bims-mibica Biomed News
on Mitochondrial bioenergetics in cancer
Issue of 2023‒04‒23
35 papers selected by
Kelsey Fisher-Wellman
East Carolina University


  1. Nat Commun. 2023 04 17. 14(1): 2194
      Mitochondria are hubs where bioenergetics, redox homeostasis, and anabolic metabolism pathways integrate through a tightly coordinated flux of metabolites. The contributions of mitochondrial metabolism to tumor growth and therapy resistance are evident, but drugs targeting mitochondrial metabolism have repeatedly failed in the clinic. Our study in pancreatic ductal adenocarcinoma (PDAC) finds that cellular and mitochondrial lipid composition influence cancer cell sensitivity to pharmacological inhibition of electron transport chain complex I. Profiling of patient-derived PDAC models revealed that monounsaturated fatty acids (MUFAs) and MUFA-linked ether phospholipids play a critical role in maintaining ROS homeostasis. We show that ether phospholipids support mitochondrial supercomplex assembly and ROS production; accordingly, blocking de novo ether phospholipid biosynthesis sensitized PDAC cells to complex I inhibition by inducing mitochondrial ROS and lipid peroxidation. These data identify ether phospholipids as a regulator of mitochondrial redox control that contributes to the sensitivity of PDAC cells to complex I inhibition.
    DOI:  https://doi.org/10.1038/s41467-023-37924-9
  2. Mol Cell. 2023 Apr 20. pii: S1097-2765(23)00213-7. [Epub ahead of print]83(8): 1340-1349.e7
      The glycerol-3-phosphate shuttle (G3PS) is a major NADH shuttle that regenerates reducing equivalents in the cytosol and produces energy in the mitochondria. Here, we demonstrate that G3PS is uncoupled in kidney cancer cells where the cytosolic reaction is ∼4.5 times faster than the mitochondrial reaction. The high flux through cytosolic glycerol-3-phosphate dehydrogenase (GPD) is required to maintain redox balance and support lipid synthesis. Interestingly, inhibition of G3PS by knocking down mitochondrial GPD (GPD2) has no effect on mitochondrial respiration. Instead, loss of GPD2 upregulates cytosolic GPD on a transcriptional level and promotes cancer cell proliferation by increasing glycerol-3-phosphate supply. The proliferative advantage of GPD2 knockdown tumor can be abolished by pharmacologic inhibition of lipid synthesis. Taken together, our results suggest that G3PS is not required to run as an intact NADH shuttle but is instead truncated to support complex lipid synthesis in kidney cancer.
    Keywords:  GPD; NAD; glycerol; glycerol-3-phosphate dehydrogenase; glycerol-3-phosphate shuttle; kidney cancer; lipids; metabolism; mitochondria
    DOI:  https://doi.org/10.1016/j.molcel.2023.03.023
  3. Mol Oncol. 2023 Apr 22.
      The androgen receptor (AR) is an established orchestrator of cell metabolism in prostate cancer (PCa), notably by inducing an oxidative mitochondrial program. Intriguingly, AR regulates cytoplasmic isocitrate dehydrogenase 1 (IDH1) but not its mitochondrial counterparts IDH2 and IDH3. Here, we aimed to understand the functional role of IDH1 in PCa. Mouse models, in vitro human PCa cell lines, and human patient-derived organoids (PDOs) were used to study the expression and activity of IDH enzymes in the normal prostate and PCa. Genetic and pharmacological inhibition of IDH1 was then combined with extracellular flux analysis and gas chromatography-mass spectrometry for metabolomic analyses and cancer cell proliferation in vitro and in vivo. In PCa cells, more than 90% of the total IDH activity is mediated through IDH1 rather than its mitochondrial counterparts. This profile seems to originate from the specialized prostate metabolic program, as observed using mouse prostate and PDOs. Pharmacological and genetic inhibition of IDH1 impaired mitochondrial respiration, suggesting that this cytoplasmic enzyme contributes to the mitochondrial tricarboxylic acid cycle (TCA) in PCa. Mass spectrometry-based metabolomics confirmed this hypothesis, showing that inhibition of IDH1 impairs carbon flux into the TCA cycle. Consequently, inhibition of IDH1 decreased PCa cell proliferation in vitro and in vivo. These results demonstrate that PCa cells have a hybrid cytoplasmic-mitochondrial TCA cycle that depends on IDH1. This metabolic enzyme represents a metabolic vulnerability of PCa cells and a potential new therapeutic target.
    Keywords:  IDH1; androgen receptor; castration-resistant prostate cancer; citric acid; mitochondria; nuclear receptor
    DOI:  https://doi.org/10.1002/1878-0261.13441
  4. Sci Adv. 2023 04 21. 9(16): eadf9284
      Pancreatic ductal adenocarcinoma (PDAC) cells maintain a high level of autophagy, allowing them to thrive in an austere microenvironment. However, the processes through which autophagy promotes PDAC growth and survival are still not fully understood. Here, we show that autophagy inhibition in PDAC alters mitochondrial function by losing succinate dehydrogenase complex iron sulfur subunit B expression by limiting the availability of the labile iron pool. PDAC uses autophagy to maintain iron homeostasis, while other tumor types assessed require macropinocytosis, with autophagy being dispensable. We observed that cancer-associated fibroblasts can provide bioavailable iron to PDAC cells, promoting resistance to autophagy ablation. To overcome this cross-talk, we used a low-iron diet and demonstrated that this augmented the response to autophagy inhibition therapy in PDAC-bearing mice. Our work highlights a critical link between autophagy, iron metabolism, and mitochondrial function that may have implications for PDAC progression.
    DOI:  https://doi.org/10.1126/sciadv.adf9284
  5. bioRxiv. 2023 Apr 03. pii: 2023.04.02.535296. [Epub ahead of print]
      Healthy mitochondria are critical for reproduction. During aging, both reproductive fitness and mitochondrial homeostasis decline. Mitochondrial metabolism and dynamics are key factors in supporting mitochondrial homeostasis. However, how they are coupled to control reproductive health remains unclear. We report that mitochondrial GTP metabolism acts through mitochondrial dynamics factors to regulate reproductive aging. We discovered that germline-only inactivation of GTP- but not ATP-specific succinyl-CoA synthetase (SCS), promotes reproductive longevity in Caenorhabditis elegans. We further revealed an age-associated increase in mitochondrial clustering surrounding oocyte nuclei, which is attenuated by the GTP-specific SCS inactivation. Germline-only induction of mitochondrial fission factors sufficiently promotes mitochondrial dispersion and reproductive longevity. Moreover, we discovered that bacterial inputs affect mitochondrial GTP and dynamics factors to modulate reproductive aging. These results demonstrate the significance of mitochondrial GTP metabolism in regulating oocyte mitochondrial homeostasis and reproductive longevity and reveal mitochondrial fission induction as an effective strategy to improve reproductive health.
    DOI:  https://doi.org/10.1101/2023.04.02.535296
  6. Cell Metab. 2023 Apr 11. pii: S1550-4131(23)00094-3. [Epub ahead of print]
      Even-chain acylcarnitine (AC) metabolites, most of which are generated as byproducts of incomplete fatty acid oxidation (FAO), are viewed as biomarkers of mitochondrial lipid stress attributable to one or more metabolic bottlenecks in the β-oxidation pathway. The origins and functional implications of FAO bottlenecks remain poorly understood. Here, we combined a sophisticated mitochondrial phenotyping platform with state-of-the-art molecular profiling tools and multiple two-state mouse models of respiratory function to uncover a mechanism that connects AC accumulation to lipid intolerance, metabolic inflexibility, and respiratory inefficiency in skeletal muscle mitochondria. These studies also identified a short-chain carbon circuit at the C4 node of FAO wherein reverse flux of glucose-derived acetyl CoA through medium-chain ketothiolase enhances lipid tolerance and redox stability in heart mitochondria by regenerating free CoA and NAD+. The findings help to explain why diminished FAO capacity, AC accumulation, and metabolic inflexibility are tightly linked to poor health outcomes.
    Keywords:  acylcarnitines; bioenergetics; exercise; fatty acid oxidation; heart; ketothiolase; metabolic flexibility; mitochondria; pyruvate; skeletal muscle
    DOI:  https://doi.org/10.1016/j.cmet.2023.03.016
  7. Cancer Drug Resist. 2023 ;6(1): 138-150
      In response to the changing availability of nutrients and oxygen in the bone marrow microenvironment, acute myeloid leukemia (AML) cells continuously adjust their metabolic state. To meet the biochemical demands of their increased proliferation, AML cells strongly depend on mitochondrial oxidative phosphorylation (OXPHOS). Recent data indicate that a subset of AML cells remains quiescent and survives through metabolic activation of fatty acid oxidation (FAO), which causes uncoupling of mitochondrial OXPHOS and facilitates chemoresistance. For targeting these metabolic vulnerabilities of AML cells, inhibitors of OXPHOS and FAO have been developed and investigated for their therapeutic potential. Recent experimental and clinical evidence has revealed that drug-resistant AML cells and leukemic stem cells rewire metabolic pathways through interaction with BM stromal cells, enabling them to acquire resistance against OXPHOS and FAO inhibitors. These acquired resistance mechanisms compensate for the metabolic targeting by inhibitors. Several chemotherapy/targeted therapy regimens in combination with OXPHOS and FAO inhibitors are under development to target these compensatory pathways.
    Keywords:  Bone marrow microenvironment; acute myeloid leukemia; energy metabolism; fatty acid oxidation; mitochondria; oxidative phosphorylation
    DOI:  https://doi.org/10.20517/cdr.2022.133
  8. Cell Rep. 2023 Apr 15. pii: S2211-1247(23)00407-2. [Epub ahead of print]42(4): 112396
      Emerging evidence indicates that metabolic dysregulation drives prostate cancer (PCa) progression and metastasis. AMP-activated protein kinase (AMPK) is a master regulator of metabolism, although its role in PCa remains unclear. Here, we show that genetic and pharmacological activation of AMPK provides a protective effect on PCa progression in vivo. We show that AMPK activation induces PGC1α expression, leading to catabolic metabolic reprogramming of PCa cells. This catabolic state is characterized by increased mitochondrial gene expression, increased fatty acid oxidation, decreased lipogenic potential, decreased cell proliferation, and decreased cell invasiveness. Together, these changes inhibit PCa disease progression. Additionally, we identify a gene network involved in cell cycle regulation that is inhibited by AMPK activation. Strikingly, we show a correlation between this gene network and PGC1α gene expression in human PCa. Taken together, our findings support the use of AMPK activators for clinical treatment of PCa to improve patient outcome.
    Keywords:  AMPK; CP: Cancer; CP: Metabolism; PGC1α; cell cycle regulation; fatty acid oxidation; high-fat diet; lipogenesis; metabolism; metastasis; mitochondria; prostate cancer
    DOI:  https://doi.org/10.1016/j.celrep.2023.112396
  9. Mol Biol Rep. 2023 Apr 19.
      The self-renew ability of cancer stem cells (CSCs) continues to challenge our determination for accomplishing cancer therapy breakthrough. Ineffectiveness of current cancer therapies to eradicate CSCs has contributed to chemoresistance and tumor recurrence. Yet, the discoveries of highly effective therapies have not been thoroughly developed. Further insights into cancer metabolomics and gene-regulated mechanisms of mitochondria in CSCs can expedite the development of novel anticancer drugs. In cancer cells, the metabolism is reprogrammed from oxidative phosphorylation (OXPHOS) to glycolysis. This alteration allows the cancer cell to receive continuous energy supplies and avoid apoptosis. The pyruvate obtained from glycolysis produces acetyl-coenzyme A (Acetyl-CoA) via oxidative decarboxylation and enters the tricarboxylic acid cycle for adenosine triphosphate generation. Mitochondrial calcium ion (Ca2+) uptake is responsible for mitochondrial physiology regulation, and reduced uptake of Ca2+  inhibits apoptosis and enhances cell survival in cancer. There have been many discoveries of mitochondria-associated microRNAs (miRNAs) stimulating the metabolic alterations in mitochondria via gene regulation which promote cancer cell survival. These miRNAs are also found in CSCs where they regulate genes and activate different mechanisms to destroy the mitochondria and enhance CSCs survival. By targeting the miRNAs that induced mitochondrial destruction, the mitochondrial functions can be restored; thus, it triggers CSCs apoptosis and completely eliminates the CSCs. In general, this review article aims to address the associations between miRNAs with mitochondrial activities in cancer cells and cancer stem cells that support cancer cell survival and self-renewal.
    Keywords:  Cancer metabolomics; Cancer stem cells; Mitochondria; Therapeutic targets ; microRNAs
    DOI:  https://doi.org/10.1007/s11033-023-08421-5
  10. Cell Oncol (Dordr). 2023 Apr 20.
      Acute myeloid leukemia (AML) is a fast-growing and highly fatal blood cancer, and recent research has shown that targeting metabolism may be a promising therapeutic approach for treating AML. One promising target is the human mitochondrial NAD(P)+-dependent malic enzyme (ME2), which is involved in the production of pyruvate and NAD(P)H and the regulation of the NAD+/NADH redox balance. Inhibition of ME2 via silencing ME2 or utilizing its allosteric inhibitor disodium embonate (Na2EA) causes a decrease in pyruvate and NADH, leading to a decrease in producing ATP via cellular respiration and oxidative phosphorylation. ME2 inhibition also decreases NADPH levels, resulting in an increase in reactive oxygen species (ROS) and oxidative stress, which ultimately leads to cellular apoptosis. Additionally, ME2 inhibition reduces pyruvate metabolism and the biosynthetic pathway. ME2 silencing inhibits the growth of xenotransplanted human AML cells, and the allosteric ME2 inhibitor Na2EA demonstrates antileukemic activity against immune-deficient mice with disseminated AML. Both of these effects are a result of impaired energy metabolism in mitochondria. These findings suggest that the targeting ME2 may be an effective strategy for treating AML. Overall, ME2 plays an essential role in energy metabolism of AML cells, and its inhibition may offer a promising approach for AML treatment.
    Keywords:  Apoptosis; Cellular respiration; ME2 silencing; Pyruvate metabolism; ROS homeostasis
    DOI:  https://doi.org/10.1007/s13402-023-00812-x
  11. Oncoscience. 2023 ;10 6-8
      
    Keywords:  ATAD3A; ERK1/2; anti-cancer target; cancer; mitochondria
    DOI:  https://doi.org/10.18632/oncoscience.574
  12. Cancer Res. 2023 Apr 16. pii: CAN-22-3059. [Epub ahead of print]
      Acquired resistance represents a bottleneck for effective molecular targeted therapy in lung cancer. Metabolic adaptation is a distinct hallmark of human lung cancer that might contribute to acquired resistance. In this study, we discovered a novel mechanism of acquired resistance to EGFR tyrosine kinase inhibitors (TKIs) mediated by IGF2BP3-dependent crosstalk between epigenetic modifications and metabolic reprogramming through the IGF2BP3-COX6B2 axis. IGF2BP3 was upregulated in TKI-resistant non-small cell lung cancer patients, and high IGF2BP3 expression correlated with reduced overall survival. Upregulated expression of the RNA binding protein IGF2BP3 in lung cancer cells reduced sensitivity to TKI treatment and exacerbated the development of drug resistance via promoting oxidative phosphorylation (OXPHOS). COX6B2 mRNA bound IGF2BP3, and COX6B2 was required for increased OXPHOS and acquired EGFR-TKI resistance mediated by IGF2BP3. Mechanistically, IGF2BP3 bound to the 3'-untranslated region of COX6B2 in an m6A-dependent manner to increase COX6B2 mRNA stability. Moreover, the IGF2BP3-COX6B2 axis regulated nicotinamide metabolism, which can alter OXPHOS and promote EGFR-TKI acquired resistance. Inhibition of OXPHOS with IACS-010759, a small-molecule inhibitor, resulted in strong growth suppression in vitro and in vivo in a gefitinib-resistant patient-derived xenograft model. Collectively, these findings suggest that metabolic reprogramming by the IGF2BP3-COX6B2 axis plays a critical role in TKI resistance and confers a targetable metabolic vulnerability to overcome acquired resistance to EGFR-TKIs in lung cancer.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-22-3059
  13. J Cell Sci. 2023 Apr 19. pii: jcs.260578. [Epub ahead of print]
      Mitochondria are essential organelles of eukaryotic cells that are characterized by their unique and complex membrane system. They are confined from the cytosol by an envelope consisting of two membranes. Signals, metabolites, proteins and lipids have to be transferred across these membranes via proteinaceous contact sites to keep mitochondria functional. In the present study we identified a novel mitochondrial contact site that is formed by the inner membrane protein Cqd1 and the outer membrane proteins Por1 and Om14. Similar to the mitochondrial porin, Por1, Cqd1 is highly conserved, suggesting that this complex is conserved in form and function from yeast to human. Cqd1 is a member of the UbiB protein kinase-like family (also called aarF domain containing kinases). It was recently shown that Cqd1 in cooperation with Cqd2 controls the cellular distribution of coenzyme Q by a yet unknown mechanism. Our data suggest that Cqd1 is additionally involved in phospholipid homeostasis. Moreover, overexpression of CQD1 and CQD2 causes tethering of mitochondria to the endoplasmic reticulum, which might explain the ability of Cqd2 to rescue ERMES deletion phenotypes.
    Keywords:  Contact sites; Mitochondria; Mitochondrial biogenesis; Mitochondrial morphology; Phospholipids; UbiB protein family
    DOI:  https://doi.org/10.1242/jcs.260578
  14. Dis Model Mech. 2023 Apr 01. pii: dmm049783. [Epub ahead of print]16(4):
      The list of mitochondrial DNA (mtDNA) variants detected in individuals with neurodegenerative diseases is constantly growing. Evaluating their functional consequences and pathogenicity is not easy, especially when they are found in only a limited number of patients together with wild-type mtDNA (heteroplasmy). Owing to its amenability to mitochondrial genetic transformation and incapacity to stably maintain heteroplasmy, and the strong evolutionary conservation of the proteins encoded in mitochondria, Saccharomyces cerevisiae provides a convenient model to investigate the functional consequences of human mtDNA variants. We herein report the construction and energy-transducing properties of yeast models of eight MT-ATP6 gene variants identified in patients with various disorders: m.8843T>C, m.8950G>A, m.9016A>G, m.9025G>A, m.9029A>G, m.9058A>G, m.9139G>A and m.9160T>C. Significant defect in growth dependent on respiration and deficits in ATP production were observed in yeast models of m.8950G>A, m.9025G>A and m.9029A>G, providing evidence of pathogenicity for these variants. Yeast models of the five other variants showed very mild, if any, effect on mitochondrial function, suggesting that the variants do not have, at least alone, the potential to compromise human health.
    Keywords:   MT-ATP6 ; ATP synthase; LHON; MILS; Mitochondrial DNA mutation; Mitochondrial diseases; Yeast; mtDNA
    DOI:  https://doi.org/10.1242/dmm.049783
  15. Mol Metab. 2023 Apr 14. pii: S2212-8778(23)00060-1. [Epub ahead of print] 101726
      OBJECTIVE: Cancer cells use glycolysis for generation of metabolic intermediates and ATP needed for cell growth and proliferation. The transcription factor C/EBPβ-LIP stimulates glycolysis and mitochondrial respiration in cancer cells. We initially observed that high expression of C/EBPβ-LIP makes cells vulnerable to treatment with the glycolysis inhibitor 2-deoxyglucose. The aim of the study was to uncover the involved mechanisms of C/EBPβ-LIP induced sensitivity to glycolysis inhibition.METHODS: We used genetically engineered cell lines to examine the effect of C/EBPβ-LIP and -LAP protein isoforms on glycolysis and NADH/NAD+ metabolism in mouse embryonic fibroblasts (MEFs), and triple negative breast cancer (TNBC) cells that endogenously express high levels of C/EBPβ-LIP. Analyses included assays of cell proliferation, cell survival and metabolic flux (OCR and ECAR by Seahorse XF96). Small molecule inhibitors were used to identify underlying metabolic pathways that mediate sensitivity to glycolysis inhibition induced by C/EBPβ-LIP.
    RESULTS: The transcription factor C/EBPβ-LIP stimulates both glycolysis and the malate-aspartate shuttle (MAS) and increases the sensitivity to glycolysis inhibition (2-deoxyglucose) in fibroblasts and breast cancer cells. Inhibition of glycolysis with ongoing C/EBPβ-LIP-induced MAS activity results in NADH depletion and apoptosis that can be rescued by inhibiting either the MAS or other NAD+-regenerating processes.
    CONCLUSION: This study indicates that a low NADH/NAD+ ratio is an essential mediator of 2-deoxyglucose toxicity in cells with high cytoplasmic NAD+-regeneration capacity and that simultaneous inhibition of glycolysis and lowering of the NADH/NAD+ ratio may be considered to treat cancer.
    Keywords:  C/EBPβ; NAD(+); cancer; glycolysis; malate-aspartate shuttle
    DOI:  https://doi.org/10.1016/j.molmet.2023.101726
  16. Nature. 2023 Apr;616(7958): 670-671
      
    Keywords:  Cancer; Cell biology; Metabolism
    DOI:  https://doi.org/10.1038/d41586-023-01024-x
  17. Mol Cells. 2023 Apr 20.
      Thermal stress induces dynamic changes in nuclear proteins and relevant physiology as a part of the heat shock response (HSR). However, how the nuclear HSR is fine-tuned for cellular homeostasis remains elusive. Here, we show that mitochondrial activity plays an important role in nuclear proteostasis and genome stability through two distinct HSR pathways. Mitochondrial ribosomal protein (MRP) depletion enhanced the nucleolar granule formation of HSP70 and ubiquitin during HSR while facilitating the recovery of damaged nuclear proteins and impaired nucleocytoplasmic transport. Treatment of the mitochondrial proton gradient uncoupler masked MRP-depletion effects, implicating oxidative phosphorylation in these nuclear HSRs. On the other hand, MRP depletion and a reactive oxygen species (ROS) scavenger non-additively decreased mitochondrial ROS generation during HSR, thereby protecting the nuclear genome from DNA damage. These results suggest that suboptimal mitochondrial activity sustains nuclear homeostasis under cellular stress, providing plausible evidence for optimal endosymbiotic evolution via mitochondria-to-nuclear communication.
    Keywords:  genome stability; heat shock response; mitohor­mesis; mitonuclear communication; nuclear proteostasis
    DOI:  https://doi.org/10.14348/molcells.2023.2181
  18. Haematologica. 2023 Apr 20.
      BCL-XL and BCL-2 are key anti-apoptotic proteins and validated cancer targets. 753B is a novel BCL-XL/BCL-2 proteolysis targeting chimera (PROTAC) that targets both BCL-XL and BCL-2 to the Von Hippel-Lindau (VHL) E3 ligase, leading to BCL-XL/BCL-2 ubiquitination and degradation selectively in cells expressing VHL. Because platelets lack VHL expression, 753B spares on-target platelet toxicity caused by the first generation dual BCL-XL/BCL-2 inhibitor navitoclax (ABT-263). Here, we report pre-clinical single-agent activity of 753B against different leukemia subsets. 753B effectively reduced cell viability and induced dose-dependent degradation of BCL-XL and BCL-2 in a subset of hematopoietic cell lines, AML primary samples and in vivo PDX AML model. We further demonstrated the senolytic activity of 753B which enhanced the efficacy of chemotherapy by targeting chemotherapy-induced cellular senescence. These results provide a pre-clinical rationale for the utility of 753B in AML therapy, and suggest that 753B could produce an added therapeutic benefit by overcoming cellular senescence-induced chemoresistance when combined with chemotherapy.
    DOI:  https://doi.org/10.3324/haematol.2022.281915
  19. bioRxiv. 2023 Apr 03. pii: 2023.04.03.535288. [Epub ahead of print]
      Efficient metabolic engineering and the development of mitochondrial therapeutics often rely upon the specific and strong import of foreign proteins into mitochondria. Fusing a protein to a mitochondria-bound signal peptide is a common method to localize proteins to mitochondria, but this strategy is not universally effective with particular proteins empirically failing to localize. To help overcome this barrier, this work develops a generalizable and open-source framework to design proteins for mitochondrial import and quantify their specific localization. By using a Python-based pipeline to quantitatively assess the colocalization of different proteins previously used for precise genome editing in a high-throughput manner, we reveal signal peptide-protein combinations that localize well in mitochondria and, more broadly, general trends about the overall reliability of commonly used mitochondrial targeting signals.
    DOI:  https://doi.org/10.1101/2023.04.03.535288
  20. Elife. 2023 Apr 19. pii: e87194. [Epub ahead of print]12
      A large-scale study of mutations in mitochondrial DNA has revealed a subset that do not accumulate with age.
    Keywords:  aging; duplex sequencing; genetics; genomics; mitochondrial DNA; mouse; somatic mutations
    DOI:  https://doi.org/10.7554/eLife.87194
  21. PNAS Nexus. 2023 Apr;2(4): pgad105
      Adequate thymidylate [deoxythymidine monophosphate (dTMP) or the "T" base in DNA] levels are essential for stability of mitochondrial DNA (mtDNA) and nuclear DNA (nDNA). Folate and vitamin B12 (B12) are essential cofactors in folate-mediated one-carbon metabolism (FOCM), a metabolic network which supports synthesis of nucleotides (including dTMP) and methionine. Perturbations in FOCM impair dTMP synthesis, causing misincorporation of uracil (or a "U" base) into DNA. During B12 deficiency, cellular folate accumulates as 5-methyltetrahdryfolate (5-methyl-THF), limiting nucleotide synthesis. The purpose of this study was to determine how reduced levels of the B12-dpendent enzyme methionine synthase (MTR) and dietary folate interact to affect mtDNA integrity and mitochondrial function in mouse liver. Folate accumulation, uracil levels, mtDNA content, and oxidative phosphorylation capacity were measured in male Mtr+/+ and Mtr+/- mice weaned onto either a folate-sufficient control (C) diet (2 mg/kg folic acid) or a folate-deficient (FD) diet (lacking folic acid) for 7 weeks. Mtr heterozygosity led to increased liver 5-methyl-THF levels. Mtr+/- mice consuming the C diet also exhibited a 40-fold increase in uracil in liver mtDNA. Mtr+/- mice consuming the FD diet exhibited less uracil accumulation in liver mtDNA as compared to Mtr+/+ mice consuming the FD diet. Furthermore, Mtr+/- mice exhibited 25% lower liver mtDNA content and a 20% lower maximal oxygen consumption rates. Impairments in mitochondrial FOCM are known to lead to increased uracil in mtDNA. This study demonstrates that impaired cytosolic dTMP synthesis, induced by decreased Mtr expression, also leads to increased uracil in mtDNA.
    Keywords:  DNA; folate; methionine synthase; uracil; vitamin B12
    DOI:  https://doi.org/10.1093/pnasnexus/pgad105
  22. Geroscience. 2023 Apr 22.
      Altered mitochondrial function is tightly linked to lifespan regulation, but underlying mechanisms remain unclear. Here, we report the chronological and replicative lifespan variation across 167 yeast knock-out strains, each lacking a single nuclear-coded mitochondrial gene, including 144 genes with human homologs, many associated with diseases. We dissected the signatures of observed lifespan differences by analyzing profiles of each strain's proteome, lipidome, and metabolome under fermentative and respiratory culture conditions, which correspond to the metabolic states of replicative and chronologically aging cells, respectively. Examination of the relationships among extended longevity phenotypes, protein, and metabolite levels revealed that although many of these nuclear-encoded mitochondrial genes carry out different functions, their inhibition attenuates a common mechanism that controls cytosolic ribosomal protein abundance, actin dynamics, and proteasome function to regulate lifespan. The principles of lifespan control learned through this work may be applicable to the regulation of lifespan in more complex organisms, since many aspects of mitochondrial function are highly conserved among eukaryotes.
    Keywords:  Aging; Metabolism; Mitochondrial proteins; Omics; Yeast
    DOI:  https://doi.org/10.1007/s11357-023-00796-4
  23. Drug Dev Res. 2023 Apr 18.
      Papillary thyroid carcinoma contributes to about 80% of the total thyroid cancer cases. BRAFV600E is a frequently occurring mutation in PTCs. Although several BRAF inhibitors are available, many thyroid cancer patients acquire resistance to BRAF inhibitors. Therefore, new targets and drugs need to be identified as therapies. Ferroptosis is a recently discovered type of cell death, and inhibiting glutathione peroxidase 4 (GPX4) using small molecules was found to trigger ferroptosis. But it is unknown whether inhibiting GPX4 renders thyroid cancer cells susceptible to ferroptosis. To identify novel GPX4 inhibitors, we focused on our previously reported cohort of diaryl ether and dibenzoxepine molecules. In this study, we asked whether diaryl ether and dibenzoxepine derivatives trigger ferroptosis in thyroid cancer cells. To answer this question, we screened diaryl ether and dibenzoxepine derivatives in cell-based assays and performed mechanism of action studies. We found that a diaryl ether derivative, 16 decreased thyroid cell proliferation and triggered ferroptosis by inhibiting GPX4 expression levels. Molecular modeling and dynamics simulations showed that 16 binds to the active site of GPX4. Upon deciphering the mode of 16-induced ferroptosis, we found that 16 treatments decrease mitochondrial polarization and reduce mitochondrial respiration similar to a ferroptosis inducer, RSL3. We conclude that the diaryl ether derivative, 16 inhibits GPX4 expression levels to induce ferroptosis in thyroid cancer cells. Based on our observations, we suggest that 16 can be lead-optimized and developed as a ferroptosis-inducing agent to treat thyroid cancers.
    Keywords:  GPX4; ferroptosis; mitochondria; molecular docking; reactive oxygen species
    DOI:  https://doi.org/10.1002/ddr.22059
  24. Biochemistry (Mosc). 2023 Jan;88(Suppl 1): S1-S20
      The Nobel Prize Winner (1931) Dr. Otto H. Warburg had established that the primary energy source of the cancer cell is aerobic glycolysis (the Warburg effect). He also postulated the hypothesis about "the prime cause of cancer", which is a matter of debate nowadays. Contrary to the hypothesis, his discovery was recognized entirely. However, the discovery had almost vanished in the heat of battle about the hypothesis. The prime cause of cancer is essential for the prevention and diagnosis, yet the effects that influence tumor growth are more important for cancer treatment. Due to the Warburg effect, a large amount of data has been accumulated on biochemical changes in the cell and the organism as a whole. Due to the Warburg effect, the recovery of normal biochemistry and oxygen respiration and the restoration of the work of mitochondria of cancer cells can inhibit tumor growth and lead to remission. Here, we review the current knowledge on the inhibition of abnormal glycolysis, neutralization of its consequences, and normalization of biochemical parameters, as well as recovery of oxygen respiration of a cancer cell and mitochondrial function from the point of view of classical biochemistry and organic chemistry.
    Keywords:  biochemistry; glycolysis; mitochondria; oncology; oxygen respiration; the Warburg effect
    DOI:  https://doi.org/10.1134/S0006297923140018
  25. Bioenerg Commun. 2022 Nov 15. 2022 17
      Protein kinases take the center stage in numerous signaling pathways by phosphorylating compartmentalized protein substrates for controlling cell proliferation, cell cycle and metabolism. Kinase dysfunctions have been linked to numerous human diseases such as cancer. This has led to the development of kinase inhibitors which aim to target oncogenic kinase activities. The specificity of the cancer blockers depends on the range of targeted kinases. Therefore, the question arises of how cell-type-specific off-target effects impair the specificities of cancer drugs. Blockade of kinase activities has been shown to converge on the energetic organelle, the mitochondria. In this review, we highlight examples of selected major kinases that impact mitochondrial signaling. Further, we discuss pharmacological strategies to target kinase activities linked to cancer progression and redirecting mitochondrial function. Finally, we propose that cell-based recordings of mitochondrial bioenergetic states might predict off-target or identify specific on-target effects of kinase inhibitors.
    Keywords:  cancer; drug off-target effects; kinase inhibitors; kinases; mitochondria; signaling
    DOI:  https://doi.org/10.26124/bec:2022-0013
  26. J Exp Clin Cancer Res. 2023 Apr 19. 42(1): 92
      BACKGROUND: One of the key limitations of targeted cancer therapies is the rapid onset of therapy resistance. Taking BRAF-mutant melanoma as paradigm, we previously identified the lipogenic regulator SREBP-1 as a central mediator of resistance to MAPK-targeted therapy. Reasoning that lipogenesis-mediated alterations in membrane lipid poly-unsaturation lie at the basis of therapy resistance, we targeted fatty acid synthase (FASN) as key player in this pathway to evoke an exquisite vulnerability to clinical inducers of reactive oxygen species (ROS), thereby rationalizing a novel clinically actionable combination therapy to overcome therapy resistance.METHODS: Using gene expression analysis and mass spectrometry-based lipidomics of BRAF-mutant melanoma cell lines, melanoma PDX and clinical data sets, we explored the association of FASN expression with membrane lipid poly-unsaturation and therapy-resistance. Next, we treated therapy-resistant models with a preclinical FASN inhibitor TVB-3664 and a panel of ROS inducers and performed ROS analysis, lipid peroxidation tests and real-time cell proliferation assays. Finally, we explored the combination of MAPK inhibitors, TVB-3664 and arsenic trioxide (ATO, as a clinically used ROS-inducer) in Mel006 BRAF mutant PDX as a gold model of therapy resistance and assessed the effect on tumor growth, survival and systemic toxicity.
    RESULTS: We found that FASN expression is consistently increased upon the onset of therapy resistance in clinical melanoma samples, in cell lines and in Mel006 PDX and is associated with decreased lipid poly-unsaturation. Forcing lipid poly-unsaturation in therapy-resistant models by combining MAPK inhibition with FASN inhibition attenuated cell proliferation and rendered cells exquisitely sensitive to a host of ROS inducers. In particular, the triple combination of MAPK inhibition, FASN inhibition, and the clinical ROS-inducing compound ATO dramatically increased survival of Mel006 PDX models from 15 to 72% with no associated signs of toxicity.
    CONCLUSIONS: We conclude that under MAPK inhibition the direct pharmacological inhibition of FASN evokes an exquisite vulnerability to inducers of ROS by increasing membrane lipid poly-unsaturation. The exploitation of this vulnerability by combining MAPK and/or FASN inhibitors with inducers of ROS greatly delays the onset of therapy resistance and increases survival. Our work identifies a clinically actionable combinatorial treatment for therapy-resistant cancer.
    Keywords:  Lipid metabolism; Melanoma; Therapy resistance
    DOI:  https://doi.org/10.1186/s13046-023-02664-7
  27. PLoS Comput Biol. 2023 Apr 21. 19(4): e1011060
      Mitochondria form a network in the cell that rapidly changes through fission, fusion, and motility. Dysregulation of this four-dimensional (4D: x,y,z,time) temporal network is implicated in numerous diseases ranging from cancer to neurodegeneration. While lattice light-sheet microscopy has recently made it possible to image mitochondria in 4D, quantitative analysis methods for the resulting datasets have been lacking. Here we present MitoTNT, the first-in-class software for Mitochondrial Temporal Network Tracking in 4D live-cell fluorescence microscopy data. MitoTNT uses spatial proximity and network topology to compute an optimal tracking assignment. To validate the accuracy of tracking, we created a reaction-diffusion simulation to model mitochondrial network motion and remodeling events. We found that our tracking is >90% accurate for the ground-truth simulations and agrees well with published motility results for experimental data. We used MitoTNT to quantify 4D mitochondrial networks from human induced pluripotent stem cells. First, we characterized sub-fragment motility and analyzed network branch motion patterns. We revealed that the skeleton node motion is correlated along branch and uncorrelated in time. Second, we identified fission and fusion events with high spatiotemporal resolution. We found that mitochondrial skeleton nodes near the fission/fusion sites move nearly twice as fast as random skeleton nodes and that microtubules play a role in mediating selective fission/fusion. Finally, we developed graph-based transport simulations that model how material would distribute on experimentally measured mitochondrial temporal networks. We showed that pharmacological perturbations increase network reachability but decrease network resilience through a combination of altered mitochondrial fission/fusion dynamics and motility. MitoTNT's easy-to-use tracking module, interactive 4D visualization capability, and powerful post-tracking analysis aim at making temporal network tracking accessible to the wider mitochondria research community.
    DOI:  https://doi.org/10.1371/journal.pcbi.1011060
  28. Dev Cell. 2023 Apr 17. pii: S1534-5807(23)00148-X. [Epub ahead of print]
      Glioblastoma is thought to originate from neural stem cells (NSCs) of the subventricular zone that acquire genetic alterations. In the adult brain, NSCs are largely quiescent, suggesting that deregulation of quiescence maintenance may be a prerequisite for tumor initiation. Although inactivation of the tumor suppressor p53 is a frequent event in gliomagenesis, whether or how it affects quiescent NSCs (qNSCs) remains unclear. Here, we show that p53 maintains quiescence by inducing fatty-acid oxidation (FAO) and that acute p53 deletion in qNSCs results in their premature activation to a proliferative state. Mechanistically, this occurs through direct transcriptional induction of PPARGC1a, which in turn activates PPARα to upregulate FAO genes. Dietary supplementation with fish oil containing omega-3 fatty acids, natural PPARα ligands, fully restores quiescence of p53-deficient NSCs and delays tumor initiation in a glioblastoma mouse model. Thus, diet can silence glioblastoma driver mutations, with important implications for cancer prevention.
    Keywords:  fatty acid oxidation; metabolism; neural stem cells; p53; quiescence; tumour initiation
    DOI:  https://doi.org/10.1016/j.devcel.2023.03.021
  29. Commun Biol. 2023 04 18. 6(1): 427
      Ectopic ATP synthase complex (eATP synthase), located on cancer cell surface, has been reported to possess catalytic activity that facilitates the generation of ATP in the extracellular environment to establish a suitable microenvironment and to be a potential target for cancer therapy. However, the mechanism of intracellular ATP synthase complex transport remains unclear. Using a combination of spatial proteomics, interaction proteomics, and transcriptomics analyses, we find ATP synthase complex is first assembled in the mitochondria and subsequently delivered to the cell surface along the microtubule via the interplay of dynamin-related protein 1 (DRP1) and kinesin family member 5B (KIF5B). We further demonstrate that the mitochondrial membrane fuses to the plasma membrane in turn to anchor ATP syntheses on the cell surface using super-resolution imaging and real-time fusion assay in live cells. Our results provide a blueprint of eATP synthase trafficking and contribute to the understanding of the dynamics of tumor progression.
    DOI:  https://doi.org/10.1038/s42003-023-04785-3
  30. EMBO Mol Med. 2023 Apr 18. e17209
      Androgen deprivation therapy (ADT) is a cornerstone of prostate cancer (PCa) management. Although tumors initially regress, many progress to a hormone-independent state termed castration-resistant PCa (CRPC), for which treatment options are limited. We here report that the major luminal cell population in tumors of Pten(i)pe-/- mice, generated by luminal epithelial cell-specific deletion of the tumor suppressor PTEN after puberty, is castration-resistant and that the expression of inflammation and stemness markers is enhanced in persistent luminal cells. In addition, hypoxia-inducible factor 1 (HIF1) signaling, which we have previously demonstrated to be induced in luminal cells of Pten(i)pe-/- mice and to promote malignant progression, is further activated. Importantly, we show that genetic and pharmacological inhibition of HIF1A sensitizes Pten-deficient prostatic tumors to castration and provides durable therapeutic responses. Furthermore, HIF1A inhibition induces apoptotic signaling in human CRPC cell lines. Therefore, our data demonstrate that HIF1A in prostatic tumor cells is a critical factor that enables their survival after ADT, and identify it as a target for CRPC management.
    Keywords:  HIF1A; PTEN; castration-resistant prostate cancer; genetically-engineered mice; single-cell RNA sequencing
    DOI:  https://doi.org/10.15252/emmm.202217209
  31. Sci Rep. 2023 Apr 20. 13(1): 6445
      The retina has the greatest metabolic demand in the body particularly in dark adaptation when its sensitivity is enhanced. This requires elevated level of perfusion to sustain mitochondrial activity. However, mitochondrial performance declines with age leading to reduced adaptive ability. We assessed human retina metabolism in vivo using broad band near-infrared spectroscopy (bNIRS), which records colour changes in mitochondria and blood as retinal metabolism shifts in response to changes in environmental luminance. We demonstrate a significant sustained rise in mitochondrial oxidative metabolism in the first 3 min of darkness in subjects under 50 years old. This was not seen in those over 50 years. Choroidal oxygenation declines in < 50 s as mitochondrial metabolism increases, but gradually rises in the > 50 s. Significant group differences in blood oxygenation are apparent in the first 6 min, consistent with mitochondrial demand leading hemodynamic changes. A greater coupling between mitochondrial oxidative metabolism with hemodynamics is revealed in subjects older than 50, possibly due to reduced capacity in the older retina. Rapid in vivo assessment of retinal metabolism with bNIRS provides a route to understanding fundamental physiology and early identification of retinal disease before pathology is established.
    DOI:  https://doi.org/10.1038/s41598-023-32897-7
  32. Science. 2023 Apr 21. 380(6642): eabj5559
      Cells respond to mitochondrial poisons with rapid activation of the adenosine monophosphate-activated protein kinase (AMPK), causing acute metabolic changes through phosphorylation and prolonged adaptation of metabolism through transcriptional effects. Transcription factor EB (TFEB) is a major effector of AMPK that increases expression of lysosome genes in response to energetic stress, but how AMPK activates TFEB remains unresolved. We demonstrate that AMPK directly phosphorylates five conserved serine residues in folliculin-interacting protein 1 (FNIP1), suppressing the function of the folliculin (FLCN)-FNIP1 complex. FNIP1 phosphorylation is required for AMPK to induce nuclear translocation of TFEB and TFEB-dependent increases of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) and estrogen-related receptor alpha (ERRα) messenger RNAs. Thus, mitochondrial damage triggers AMPK-FNIP1-dependent nuclear translocation of TFEB, inducing sequential waves of lysosomal and mitochondrial biogenesis.
    DOI:  https://doi.org/10.1126/science.abj5559
  33. Minerva Dent Oral Sci. 2023 Apr 17.
      BACKGROUND: Mitochondrial genome (mtDNA) exhibits greater vulnerability to mutations and/or copy number variations than nuclear counterpart (nDNA) in both normal and cancer cells due to oxidative stress generated by inflammation, viral infections, physical, mechanical, and chemical load. The study was designed to evaluate the mtDNA content in oral potentially malignant disorders (OPMDs) and oral squamous cell carcinoma (OSCC). Various parameters were analyzed including its variation with human papillomavirus (HPV) during oral carcinogenesis.METHODS: The present cross-sectional study comprised of two hundred patients (100 OPMDs and 100 OSCCs) and 100 healthy controls. PCR amplifications were done for mtDNA content and HPV in OPMDs and OSCC using real-time and conventional PCR respectively.
    RESULTS: The relative mtDNA content was assessed quantitatively and it was observed that mtDNA was greater in OSCC (7.60±0.94) followed by OPMDs (5.93±0.92) and controls (5.37±0.95). It showed a positive linear correlation with habits and increasing histopathological grades. Total HPV-positive study groups showed higher mtDNA content (7.06±1.64) than HPV-negative counterparts (6.21±1.29).
    CONCLUSIONS: An elevated mutant mtDNA may be attributed to increased free radicals and selective cell clonal proliferation in test groups. Moreover, sustained HPV infection enhances tumorigenesis through mitochondria mediated apoptosis. Since, mtDNA content is directly linked to oxidative DNA damage, these quantifications might serve as a surrogate measure for invasiveness in dysplastic lesions and typify their malignant potential.
    DOI:  https://doi.org/10.23736/S2724-6329.23.04756-3
  34. Chem Sci. 2023 Apr 12. 14(15): 4126-4133
      Mitochondrial targeting represents an attractive strategy for treating metabolic, degenerative and hyperproliferative diseases, since this organelle plays key roles in essential cellular functions. Triphenylphosphonium (TPP+) moieties - the current "gold standard" - have been widely used as mitochondrial targeting vectors for a wide range of molecular cargo. Recently, further optimisation of the TPP+ platform drew considerable interest as a way to enhance mitochondrial therapies. However, although the modification of this system appears promising, the core structure of the TPP+ moiety remains largely unchanged. Thus, this study explored the use of aminophosphonium (PN+) and phosphazenylphosphonium (PPN+) main group frameworks as novel mitochondrial delivery vectors. The PPN+ moiety was found to be a highly promising platform for this purpose, owing to its unique electronic properties and high lipophilicity. This has been demonstrated by the high mitochondrial accumulation of a PPN+-conjugated fluorophore relative to its TPP+-conjugated counterpart, and has been further supported by density functional theory and molecular dynamics calculations, highlighting the PPN+ moiety's unusual electronic properties. These results demonstrate the potential of novel phosphorus-nitrogen based frameworks as highly effective mitochondrial delivery vectors over traditional TPP+ vectors.
    DOI:  https://doi.org/10.1039/d2sc06508h
  35. Acta Biochim Biophys Sin (Shanghai). 2023 Apr 25.
      Fatty acid oxidation (FAO) has been proven to be an accomplice in tumor progression. Carnitine palmitoyltransferase 1C (CPT1C), a rate-limiting enzyme in FAO, mainly functions to catalyze fatty acid carnitinylation and guarantee subsequent entry into the mitochondria for FAO in colorectal cancer (CRC). Gene expression data and clinical information extracted from The Cancer Genome Atlas (TCGA) database show significantly higher expression of CPT1C in patients with metastatic CRC ( P=0.005). Moreover, overexpression of CPT1C is correlated with worse relapse-free survival in CRC (HR 2.1, P=0.0006), while no statistical significance is indicated for CPT1A and CPT1B. Further experiments demonstrate that downregulation of CPT1C expression leads to a decrease in the FAO rate, suppression of cell proliferation, cell cycle arrest and repression of cell migration in CRC, whereas opposite results are obtained when CPT1C is overexpressed. Furthermore, an FAO inhibitor almost completely reverses the enhanced cell proliferation and migration induced by CPT1C overexpression. In addition, analysis of TCGA data illustrates a positive association between CPT1C expression and HIF1α level, suggesting that CPT1C is a transcriptional target of HIF1α. In conclusion, CPT1C overexpression indicates poor relapse-free survival of patients with CRC, and CPT1C is transcriptionally activated by HIF1α, thereby promoting the proliferation and migration of CRC cells.
    Keywords:  CPT1C; cell migration; cell proliferation; colorectal cancer; fatty acid oxidation
    DOI:  https://doi.org/10.3724/abbs.2023041