact sites probably to utilize local ATP for cholesterol synthesis. This work provides an efficient method to identify key proteins at inter-organelle membrane contacts in living cells.
    Keywords:  Biophysics; Membranes; Proteomics
    DOI:  https://doi.org/10.1016/j.isci.2023.107159
  21. Sci Rep. 2023 Jul 28. 13(1): 12226
      Bacterial energy metabolism has become a promising target for next-generation tuberculosis chemotherapy. One strategy to hamper ATP production is to inhibit the respiratory oxidases. The respiratory chain of Mycobacterium tuberculosis comprises a cytochrome bcc:aa3 and a cytochrome bd ubiquinol oxidase that require a combined approach to block their activity. A quinazoline-type compound called ND-011992 has previously been reported to ineffectively inhibit bd oxidases, but to act bactericidal in combination with inhibitors of cytochrome bcc:aa3 oxidase. Due to the structural similarity of ND-011992 to quinazoline-type inhibitors of respiratory complex I, we suspected that this compound is also capable of blocking other respiratory chain complexes. Here, we synthesized ND-011992 and a bromine derivative to study their effect on the respiratory chain complexes of Escherichia coli. And indeed, ND-011992 was found to inhibit respiratory complex I and bo3 oxidase in addition to bd-I and bd-II oxidases. The IC50 values are all in the low micromolar range, with inhibition of complex I providing the lowest value with an IC50 of 0.12 µM. Thus, ND-011992 acts on both, quinone reductases and quinol oxidases and could be very well suited to regulate the activity of the entire respiratory chain.
    DOI:  https://doi.org/10.1038/s41598-023-39430-w
  22. bioRxiv. 2023 Jul 15. pii: 2023.07.15.549149. [Epub ahead of print]
      p16 is a tumor suppressor encoded by the CDKN2A gene whose expression is lost in ∼50% of all human cancers. In its canonical role, p16 inhibits the G1-S phase cell cycle progression through suppression of cyclin dependent kinases. Interestingly, p16 also has roles in metabolic repro-gramming, and we previously published that loss of p16 promotes nucleotide synthesis via the pentose phosphate pathway. Whether other nucleotide metabolic genes and pathways are affected by p16/ CDKN2A loss and if these can be specifically targeted in p16-low tumors has not been previously explored. Using CRISPR KO libraries in multiple isogenic melanoma cell lines with wildtype p16/ CDKN2A and p16/ CDKN2A knockdown, we determined that many nucleotide metabolism genes are negatively enriched in p16/ CDKN2A knockdown cells compared to controls. Indeed, many of the genes that are required for survival in the context of low p16/ CDKN2A expression based on our CRISPR screens are upregulated in p16/ CDKN2A knockdown melanoma cells and those with endogenously low CDKN2A expression. We determined that cells with low p16 expression are sensitive to multiple inhibitors of de novo purine synthesis in vitro by inducing apoptosis. Together, our data provide evidence to reevaluate the utility of these drugs in patients with p16-low tumors as loss of p16 may provide a therapeutic window for these agents.
    DOI:  https://doi.org/10.1101/2023.07.15.549149
  23. J Biol Chem. 2023 Jul 24. pii: S0021-9258(23)02111-7. [Epub ahead of print] 105083
      c-Myc is a critical regulator of cell proliferation and growth. Elevated levels of c-Myc cause transcriptional amplification, leading to various types of cancers. Small molecules that specifically inhibit c-Myc-dependent regulation are potentially invaluable for anticancer therapy. Because c-Myc does not have enzymatic activity or targetable pockets, researchers have attempted to obtain small molecules that inhibit c-Myc co-factors, activate c-Myc repressors or target epigenetic modifications to regulate the chromatin of c-Myc-addicted cancer without any clinical success. In this study, we screened for c-Myc inhibitors using a cell-dependent assay system in which the expression of c-Myc and its transcriptional activity can be inferred from mKeima and EGFP fluorescence, respectively. We identified one mitochondrial inhibitor, antimycin A, as a hit compound. The compound enhanced the c-Myc phosphorylation of threonine-58, consequently increasing the proteasome-mediated c-Myc degradation. The mechanistic analysis of antimycin A revealed that it enhanced the degradation of c-Myc protein through the activation of glycogen synthetic kinase 3 (GSK3) by reactive oxygen species (ROS) from damaged mitochondria. Furthermore, we found that the inhibition of cell growth by antimycin A was caused by both ROS-dependent and ROS-independent pathways. Interestingly, ROS-dependent growth inhibition occurred only in the presence of c-Myc, which may reflect the representative features of cancer cells. Consistently, the antimycin A sensitivity of cells was correlated to the endogenous c-Myc levels in various cancer cells. Overall, our study provides an effective strategy for identifying c-Myc inhibitors and proposes a novel concept for utilizing ROS inducers for cancer therapy.
    Keywords:  c-Myc; degradation; phosphorylation; reactive oxygen species; ubiquitin
    DOI:  https://doi.org/10.1016/j.jbc.2023.105083