bims-mibica Biomed News
on Mitochondrial bioenergetics in cancer
Issue of 2021‒09‒19
forty-nine papers selected by
Kelsey Fisher-Wellman
East Carolina University


  1. Blood. 2021 Sep 15. pii: blood.2021013201. [Epub ahead of print]
      AML is characterized by the presence of leukemia stem cells (LSCs), and failure to fully eradicate this population contributes to disease persistence/relapse. Prior studies have characterized metabolic vulnerabilities of LSCs, which demonstrate preferential reliance on oxidative phosphorylation (OXPHOS) for energy metabolism and survival. In the present study, using both genetic and pharmacologic strategies in primary human AML specimens, we show that signal transducer and activator of transcription 3 (STAT3) mediates OXPHOS in LSCs. STAT3 regulates AML-specific expression of MYC, which in turn controls transcription of the neutral amino acid transporter SLC1A5. We show that genetic inhibition of MYC or SLC1A5 acts to phenocopy the impairment of OXPHOS observed with STAT3 inhibition, thereby establishing this axis as a regulatory mechanism linking STAT3 to energy metabolism. Inhibition of SLC1A5 reduces intracellular levels of glutamine, glutathione and multiple TCA metabolites, leading to reduced TCA cycle activity and inhibition of OXPHOS. Based on these findings, we used a novel small molecule STAT3 inhibitor, that binds STAT3 and disrupts STAT3-DNA, to evaluate the biological role of STAT3. We show that STAT3 inhibition selectively leads to cell death in AML stem and progenitor cells derived from newly diagnosed and relapsed patients, while sparing normal hematopoietic cells. Together, these findings establish a STAT3-mediated mechanism that controls energy metabolism and survival in primitive AML cells.
    DOI:  https://doi.org/10.1182/blood.2021013201
  2. Free Radic Biol Med. 2021 Sep 11. pii: S0891-5849(21)00720-6. [Epub ahead of print]
      Cancer cells frequently lack nutrients like glucose, due to insufficient vascular networks. Mitochondrial phosphoenolpyruvate carboxykinase, PCK2, has recently been found to mediate partial gluconeogenesis and hence anabolic metabolism in glucose starved cancer cells. Here we show that PCK2 acts as a regulator of mitochondrial respiration and maintains the redox balance in nutrient-deprived human lung cancer cells. PCK2 silencing increased the abundance and interconversion of tricarboxylic acid (TCA) cycle intermediates, augmented mitochondrial respiration and enhanced glutathione oxidation under glucose and serum starvation, in a PCK2 re-expression reversible manner. Moreover, enhancing the TCA cycle by PCK2 inhibition severely reduced colony formation of lung cancer cells under starvation. As a conclusion, PCK2 contributes to maintaining a reduced glutathione pool in starved cancer cells besides mediating the biosynthesis of gluconeogenic/glycolytic intermediates. The study sheds light on adaptive responses in cancer cells to nutrient deprivation and shows that PCK2 confers protection against respiration-induced oxidative stress.
    Keywords:  Adaptation; Cancer metabolism; Gluconeogenesis; Metabolic flexibility; Mitochondria; Redox balance; Respiration
    DOI:  https://doi.org/10.1016/j.freeradbiomed.2021.09.007
  3. J Biol Chem. 2021 Sep 13. pii: S0021-9258(21)00998-4. [Epub ahead of print] 101196
      Mitochondria undergo continuous cycles of fission and fusion to promote inheritance, regulate quality control, and mitigate organelle stress. More recently, this process of mitochondrial dynamics has been demonstrated to be highly sensitive to nutrient supply, ultimately conferring bioenergetic plasticity to the organelle. However, whether regulators of mitochondrial dynamics play a causative role in nutrient regulation remains unclear. In this study, we generated a cellular loss-of-function model for dynamin-related protein 1 (DRP1), the primary regulator of outer membrane mitochondrial fission. Loss of DRP1 (shDRP1) resulted in extensive ultrastructural and functional remodeling of mitochondria, characterized by pleomorphic enlargement, increased electron density of the matrix, and defective NADH and succinate oxidation. Despite increased mitochondrial size and volume, shDRP1 cells exhibited reduced cellular glucose uptake and mitochondrial fatty acid oxidation. Untargeted transcriptomic profiling revealed severe downregulation of genes required for cellular and mitochondrial calcium homeostasis, inhibition of ATP-stimulated calcium flux, and impaired substrate oxidation stimulated by calcium levels. The insights obtained herein suggest that DRP1 regulates fatty acid oxidation by altering whole-cell and mitochondrial calcium dynamics. These findings are relevant to the targetability of mitochondrial fission and have clinical relevance in the identification of treatments for fission-related pathologies such as hereditary neuropathies, inborn errors in metabolism, cancer, and chronic diseases.
    Keywords:  calcium signaling; dynamin-related protein 1; mitochondrial dynamics; skeletal muscle; β-oxidation
    DOI:  https://doi.org/10.1016/j.jbc.2021.101196
  4. FEBS J. 2021 Sep 12.
      Mitochondrial dysfunction is increasingly appreciated as a central contributor to human disease. Oxidative metabolism at the mitochondrial respiratory chain produces ATP and is intricately tied to redox homeostasis and biosynthetic pathways. Metabolic stress arising from genetic mutations in mitochondrial genes and environmental factors such as malnutrition or overnutrition is perceived by the cell and leads to adaptive and maladaptive responses that can underlie pathology. Here, we will outline cellular sensors that react to alterations in energy production, organellar redox, and metabolites stemming from mitochondrial disease (MD) mutations. MD is a heterogenous group of disorders primarily defined by defects in mitochondrial oxidative phosphorylation from nuclear or mitochondrial-encoded gene mutations. Pre-clinical therapies that improve fitness of MD mouse models have been recently identified. Targeting metabolic/energetic deficiencies, maladaptive signaling processes, and hyper-oxygenation of tissues are all strategies aside from direct genetic approaches that hold therapeutic promise. A further mechanistic understanding of these curative processes as well as the identification of novel targets will significantly impact mitochondrial biology and disease research.
    Keywords:  Mitochondrial dysfunction; hypoxia; mTORC1; metabolism; mitochondrial disease; mitochondrial signaling; oxidative stress; reactive oxygen species; redox homeostasis
    DOI:  https://doi.org/10.1111/febs.16195
  5. Redox Biol. 2021 Sep 08. pii: S2213-2317(21)00286-X. [Epub ahead of print]46 102127
      Mitochondrial energy production and function rely on optimal concentrations of the essential redox-active lipid, coenzyme Q (CoQ). CoQ deficiency results in mitochondrial dysfunction associated with increased mitochondrial oxidative stress and a range of pathologies. What drives CoQ deficiency in many of these pathologies is unknown, just as there currently is no effective therapeutic strategy to overcome CoQ deficiency in humans. To date, large-scale studies aimed at systematically interrogating endogenous systems that control CoQ biosynthesis and their potential utility to treat disease have not been carried out. Therefore, we developed a quantitative high-throughput method to determine CoQ concentrations in yeast cells. Applying this method to the Yeast Deletion Collection as a genome-wide screen, 30 genes not known previously to regulate cellular concentrations of CoQ were discovered. In combination with untargeted lipidomics and metabolomics, phosphatidylethanolamine N-methyltransferase (PEMT) deficiency was confirmed as a positive regulator of CoQ synthesis, the first identified to date. Mechanistically, PEMT deficiency alters mitochondrial concentrations of one-carbon metabolites, characterized by an increase in the S-adenosylmethionine to S-adenosylhomocysteine (SAM-to-SAH) ratio that reflects mitochondrial methylation capacity, drives CoQ synthesis, and is associated with a decrease in mitochondrial oxidative stress. The newly described regulatory pathway appears evolutionary conserved, as ablation of PEMT using antisense oligonucleotides increases mitochondrial CoQ in mouse-derived adipocytes that translates to improved glucose utilization by these cells, and protection of mice from high-fat diet-induced insulin resistance. Our studies reveal a previously unrecognized relationship between two spatially distinct lipid pathways with potential implications for the treatment of CoQ deficiencies, mitochondrial oxidative stress/dysfunction, and associated diseases.
    Keywords:  Coenzyme Q; Insulin resistance; Mitochondria; PEMT; Reactive oxygen species; S-adenosylhomocysteine; S-adenosylmethionine
    DOI:  https://doi.org/10.1016/j.redox.2021.102127
  6. Aging Cell. 2021 Sep 14. e13476
      The underlying causes of aging remain elusive, but may include decreased intestinal homeostasis followed by disruption of the intestinal barrier, which can be mimicked by nutrient-rich diets. S3QELs are small-molecule suppressors of site IIIQo electron leak; they suppress superoxide generation at complex III of the mitochondrial electron transport chain without inhibiting oxidative phosphorylation. Here we show that feeding different S3QELs to Drosophila on a high-nutrient diet protects against greater intestinal permeability, greater enterocyte apoptotic cell number, and shorter median lifespan. Hif-1α knockdown in enterocytes also protects, and blunts any further protection by S3QELs. Feeding S3QELs to mice on a high-fat diet also protects against the diet-induced increase in intestinal permeability. Our results demonstrate by inference of S3QEL use that superoxide produced by complex III in enterocytes contributes to diet-induced intestinal barrier disruption in both flies and mice.
    Keywords:  aging; complex III; diet; drosophila; intestinal permeability; intestine; leaky gut; metabolism; mitochondria; oxidative stress; superoxide
    DOI:  https://doi.org/10.1111/acel.13476
  7. Cancer Sci. 2021 Sep 17.
      As the energy factory for the cell, the mitochondrion, through its role of adenosine triphosphate production by oxidative phosphorylation, can be regarded as the guardian of well-regulated cellular metabolism; the integrity of mitochondrial functions, however, is particularly vulnerable in cancer due to the lack of superstructures such as histone and lamina folds to protect the mitochondrial genome from unintended exposure, which consequently elevates risks of mutation. In cancer, mechanisms responsible for enforcing quality control surveillance for identifying and eliminating defective mitochondria is often poorly regulated, and certain uneliminated mitochondrial DNA (mtDNA) mutations and polymorphisms can be advantageous for the proliferation, progression and metastasis of tumor cells. Such pathogenic mtDNA aberrations are likely to increase and occasionally be homoplasmic in cancer cells and, intriguingly, in normal cells in the proximity of tumor microenvironments (TME) as well. Distinct characteristics of these abnormalities in mtDNA may provide a new path for cancer therapy. Here we discuss a promising novel therapeutic strategy, utilizing the sequence-specific properties of pyrrole-imidazole polyamide-triphenylphosphonium conjugates, against cancer for clearing abnormal mtDNA by reactivating mitochondrial quality control surveillance.
    Keywords:  Age-related disorder; Anti-cancer therapy; Apoptosis; Autophagy; BCL family; Exocytosis; Mitochondria; Mitochondrial disease; Mitochondrial quality control (MQC); Mitophagy; Mutation; Polymorphism; Pyrrole-imidazole polyamide; Reactive oxygen species (ROS); Senescence; Triphenylphosphonium (TPP); mtDNA
    DOI:  https://doi.org/10.1111/cas.15143
  8. Mol Cancer Ther. 2021 Sep 13. pii: molcanther.0071.2021. [Epub ahead of print]
      Acute myeloid leukemia (AML) with a FLT3 internal tandem duplication (FLT3-ITD) mutation is an aggressive hematologic malignancy associated with frequent relapse and poor overall survival. The tyrosine kinase inhibitor gilteritinib is approved for the treatment of relapse/refractory AML with FLT3 mutations, yet its mechanism of action is not completely understood. Here, we sought to identify additional therapeutic targets that can be exploited to enhance gilteritinib's anti-leukemic effect. Based on unbiased transcriptomic analyses, we identified the glutamine transporter SNAT1 (SLC38A1) as a novel target of gilteritinib that leads to impaired glutamine uptake and utilization within leukemic cells. Using metabolomics and metabolic flux analyses, we found that gilteritinib decreased glutamine metabolism through the TCA cycle and cellular levels of the oncometabolite 2-hydroxyglutarate. Additionally, gilteritinib treatment was associated with decreased ATP production and glutathione synthesis and increased reactive oxygen species, resulting in cellular senescence. Lastly, we found that the glutaminase inhibitor CB-839 enhanced anti-leukemic effect of gilteritinib in ex vivo studies using human primary FLT3-ITD-positive AML cells harboring mutations in the enzyme isocitrate dehydrogenase, which catalyzes the oxidative decarboxylation of isocitrate, producing α-ketoglutarate. Collectively, this work has identified a previously unrecognized, gilteritinib-sensitive metabolic pathway downstream of SLC38A1 that causes decreased glutaminolysis and disruption of redox homeostasis. These findings provide a rationale for the development and therapeutic exploration of targeted combinatorial treatment strategies for this subset of relapse/refractory AML.
    DOI:  https://doi.org/10.1158/1535-7163.MCT-21-0071
  9. Cell Death Discov. 2021 Sep 15. 7(1): 241
      Triple-negative breast cancers (TNBCs) are characterized by poor survival, prognosis, and gradual resistance to cytotoxic chemotherapeutics, like doxorubicin (DOX). The clinical utility of DOX is limited by its cardiotoxic and chemoresistant effects that manifest over time. To induce chemoresistance, TNBC rewires oncogenic gene expression and cell signaling pathways. Recent studies have demonstrated that reprogramming of branched-chain amino acids (BCAAs) metabolism facilitates tumor growth and survival. Branched-chain ketoacid dehydrogenase kinase (BCKDK), a regulatory kinase of the rate-limiting enzyme of the BCAA catabolic pathway, is reported to activate RAS/RAF/MEK/ERK signaling to promote tumor cell proliferation. However, it remains unexplored if BCKDK action remodels TNBC proliferation and survival per se and influences susceptibility to DOX-induced genotoxic stress. TNBC cells treated with DOX exhibited reduced BCKDK expression and intracellular BCKAs. Genetic and pharmacological inhibition of BCKDK in TNBC cell lines also showed a similar reduction in intracellular and secreted BCKAs. BCKDK silencing in TNBC cells downregulated mitochondrial metabolism genes, reduced electron complex protein expression, oxygen consumption, and ATP production. Transcriptome analysis of BCKDK silenced cells confirmed dysregulation of mitochondrial metabolic networks and upregulation of the apoptotic signaling pathway. Furthermore, BCKDK inhibition with concurrent DOX treatment exacerbated apoptosis, caspase activity, and loss of TNBC proliferation. Inhibition of BCKDK in TNBC also upregulated sestrin 2 and concurrently decreased mTORC1 signaling and protein synthesis. Overall, loss of BCKDK action in TNBC remodels BCAA flux, reduces protein translation triggering cell death, ATP insufficiency, and susceptibility to genotoxic stress.
    DOI:  https://doi.org/10.1038/s41420-021-00602-0
  10. Cell Death Differ. 2021 Sep 12.
      Mitochondria support multiple cell functions, but an accumulation of dysfunctional or excessive mitochondria is detrimental to cells. We previously demonstrated that a defect in the autophagic removal of mitochondria, termed mitophagy, leads to the acceleration of apoptosis induced by herpesvirus productive infection. However, the exact molecular mechanisms underlying activation of mitophagy and regulation of apoptosis remain poorly understood despite the identification of various mitophagy-associated proteins. Here, we report that the mitochondrial translation elongation factor Tu, a mitophagy-associated protein encoded by the TUFM gene, locates in part on the outer membrane of mitochondria (OMM) where it acts as an inhibitor of altered mitochondria-induced apoptosis through its autophagic function. Inducible depletion of TUFM potentiated caspase-8-mediated apoptosis in virus-infected cells with accumulation of altered mitochondria. In addition, TUFM depletion promoted caspase-8 activation induced by treatment with TNF-related apoptosis-inducing ligand in cancer cells, potentially via dysregulation of mitochondrial dynamics and mitophagy. Importantly, we revealed the existence of and structural requirements for autophagy-competent TUFM on the OMM; the GxxxG motif within the N-terminal mitochondrial targeting sequences of TUFM was required for self-dimerization and mitophagy. Furthermore, we found that autophagy-competent TUFM was subject to ubiquitin-proteasome-mediated degradation but stabilized upon mitophagy or autophagy activation. Moreover, overexpression of autophagy-competent TUFM could inhibit caspase-8 activation. These studies extend our knowledge of mitophagy regulation of apoptosis and could provide a novel strategic basis for targeted therapy of cancer and viral diseases.
    DOI:  https://doi.org/10.1038/s41418-021-00868-y
  11. Nat Protoc. 2021 Sep 17.
      Cancer cells undergo diverse metabolic adaptations to meet the energetic demands imposed by dysregulated growth and proliferation. Assessing metabolism in intact tumors allows the investigator to observe the combined metabolic effects of numerous cancer cell-intrinsic and -extrinsic factors that cannot be fully captured in culture models. We have developed methods to use stable isotope-labeled nutrients (e.g., [13C]glucose) to probe metabolic activity within intact tumors in vivo, in mice and humans. In these methods, the labeled nutrient is introduced to the circulation through an intravenous catheter prior to surgical resection of the tumor and adjacent nonmalignant tissue. Metabolism within these tissues during the infusion transfers the isotope label into metabolic intermediates from pathways supplied by the infused nutrient. Extracting metabolites from surgical specimens and analyzing their isotope labeling patterns provides information about metabolism in the tissue. We provide detailed information about this technique, from introduction of the labeled tracer through data analysis and interpretation, including streamlined approaches to quantify isotope labeling in informative metabolites extracted from tissue samples. We focus on infusions with [13C]glucose and the application of mass spectrometry to assess isotope labeling in intermediates from central metabolic pathways, including glycolysis, the tricarboxylic acid cycle and nonessential amino acid synthesis. We outline practical considerations to apply these methods to human subjects undergoing surgical resections of solid tumors. We also discuss the method's versatility and consider the relative advantages and limitations of alternative approaches to introduce the tracer, harvest the tissue and analyze the data.
    DOI:  https://doi.org/10.1038/s41596-021-00605-2
  12. Nat Chem. 2021 Sep 16.
      Triphenylphosphonium ylides, known as Wittig reagents, are one of the most commonly used tools in synthetic chemistry. Despite their considerable versatility, Wittig reagents have not yet been explored for their utility in biological applications. Here we introduce a chemoselective ligation reaction that harnesses the reactivity of Wittig reagents and the unique chemical properties of sulfenic acid, a pivotal post-translational cysteine modification in redox biology. The reaction, which generates a covalent bond between the ylide nucleophilic α-carbon and electrophilic γ-sulfur, is highly selective, rapid and affords robust labelling under a range of biocompatible reaction conditions, which includes in living cells. We highlight the broad utility of this conjugation method to enable site-specific proteome-wide stoichiometry analysis of S-sulfenylation and to visualize redox-dependent changes in mitochondrial cysteine oxidation and redox-triggered triphenylphosphonium generation for the controlled delivery of small molecules to mitochondria.
    DOI:  https://doi.org/10.1038/s41557-021-00767-2
  13. Cancer Sci. 2021 Sep 17.
      Diverse metabolic changes are induced by various driver oncogenes during the onset and progression of leukemia. By upregulating glycolysis, cancer cells acquire a proliferative advantage over normal hematopoietic cells; in addition, these changes in energy metabolism contribute to anticancer drug resistance. Because leukemia cells proliferate by consuming glucose as an energy source, an alternative nutrient source is essential when glucose levels in bone marrow are insufficient. We profiled sugar metabolism in leukemia cells and found that mannose is an energy source for glycolysis, the tricarboxylic acid (TCA) cycle, and the pentose phosphate pathway (PPP). Leukemia cells express high levels of phosphomannose isomerase (PMI), which mobilizes mannose to glycolysis; consequently, even mannose in the blood can be used as an energy source for glycolysis. Conversely, suppression of PMI expression or a mannose load exceeding the processing capacity of PMI inhibited transcription of genes related to mitochondrial metabolism and TCA cycle, thus suppressing the growth of leukemia cells. High PMI expression was also a poor prognostic factor for acute myeloid leukemia. Our findings reveal a new mechanism for glucose starvation resistance in leukemia. Furthermore, the combination of PMI suppression and mannose loading has potential as a novel treatment for driver oncogene-independent leukemia.
    DOI:  https://doi.org/10.1111/cas.15138
  14. MicroPubl Biol. 2021 ;2021
      Mitochondria are ATP-producing organelles that also signal throughout the cell. Mitochondrial protein homeostasis is regulated through membrane potential-dependent protein import and quality control signaling. The mitochondrial unfolded protein response (UPRmt) is a specific program that responds to imbalances in nuclear and mitochondrial gene expression. Mounting evidence suggests that the electrochemical gradient that powers mitochondrial function, the mitochondrial membrane potential (Δψm), is a core regulator of the UPRmt. Here we tested this notion directly by pharmacologically dissipating Δψm and monitoring UPRmt activation. We found that chemical dissipation of Δψm using FCCP indeed activated UPRmt dose-dependently in C. elegans assayed by the HSP-60::GFP reporter strain.
    DOI:  https://doi.org/10.17912/micropub.biology.000445
  15. Cancer Lett. 2021 Sep 09. pii: S0304-3835(21)00458-4. [Epub ahead of print]521 281-293
      Colorectal cancer (CRC) is one of the most common malignancies worldwide, and effective therapy remains a challenge. In this study, we take advantage of a drug repurposing strategy to screen small molecules with novel anticancer activities in a small-molecule library consisting of 1056 FDA-approved drugs. We show, for the first time, that lomitapide, a lipid-lowering agent, exhibits antitumor properties in vitro and in vivo. Activated autophagy is characterized as a key biological process in lomitapide-induced CRC repression. Mechanistically, lomitapide stimulated mitochondrial dysfunction-mediated AMPK activation, resulting in increased AMPK phosphorylation and enhanced Beclin1/Atg14/Vps34 interactions, provoking autophagy induction. Autophagy inhibition or AMPK silencing significantly abrogated lomitapide-induced cell death, indicating the significance of AMPK-regulated autophagy in the antitumor activities of lomitapide. More importantly, PP2A was identified as a direct target of lomitapide by limited proteolysis-mass spectrometry (LiP-SMap), and the bioactivity of lomitapide was attenuated in PP2A-deficient cells, suggesting that the anticancer effect of lomitapide occurs in a PP2A-dependent manner. Taken together, the results of the study reveal that lomitapide can be repositioned as a potential therapeutic drug for CRC treatment.
    Keywords:  AMPK; Autophagy; Colorectal cancer; Lomitapide; PP2A inhibitor
    DOI:  https://doi.org/10.1016/j.canlet.2021.09.010
  16. Clin Cancer Res. 2021 Sep 13. pii: clincanres.2040.2021. [Epub ahead of print]
      PURPOSE: Although remarkably effective in some patients, precision medicine typically induces only transient responses despite initial absence of resistance-conferring mutations. Using BRAF-mutated myeloma as a model for resistance to precision medicine we investigated if BRAF-mutated cancer cells have the ability to ensure their survival by rapidly adapting to BRAF inhibitor treatment.EXPERIMENTAL DESIGN: Full-length single cell (sc)RNA-seq was conducted on three patients with BRAF-mutated myeloma and one healthy donor. We sequenced 1495 cells before, after one week and at clinical relapse to BRAF/ MEK inhibitor treatment. We developed an in vitro model of dabrafenib-resistance using genetically homogeneous single-cell clones from two cell lines with established BRAF mutations (U266, DP6). Transcriptional and epigenetic adaptation in resistant cells were defined by RNA-seq and H3K23ac ChIP-seq. Mitochondrial metabolism was characterized by metabolic flux analysis.
    RESULTS: Profiling by scRNA-seq revealed rapid cellular state changes in response to BRAF/MEK inhibition in myeloma patients and cell lines. Transcriptional adaptation preceded detectable outgrowth of genetically discernible drug-resistant clones and was associated with widespread enhancer remodeling. As a dominant vulnerability, dependency on oxidative phosphorylation (OxPhos) was induced. In treated individuals, OxPhos was activated at the time of relapse and showed inverse correlation to MAPK activation. Metabolic flux analysis confirmed OxPhos as a preferential energetic resource of drug-persistent myeloma cells.
    CONCLUSIONS: This study demonstrates that cancer cells have the ability to rapidly adapt to precision treatments through transcriptional state changes, epigenetic adaptation and metabolic rewiring, thus facilitating the development of refractory disease while simultaneously exposing novel vulnerabilities.
    DOI:  https://doi.org/10.1158/1078-0432.CCR-21-2040
  17. Theranostics. 2021 ;11(18): 9089-9106
      Rationale: Cancer cells rely on glucose metabolism for fulfilling their high energy demands. We previously reported that monoethanolamine (Etn), an orally deliverable lipid formulation, reduced intracellular glucose and glutamine levels in prostate cancer (PCa). Glucose deprivation upon Etn treatment exacerbated metabolic stress in PCa, thereby enhancing cell death. Moreover, Etn was potent in inhibiting tumor growth in a PCa xenograft model. However, the precise mechanisms underlying Etn-induced metabolic stress in PCa remain elusive. The purpose of the present study was to elucidate the mechanisms contributing to Etn-mediated metabolic rewiring in PCa. Methods: Glucose transporters (GLUTs) facilitate glucose transport across the plasma membrane. Thus, we assessed the expression of GLUTs and the internalization of GLUT1 in PCa. We also evaluated the effects of Etn on membrane dynamics, mitochondrial structure and function, lipid droplet density, autophagy, and apoptosis in PCa cells. Results: Compared to other GLUTs, GLUT1 was highly upregulated in PCa. We observed enhanced GLUT1 internalization, altered membrane dynamics, and perturbed mitochondrial structure and function upon Etn treatment. Etn-induced bioenergetic stress enhanced lipolysis, decreased lipid droplet density, promoted accumulation of autophagosomes, and increased apoptosis. Conclusion: We provide the first evidence that Etn alters GLUT1 trafficking leading to metabolic stress in PCa. By upregulating phosphatidylethanolamine (PE), Etn modulates membrane fluidity and affects mitochondrial structure and function. Etn also induces autophagy in PCa cells, thereby promoting apoptosis. These data strongly suggest that Etn rewires cellular bioenergetics and could serve as a promising anticancer agent for PCa.
    Keywords:  apoptosis; autophagy; metabolism; monoethanolamine; prostate cancer
    DOI:  https://doi.org/10.7150/thno.62724
  18. Gynecol Endocrinol. 2021 Sep 13. 1-6
      OBJECTIVE: Sirtuin3 (SIRT3) is a NAD+-dependent major mitochondrial deacetylase. In this study, we aimed to investigate SIRT3 levels and their target enzyme activities, including glutamate dehydrogenase (GDH), succinate dehydrogenase (SDH), and manganese superoxide dismutase (MnSOD), also to determine the antioxidant capacity and oxidative stress in tissue, mitochondria and serum samples in ovarian endometrioma patients.METHODS: We collected serum and endometrioma tissue samples from 30 patients. In the control group, we collected serum and eutopic endometrial tissue samples from 26 women without endometriosis.
    RESULTS: SIRT3 levels were significantly decreased in endometrioma tissue samples compared to the control group. There was no statistically significant difference in SIRT3 levels between patient and control serum samples. Furthermore, there was a decrease in GDH and SDH enzyme activities in both endometrioma tissue homogenate and mitochondria. MnSOD activity was decreased in tissue homogenate but increased in mitochondria and there was no difference in serum. While total SOD activity was decreased, CuZnSOD activity was increased in both tissue and serum samples. Besides these, total antioxidant capacity and advanced oxidation protein products (AOPP) levels were decreased in endometrioma tissue and mitochondria, but there was no difference in serum.
    CONCLUSIONS: Our results suggested that decreased levels of SIRT3 in endometrioma may be an important factor in the weakening of mitochondrial energy metabolism and antioxidant defense in endometriosis. We think that SIRT3 deficiency may be an important factor underlying the pathogenesis of endometriosis. More detailed studies are needed to reveal the relationship between SIRT3 and metabolism and oxidative stress in ovarian endometrioma.
    Keywords:  Ovarian endometrioma; Sirtuin3; energy metabolism; mitochondria; oxidative stress
    DOI:  https://doi.org/10.1080/09513590.2021.1975674
  19. J Vis Exp. 2021 Aug 27.
      Mitochondrial energetics is a central theme in animal biochemistry and physiology, with researchers using mitochondrial respiration as a metric to investigate metabolic capability. To obtain the measures of mitochondrial respiration, fresh biological samples must be used, and the entire laboratory procedure must be completed within approximately 2 h. Furthermore, multiple pieces of specialized equipment are required to perform these laboratory assays. This creates a challenge for measuring mitochondrial respiration in the tissues of wild animals living far from physiology laboratories as live tissue cannot be preserved for very long after collection in the field. Moreover, transporting live animals over long distances induces stress, which can alter mitochondrial energetics. This manuscript introduces the Auburn University (AU) MitoMobile, a mobile mitochondrial physiology laboratory that can be taken into the field and used on-site to measure mitochondrial metabolism in tissues collected from wild animals. The basic features of the mobile laboratory and the step-by-step methods for measuring isolated mitochondrial respiration rates are presented. Additionally, the data presented validate the success of outfitting the mobile mitochondrial physiology laboratory and making mitochondrial respiration measurements. The novelty of the mobile laboratory lies in the ability to drive to the field and perform mitochondrial measurements on the tissues of animals captured on site.
    DOI:  https://doi.org/10.3791/62956
  20. Nano Lett. 2021 Sep 14.
      Graphene-induced energy transfer (GIET) was recently introduced for sub-nanometric axial localization of fluorescent molecules. GIET relies on near-field energy transfer from an optically excited fluorophore to a single sheet of graphene. Recently, we demonstrated its potential by determining the distance between two leaflets of supported lipid bilayers. Here, we use GIET imaging for mapping quasi-stationary states of the inner and outer mitochondrial membranes before and during adenosine triphosphate (ATP) synthesis. We trigger the ATP synthesis state in vitro by activating mitochondria with precursor molecules. Our results demonstrate that the inner membrane approaches the outer membrane, while the outer membrane does not show any measurable change in average axial position upon activation. The inter-membrane space is reduced by ∼2 nm. This direct experimental observation of the subtle dynamics of mitochondrial membranes and the change in intermembrane distance upon activation is relevant for our understanding of mitochondrial function.
    Keywords:  GIET; IM-OM distance; hyperosmotic shock; quasi-stationary states
    DOI:  https://doi.org/10.1021/acs.nanolett.1c02672
  21. Planta Med. 2021 Sep 14.
      The lichen compound protolichesterinic acid (PA) has an anti-proliferative effect against several cancer cell lines of different origin. This effect cannot be explained by the known inhibitory activity of PA against 5- and 12-lipoxygenases. The aim was therefore to search for mechanisms for the anti-proliferative activity of PA. Two cancer cell lines of different origin, both sensitive to anti-proliferative effects of PA, were selected for this study, T-47D from breast cancer and AsPC-1 from pancreatic cancer. Morphological changes were assessed by transmission electron microscopy, HPLC coupled with TOF spectrometry was used for metabolomics, mitochondrial function was measured using the Agilent Seahorse XFp Real-time ATP assay and glucose/lactate levels by radiometry. Levels of glutathione, NADP/NADPH and reactive oxygen species [ROS] were measured by luminescence. Following exposure to PA both cell lines showed structural changes in mitochondria that were in line with a measured reduction in oxidative phosphorylation and increased glycolysis. These changes were more marked in T-47D, which had poorer mitochondrial function at baseline. PA was processed and expelled from the cells via the mercapturic pathway, which consumes glutathione. Nevertheless, glutathione levels were increased after 24 hours of exposure to PA, implying enhanced synthesis. Redox balance was not much affected and ROS levels were not increased. We conclude that PA is metabolically processed and expelled from cells, leading indirectly to increased glutathione levels with minimal effects on redox balance. The most marked effect was on mitochondrial structure and metabolic function implying that effects of PA may depend on mitochondrial fitness.
    DOI:  https://doi.org/10.1055/a-1579-6454
  22. Theranostics. 2021 ;11(18): 8855-8873
      Mitochondrial dysfunction and oxidative stress are frequently observed in the early stages of Alzheimer's disease (AD). Studies have shown that presenilin-1 (PS1), the catalytic subunit of γ-secretase whose mutation is linked to familial AD (FAD), localizes to the mitochondrial membrane and regulates its homeostasis. Thus, we investigated how five PS1 mutations (A431E, E280A, H163R, M146V, and Δexon9) observed in FAD affect mitochondrial functions. Methods: We used H4 glioblastoma cell lines genetically engineered to inducibly express either the wild-type PS1 or one of the five PS1 mutants in order to examine mitochondrial morphology, dynamics, membrane potential, ATP production, mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs), oxidative stress, and bioenergetics. Furthermore, we used brains of PS1M146V knock-in mice, 3xTg-AD mice, and human AD patients in order to investigate the role of PS1 in regulating MAMs formation. Results: Each PS1 mutant exhibited slightly different mitochondrial dysfunction. Δexon9 mutant induced mitochondrial fragmentation while A431E, E280A, H163R, and M146V mutants increased MAMs formation. A431E, E280A, M146V, and Δexon9 mutants also induced mitochondrial ROS production. A431E mutant impaired both complex I and peroxidase activity while M146V mutant only impaired peroxidase activity. All PS1 mutants compromised mitochondrial membrane potential and cellular ATP levels were reduced by A431E, M146V, and Δexon9 mutants. Through comparative profiling of hippocampal gene expression in PS1M146V knock-in mice, we found that PS1M146V upregulates Atlastin 2 (ATL2) expression level, which increases ER-mitochondria contacts. Down-regulation of ATL2 after PS1 mutant induction rescued abnormally elevated ER-mitochondria interactions back to the normal level. Moreover, ATL2 expression levels were significantly elevated in the brains of 3xTg-AD mice and AD patients. Conclusions: Overall, our findings suggest that each of the five FAD-linked PS1 mutations has a deleterious effect on mitochondrial functions in a variety of ways. The adverse effects of PS1 mutations on mitochondria may contribute to MAMs formation and oxidative stress resulting in an accelerated age of disease onset in people harboring mutant PS1.
    Keywords:  ATL2; Alzheimer's disease; MAMs; Mitochondria; Presenilin-1
    DOI:  https://doi.org/10.7150/thno.59776
  23. Redox Biol. 2021 Sep 10. pii: S2213-2317(21)00284-6. [Epub ahead of print]46 102125
      Heme is an essential cofactor required for a plethora of cellular processes in eukaryotes. In metazoans the heme biosynthetic pathway is typically partitioned between the cytosol and mitochondria, with the first and final steps taking place in the mitochondrion. The pathway has been extensively studied and its biosynthetic enzymes structurally characterized to varying extents. Nevertheless, understanding of the regulation of heme synthesis and factors that influence this process in metazoans remains incomplete. Therefore, we investigated the molecular organization as well as the physical and genetic interactions of the terminal pathway enzyme, ferrochelatase (Hem15), in the yeast Saccharomyces cerevisiae. Biochemical and genetic analyses revealed dynamic association of Hem15 with Mic60, a core component of the mitochondrial contact site and cristae organizing system (MICOS). Loss of MICOS negatively impacts Hem15 activity, affects the size of the Hem15 high-mass complex, and results in accumulation of reactive and potentially toxic tetrapyrrole precursors that may cause oxidative damage. Restoring intermembrane connectivity in MICOS-deficient cells mitigates these cytotoxic effects. These data provide new insights into how heme biosynthetic machinery is organized and regulated, linking mitochondrial architecture-organizing factors to heme homeostasis.
    Keywords:  Ferrochelatase; Heme; MICOS; Mitochondria; Yeast
    DOI:  https://doi.org/10.1016/j.redox.2021.102125
  24. Am J Physiol Heart Circ Physiol. 2021 Sep 17.
      Lack of glucose uptake compromises metabolic flexibility and reduces energy efficiency in the diabetes mellitus (DM) heart. Although increased utilization of fatty acid to compensate glucose substrate has been studied, less is known about ketone body metabolism in the DM heart. Ketogenic diet reduces obesity, a risk factor for T2DM. How ketogenic diet affects ketone metabolism in the DM heart remains unclear. At the metabolic level, the DM heart differs from the non-DM heart due to altered metabolic substrate and the T1DM heart differs from the T2DM heart due to insulin levels. How these changes affect ketone body metabolism in the DM heart are poorly understood. Ketogenesis produces ketone bodies by utilizing acetyl CoA whereas ketolysis consumes ketone bodies to produce acetyl CoA, showing their opposite roles in the ketone body metabolism. Cardiac-specific transgenic upregulation of ketogenesis enzyme or knockout of ketolysis enzyme causes metabolic abnormalities leading to cardiac dysfunction. Empirical evidence demonstrates upregulated transcription of ketogenesis enzymes, no change in the levels of ketone body transporters, very high levels of ketone bodies, and reduced expression and activity of ketolysis enzymes in the T1DM heart. Based on these observations, I hypothesize that increased transcription and activity of cardiac ketogenesis enzyme suppresses ketolysis enzymes in the DM heart, which decreases cardiac energy efficiency. The T1DM heart exhibits highly upregulated ketogenesis compared to T2DM due to lack of insulin that inhibits ketogenesis enzyme.
    Keywords:  Randle cycle; insulin; ketogenic diet; ketone body; metabolism
    DOI:  https://doi.org/10.1152/ajpheart.00260.2021
  25. Cell Chem Biol. 2021 Sep 11. pii: S2451-9456(21)00403-7. [Epub ahead of print]
      Topoisomerase II (topo II) is essential for disentangling newly replicated chromosomes. DNA unlinking involves the physical passage of one duplex through another and depends on the transient formation of double-stranded DNA breaks, a step exploited by frontline chemotherapeutics to kill cancer cells. Although anti-topo II drugs are efficacious, they also elicit cytotoxic side effects in normal cells; insights into how topo II is regulated in different cellular contexts is essential to improve their targeted use. Using chemical fractionation and mass spectrometry, we have discovered that topo II is subject to metabolic control through the TCA cycle. We show that TCA metabolites stimulate topo II activity in vitro and that levels of TCA flux modulate cellular sensitivity to anti-topo II drugs in vivo. Our work reveals an unanticipated connection between the control of DNA topology and cellular metabolism, a finding with ramifications for the clinical use of anti-topo II therapies.
    Keywords:  DNA topology; ICRF-187; TCA cycle; cancer; chemotherapy; dexrazoxane; etoposide; metabolism; topoisomerase
    DOI:  https://doi.org/10.1016/j.chembiol.2021.08.014
  26. NAR Cancer. 2021 Sep;3(3): zcab035
      Chromosome 11q13-14 amplification is a defining feature of high-risk hormone receptor-positive (HR+) breast cancer; however, the mechanism(s) by which this amplicon contributes to breast tumorigenesis remains unclear. In the current study, proteogenomic analyses of >3000 breast tumors from the TCGA, METABRIC and CPTAC studies demonstrated that carnitine palmitoyltransferase 1A (CPT1A), which is localized to this amplicon, is overexpressed at the mRNA and protein level in aggressive luminal tumors, strongly associated with indicators of tumor proliferation and a predictor of poor prognosis. In vitro genetic studies demonstrated that CPT1A is required for and can promote luminal breast cancer proliferation, survival, as well as colony and mammosphere formation. Since CPT1A is the rate-limiting enzyme during fatty acid oxidation (FAO), our data indicate that FAO may be essential for these tumors. Pharmacologic inhibition of FAO prevented in vitro and in vivo tumor growth and cell proliferation as well as promoted apoptosis in luminal breast cancer cells and orthotopic xenograft tumor models. Collectively, our data establish an oncogenic role for CPT1A and FAO in HR+ luminal tumors and provide preclinical evidence and rationale supporting further investigation of FAO as a potential therapeutic opportunity for the treatment of HR+ breast cancer.
    DOI:  https://doi.org/10.1093/narcan/zcab035
  27. Cell Metab. 2021 Sep 08. pii: S1550-4131(21)00375-2. [Epub ahead of print]
      Clear cell renal cell carcinoma (ccRCC) preferentially invades into perinephric adipose tissue (PAT), a process associated with poor prognosis. However, the detailed mechanisms underlying this interaction remain elusive. Here, we describe a bi-directional communication between ccRCC cells and the PAT. We found that ccRCC cells secrete parathyroid-hormone-related protein (PTHrP) to promote the browning of PAT by PKA activation, while PAT-mediated thermogenesis results in the release of excess lactate to enhance ccRCC growth, invasion, and metastasis. Further, tyrosine kinase inhibitors (TKIs) extensively used in the treatment of ccRCC enhanced this vicious cycle of ccRCC-PAT communication by promoting the browning of PAT. However, if this cross-communication was short circuited by the pharmacological suppression of adipocyte browning via H89 or KT5720, the anti-tumor efficacy of the TKI, sunitinib, was enhanced. These results suggest that ccRCC-PAT cross-communication has important clinical relevance, and use of combined therapy holds great promise in enhancing the efficacy of TKIs.
    Keywords:  PKA; PTHrP; adipocytes browning; cell-to-cell communication; clear cell renal cell carcinoma; lactate; lung metastasis; tyrosine kinase inhibitors
    DOI:  https://doi.org/10.1016/j.cmet.2021.08.012
  28. Cell Death Differ. 2021 Sep 17.
      Primary or acquired therapy resistance is a major obstacle to the effective treatment of cancer. Resistance to apoptosis has long been thought to contribute to therapy resistance. We show here that recombinant TRAIL and CDK9 inhibition cooperate in killing cells derived from a broad range of cancers, importantly without inducing detectable adverse events. Remarkably, the combination of TRAIL with CDK9 inhibition was also highly effective on cancers resistant to both, standard-of-care chemotherapy and various targeted therapeutic approaches. Dynamic BH3 profiling revealed that, mechanistically, combining TRAIL with CDK9 inhibition induced a drastic increase in the mitochondrial priming of cancer cells. Intriguingly, this increase occurred irrespective of whether the cancer cells were sensitive or resistant to chemo- or targeted therapy. We conclude that this pro-apoptotic combination therapy has the potential to serve as a highly effective new treatment option for a variety of different cancers. Notably, this includes cancers that are resistant to currently available treatment modalities.
    DOI:  https://doi.org/10.1038/s41418-021-00869-x
  29. Cancer Discov. 2021 Sep 16. pii: candisc.1849.2020. [Epub ahead of print]
      An enhanced requirement for nutrients is a hallmark property of cancer cells. Here, we optimized an in vivo genetic screening strategy in acute myeloid leukemia (AML), which led to the identification of the myo-inositol transporter SLC5A3 as a dependency in this disease. We demonstrate that SLC5A3 is essential to support a myo-inositol auxotrophy in AML. The commonality among SLC5A3-dependent AML lines is the transcriptional silencing of ISYNA1, which encodes the rate limiting enzyme for myo-inositol biosynthesis, inositol-3-phosphate synthase 1. We use gain- and loss-of-function experiments to reveal a synthetic lethal genetic interaction between ISYNA1 and SLC5A3 in AML, which function redundantly to sustain intracellular myo-inositol. Transcriptional silencing and DNA hyper-methylation of ISYNA1 occur in a recurrent manner in human AML patient samples, in association with IDH1/IDH2 and CEBPA mutations. Our findings reveal myo-inositol as a nutrient dependency in AML caused by the aberrant silencing of a biosynthetic enzyme.
    DOI:  https://doi.org/10.1158/2159-8290.CD-20-1849
  30. Cancer Lett. 2021 Sep 08. pii: S0304-3835(21)00454-7. [Epub ahead of print]
      Cancer cells craftily adapt their energy metabolism to their microenvironment. Nutrient deprivation due to hypovascularity and fibrosis is a major characteristic of pancreatic ductal adenocarcinoma (PDAC); thus, PDAC cells must produce energy intrinsically. However, the enhancement of energy production via activating Kras mutations is insufficient to explain the metabolic rewiring of PDAC cells. Here, we investigated the molecular mechanism underlying the metabolic shift in PDAC cells under serine starvation. Amino acid analysis revealed that the concentrations of all essential amino acids and most nonessential amino acids were decreased in the blood of PDAC patients. In addition, the plasma serine concentration was significantly higher in PDAC patients with PHGDH-high tumors than in those with PHGDH-low tumors. Although the growth and tumorigenesis of PK-59 cells with PHGDH promoter hypermethylation were significantly decreased by serine starvation, these activities were maintained in PDAC cell lines with PHGDH promoter hypomethylation by serine biosynthesis through PHGDH induction. In fact, DNA methylation analysis by pyrosequencing revealed that the methylation status of the PHGDH promoter was inversely correlated with the PHGDH expression level in human PDAC tissues. In addition to PHGDH induction by serine starvation, PDAC cells showed enhanced serine biosynthesis under serine starvation through 3-PG accumulation via PGAM1 knockdown, resulting in enhanced PDAC cell growth and tumor growth. However, PHGDH knockdown efficiently suppressed PDAC cell growth and tumor growth under serine starvation. These findings provide evidence that targeting the serine biosynthesis pathway by inhibiting PHGDH is a potent therapeutic approach to eliminate PDAC cells in nutrient-deprived microenvironments.
    Keywords:  Cancer metabolism; Glycolysis; Nutrient microenvironment; Pancreatic cancer; Serine biosynthesis
    DOI:  https://doi.org/10.1016/j.canlet.2021.09.007
  31. Cancer Discov. 2021 Sep 16. pii: candisc.1851.2020. [Epub ahead of print]
      CRISPR-Cas9-based genetic screens have successfully identified cell type-dependent liabilities in cancer, including acute myeloid leukemia (AML), a devastating hematologic malignancy with poor overall survival. Because most of these screens have been performed in vitro using established cell lines, evaluating the physiological relevance of these targets is critical. We have established a CRISPR screening approach using orthotopic xenograft models to validate and prioritize AML-enriched dependencies in vivo, including in CRISPR-competent AML patient-derived xenograft (PDX) models tractable for genome editing. Our integrated pipeline has revealed several targets with translational value, including SLC5A3 as a metabolic vulnerability for AML addicted to exogenous myo-inositol and MARCH5 as a critical guardian to prevent apoptosis in AML. MARCH5 repression enhanced the efficacy of BCL2 inhibitors such as venetoclax, further highlighting the clinical potential of targeting MARCH5 in AML. Our study provides a valuable strategy for discovery and prioritization of new candidate AML therapeutic targets.
    DOI:  https://doi.org/10.1158/2159-8290.CD-20-1851
  32. Cancer Res. 2021 Sep 13. pii: canres.3242.2020. [Epub ahead of print]
      Oxidative phosphorylation (OXPHOS) is an active metabolic pathway in many cancers. RNA from pre-treatment biopsies from patients with triple negative breast cancer (TNBC) who received neoadjuvant chemotherapy demonstrated that the top canonical pathway associated with worse outcome was higher expression of an OXPHOS signature. In multiple TNBC patient-derived xenografts (PDXs), treatment with IACS-10759, a novel inhibitor of OXPHOS, stabilized tumor growth. Gene expression profiling revealed that all sensitive models displayed a basal-like 1 TNBC subtype, and expression of mitochondrial genes was significantly higher in sensitive PDXs. An in vivo functional genomics screen in tumors treated with IACS-10759 found several potential synthetic lethal targets, including CDK4. A combination of palbociclib, a CDK4/6 inhibitor, and IACS-10759 exhibited significant anti-tumor efficacy in vitro and in vivo. In addition, the combination of IACS-10759 and multi-kinase inhibitor cabozantinib had improved antitumor efficacy compared to either single agent. Taken together, these data suggest that OXPHOS is a metabolic vulnerability in TNBC that may be leveraged with novel therapeutics in combination regimens.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-20-3242
  33. STAR Protoc. 2021 Sep 17. 2(3): 100807
      Heterogeneous metabolism supports critical single-cell functions. Here, we describe deep-learning-enabled image analyses of a genetically encoded lactate-sensing probe which can accurately quantify metabolite levels and glycolytic rates at the single-cell level. Multiple strategies and test data have been included to obviate possible obstacles including successful sensor expression and accurate segmentation. This protocol reliably discriminates between metabolically diverse subpopulations which can be used to directly link metabolism to functional phenotypes by integrating spatiotemporal information, genetic or pharmacological perturbations, and real-time metabolic states. For complete details on the use and execution of this protocol, please refer to Wu et al. (2021a).
    Keywords:  Bioinformatics; Cell Biology; Metabolism; Microscopy; Molecular/Chemical Probes; Single Cell
    DOI:  https://doi.org/10.1016/j.xpro.2021.100807
  34. Mol Ther Oncolytics. 2021 Sep 24. 22 143-151
      Metformin has many anti-cancer effects, alone or in combination with radiation. However, the mechanism underlying its radio-sensitized effect is still unclear, especially for cancer stem-like cells (CSCs). Here, the radio-sensitized effect of metformin was investigated, and its mechanism was revealed in CSCs derived from canine osteosarcoma cell line (HMPOS), a canine osteosarcoma cell line. Spheroid cells (SCs) were used as CSCs-rich cells derived from sphere formation, and SCs were compared with normal adherent culture cells (ACs). The radio-sensitizing effect of metformin using clonogenic assay and tumor growth in mice xenograft model were evaluated, and the mechanism of its radio-sensitization focusing on mitochondrial function was revealed. Metformin significantly enhanced radio-sensitivity of SCs through its inhibition of the mitochondrial function, as shown by decreased oxygen consumption, decreased mitochondrial membrane potential, and decreased ATP production. Additionally, SCs had a higher ability of mitochondrial respiration than ACs, which may have caused difference of their sensitivity of metformin and irradiation. In conclusion, mitochondrial function might play an important role in the sensitivity of metformin and irradiation, and drugs that target mitochondrial respiration, such as metformin, are promising radio-sensitizers to target CSCs.
    Keywords:  cancer stem-like cells; dog; metformin; mitochondria; radiation
    DOI:  https://doi.org/10.1016/j.omto.2021.08.007
  35. Arch Biochem Biophys. 2021 Sep 11. pii: S0003-9861(21)00276-9. [Epub ahead of print] 109027
      The dithiol reagents phenylarsine oxide (PAO) and dibromobimane (DBrB) have opposite effects on the F1FO-ATPase activity. PAO 20% increases ATP hydrolysis at 50 μM when the enzyme activity is activated by the natural cofactor Mg2+ and at 150 μM when it is activated by Ca2+. The PAO-driven F1FO-ATPase activation is reverted to the basal activity by 50 μM dithiothreitol (DTE). Conversely, 300 μM DBrB decreases the F1FO-ATPase activity by 25% when activated by Mg2+ and by 50% when activated by Ca2+. In both cases, the F1FO-ATPase inhibition by DBrB is insensitive to DTE. The mitochondrial permeability transition pore (mPTP) formation, related to the Ca2+-dependent F1FO-ATPase activity, is stimulated by PAO and desensitized by DBrB. Since PAO and DBrB apparently form adducts with different cysteine couples, the results highlight the crucial role of cross-linking of vicinal dithiols on the F1FO-ATPase, with (ir)reversible redox states, in the mPTP modulation.
    Keywords:  F(1)F(O)-ATPase; Mitochondria; Post-translational modification; Thiols; mPTP
    DOI:  https://doi.org/10.1016/j.abb.2021.109027
  36. Commun Biol. 2021 Sep 15. 4(1): 1081
      Transcription factor nuclear factor erythroid 2 p45-related factor 2 (Nrf2) and its main negative regulator, Kelch-like ECH associated protein 1 (Keap1), are at the interface between redox and intermediary metabolism. Nrf2 activation is protective in models of human disease and has benefits in clinical trials. Consequently, the Keap1/Nrf2 protein complex is a drug target. However, in cancer Nrf2 plays a dual role, raising concerns that Nrf2 activators may promote growth of early neoplasms. To address this concern, we examined the role of Nrf2 in development of colorectal adenomas by employing genetic, pharmacological, and metabolomic approaches. We found that colorectal adenomas that form in Gstp-/-: ApcMin/+ mice are characterized by altered one-carbon metabolism and that genetic activation, but not disruption of Nrf2, enhances these metabolic alterations. However, this enhancement is modest compared to the magnitude of metabolic differences between tumor and peri-tumoral tissues, suggesting that the metabolic changes conferred by Nrf2 activation may have little contribution to the early stages of carcinogenesis. Indeed, neither genetic (by Keap1 knockdown) nor pharmacological Nrf2 activation, nor its disruption, affected colorectal adenoma formation in this model. We conclude that pharmacological Nrf2 activation is unlikely to impact the early stages of development of colorectal cancer.
    DOI:  https://doi.org/10.1038/s42003-021-02552-w
  37. Nat Commun. 2021 Sep 13. 12(1): 5404
      Inactivating mutations in SMARCA4 and concurrent epigenetic silencing of SMARCA2 characterize subsets of ovarian and lung cancers. Concomitant loss of these key subunits of SWI/SNF chromatin remodeling complexes in both cancers is associated with chemotherapy resistance and poor prognosis. Here, we discover that SMARCA4/2 loss inhibits chemotherapy-induced apoptosis through disrupting intracellular organelle calcium ion (Ca2+) release in these cancers. By restricting chromatin accessibility to ITPR3, encoding Ca2+ channel IP3R3, SMARCA4/2 deficiency causes reduced IP3R3 expression leading to impaired Ca2+ transfer from the endoplasmic reticulum to mitochondria required for apoptosis induction. Reactivation of SMARCA2 by a histone deacetylase inhibitor rescues IP3R3 expression and enhances cisplatin response in SMARCA4/2-deficient cancer cells both in vitro and in vivo. Our findings elucidate the contribution of SMARCA4/2 to Ca2+-dependent apoptosis induction, which may be exploited to enhance chemotherapy response in SMARCA4/2-deficient cancers.
    DOI:  https://doi.org/10.1038/s41467-021-25260-9
  38. ACS Appl Mater Interfaces. 2021 Sep 17.
      Efficiency of standard chemotherapy is dramatically hindered by intrinsic multidrug resistance (MDR). Recently, to amplify therapeutic efficacy, photodynamic therapy (PDT)-induced mitochondrial dysfunction by decorating targeting moieties on nanocarriers has obtained considerable attention. Nevertheless, low targeting efficiency, complex synthesis routes, and difficulty in releasing contents become the major obstacles in further clinical application. Herein, an ingenious liposomal-based nanomedicine (L@BP) was fabricated by encapsulating a mitochondria-anchored photosensitizer (Cy-Br) and paclitaxel (PTX) for realizing enhanced cooperation therapy. At the cellular level, L@BP could hurdle endosomal traps to localize and implement PDT in mitochondria. Intriguingly, the PDT-induced in situ mitochondrial dysfunction led to intracellular ATP reduction, which triggered the downregulated P-glycoprotein transportation capacity and thus resulted in diminishing the efflux of chemotherapeutic agents and increasing drug uptake by drug-resistant cells. The prepared nanomedicine eminently accumulated in the tumor site and acquired enhanced therapeutic efficiency on PTX-resistant lung cancer cells, which possessed great potential in circumventing MDR tumors.
    Keywords:  P-glycoprotein; lysosomal escape; mitochondrial dysfunction; multidrug resistant tumor; synergistic therapy
    DOI:  https://doi.org/10.1021/acsami.1c12725
  39. Cell Chem Biol. 2021 Sep 11. pii: S2451-9456(21)00363-9. [Epub ahead of print]
      Considering the potential of combinatorial therapies in overcoming existing limitations of cancer immunotherapy, there is an increasing need to identify small-molecule modulators of immune cells capable of augmenting the effect of programmed cell death protein 1 (PD-1) blockade, leading to better cancer treatment. Although epigenetic drugs showed potential in combination therapy, the lack of sequence specificity is a major concern. Here, we identify and develop a DNA-based epigenetic activator with tri-arginine vector called EnPGC-1 that can trigger the targeted induction of the peroxisome proliferator-activated receptor-gamma coactivator 1 alpha/beta (PGC-1α/β), a regulator of mitochondrial biogenesis. EnPGC-1 enhances mitochondrial activation, energy metabolism, proliferation of CD8+ T cells in vitro, and, in particular, enhances oxidative phosphorylation, a feature of long-lived memory T cells. Genome-wide gene analysis suggests that EnPGC-1 and not the control compounds can regulate T cell activation as a major biological process. EnPGC-1 also synergizes with PD-1 blockade to enhance antitumor immunity and improved host survival.
    Keywords:  PD-1; T-cell activation; cancer immunotherapy; combination therapy; epigenetic activator; mitochondrial biogenesis; oxidative phosphorylation; pyrrole-imidazole polyamide; therapeutic gene modulation
    DOI:  https://doi.org/10.1016/j.chembiol.2021.08.001
  40. Cell Rep. 2021 Sep 14. pii: S2211-1247(21)01148-7. [Epub ahead of print]36(11): 109701
      Citrate lies at a critical node of metabolism, linking tricarboxylic acid metabolism and lipogenesis via acetyl-coenzyme A. Recent studies have observed that deficiency of the sodium-dependent citrate transporter (NaCT), encoded by SLC13A5, dysregulates hepatic metabolism and drives pediatric epilepsy. To examine how NaCT contributes to citrate metabolism in cells relevant to the pathophysiology of these diseases, we apply 13C isotope tracing to SLC13A5-deficient hepatocellular carcinoma (HCC) cells and primary rat cortical neurons. Exogenous citrate appreciably contributes to intermediary metabolism only under hypoxic conditions. In the absence of glutamine, citrate supplementation increases de novo lipogenesis and growth of HCC cells. Knockout of SLC13A5 in Huh7 cells compromises citrate uptake and catabolism. Citrate supplementation rescues Huh7 cell viability in response to glutamine deprivation or Zn2+ treatment, and NaCT deficiency mitigates these effects. Collectively, these findings demonstrate that NaCT-mediated citrate uptake is metabolically important under nutrient-limited conditions and may facilitate resistance to metal toxicity.
    Keywords:  NaCT; SLC13A5; citrate; hepatocellular carcinoma; lipogenesis; neurons; zinc
    DOI:  https://doi.org/10.1016/j.celrep.2021.109701
  41. Arch Biochem Biophys. 2021 Sep 10. pii: S0003-9861(21)00277-0. [Epub ahead of print]711 109028
      Elevated expression of thioredoxin reductase (TrxR) is associated with the tumorigenesis and resistance to cancer chemoradiotherapy, highlighting the potential of TrxR inhibitors as anticancer drugs. Deoxyelephantopin (DET) is the major active ingredient of Elephantopus scaber and reveals potent anticancer activity. However, the potential mechanism of action and the cellular target of DET are still unknown. Here, we found that DET primarily targets the Sec residue of TrxR and irreversibly prohibits enzyme activity. Suppression of TrxR by DET leads to accumulation of reactive oxygen species and dysregulation in intracellular redox balance, eventually inducing cancer cell apoptosis mediated by oxidative stress. Noticeably, down-regulation of TrxR1 by shRNA increases cell sensitivity to DET. Collectively, targeting of TrxR1 by DET uncovers a novel mechanism of action in DET and deepens the understanding of developing DET as a potential chemotherapeutic agent for treating cancers.
    Keywords:  Apoptosis; Deoxyelephantopin; Oxidative stress; Redox regulation; Thioredoxin reductase
    DOI:  https://doi.org/10.1016/j.abb.2021.109028
  42. Mol Biol Cell. 2021 Sep 15. mbcE21050262
      Cellular senescence is a state of permanent proliferative arrest induced by a variety of stresses, such as DNA damage. The transcriptional activity of p53 has been known to be essential for senescence induction. It remains unknown, however, whether among the downstream genes of p53, there is a gene that has anti-senescence function. Our recent studies have indicated that the expression of SLC52A1 (also known as GPR172B/RFVT1), a riboflavin transporter, is upregulated specifically in senescent cells depending on p53, but the relationship between senescence and SLC52A1 or riboflavin has not been described. Here, we examined the role of SLC52A1 in senescence. We found that knockdown of SLC52A1 promoted senescence phenotypes induced by DNA damage in tumor and normal cells. The senescence suppressive-action of SLC52A1 was dependent on its riboflavin transport activity. Furthermore, elevation of intracellular riboflavin led to activation of mitochondrial membrane potential (MMP) mediated by the mitochondrial electron transport chain complex II. Finally, the SLC52A1-dependent activation of MMP inhibited the AMPK-p53 pathway, a central mediator of mitochondria dysfunction-related senescence. These results suggest that SLC52A1 contributes to suppress senescence through the uptake of riboflavin and acts downstream of p53 as a negative feedback mechanism to limit aberrant senescence induction.
    DOI:  https://doi.org/10.1091/mbc.E21-05-0262
  43. Autophagy. 2021 Sep 17. 1-23
      Cancer cell growth is dependent upon the sustainability of proliferative signaling and resisting cell death. Macroautophagy/autophagy promotes cancer cell growth by providing nutrients to cells and preventing cell death. This is in contrast to autophagy promoting cell death under some conditions. The mechanism regulating autophagy-mediated cancer cell growth remains unclear. Herein, we demonstrate that TSSC4 (tumor suppressing subtransferable candidate 4) is a novel tumor suppressor that suppresses cancer cell growth and tumor growth and prevents cell death induction during excessive growth by inhibiting autophagy. The oncogenic proteins ERBB2 (erb-b2 receptor tyrosine kinase 2) and the activation EGFR mutant (EGFRvIII, epidermal growth factor receptor variant III) promote cell growth and TSSC4 expression in breast cancer and glioblastoma multiforme (GBM) cells, respectively. In EGFRvIII-expressing GBM cells, TSSC4 knockout shifted the function of autophagy from a pro-cell survival role to a pro-cell death role during prolonged cell growth. Furthermore, the interaction of TSSC4 with MAP1LC3/LC3 (microtubule associated protein 1 light chain 3) via its conserved LC3-interacting region (LIR) contributes to its inhibition of autophagy. Finally, TSSC4 suppresses tumorsphere formation and tumor growth by inhibiting autophagy and maintaining cell survival in tumorspheres. Taken together, sustainable cancer cell growth can be achieved by autophagy inhibition via TSSC4 expression.ABBREVIATIONS: 3-MA: 3-methyladenine; ACTB: actin beta; CQ: chloroquine; EGFRvIII: epidermal growth factor receptor variant III; ERBB2: erb-b2 receptor tyrosine kinase 2; GBM: glioblastoma multiforme; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule Associated protein 1 light chain 3; TSSC4: tumor suppressing subtransferable candidate 4.
    Keywords:  Autophagic cell death; EGFR; ERBB2; cell growth; tumorsphere
    DOI:  https://doi.org/10.1080/15548627.2021.1973338
  44. J Immunother Cancer. 2021 Sep;pii: e002954. [Epub ahead of print]9(9):
      BACKGROUND: Metformin (Met) is the first-line treatment for type 2 diabetes mellitus and plays an effective role in treating various diseases, such as cardiovascular disease, neurodegenerative disease, cancer, and aging. However, the underlying mechanism of Met-dependent antitumor immunity remains to be elucidated.METHODS: MitoTEMPO, a scavenger of mitochondrial superoxide, abolished the antitumor effect of Met, but not antiprogrammed cell death (PD-1) antibody (Ab) treatment. Consequently, we studied the mechanism of the Met-induced antitumor effect. Expressions of glucose transporter (Glut)-1, mitochondrial reactive oxygen species (mtROS), interferon (IFN)-γ, Ki67, autophagy markers, activation markers for NF-E2-related factor 2 (Nrf2), and mammalian target of rapamaycin complex 1 (mTORC1) in CD8+ tumor-infiltrating T lymphocytes (CD8TILs) were examined by flow cytometry analysis. In addition, conditional knockout mice for Nrf2 and p62 were used to detect these markers, together with the monitoring of in vivo tumor growth. RNA sequencing was performed for CD8TILs and tumor cells. Melanoma cells containing an IFN-γ receptor (IFNγR) cytoplasmic domain deletion mutant was overexpressed and used for characterization of the metabolic profile of those tumor cells using a Seahorse Flux Analyzer.
    RESULTS: Met administration elevates mtROS and cell surface Glut-1, resulting in the production of IFN-γ in CD8TILs. mtROS activates Nrf2 in a glycolysis-dependent manner, inducing activation of autophagy, glutaminolysis, mTORC1, and p62/SQSTM1. mTORC1-dependent phosphorylation of p62 at serine 351 (p-p62(S351)) is also involved in activation of Nrf2. Conditional deletion of Nrf2 in CD8TILs abrogates mTORC1 activation and antitumor immunity by Met. In synergy with the effect of anti-PD-1 Ab, Met boosts CD8TIL proliferation and IFN-γ secretion, resulting in decreased glycolysis and oxidative phosphorylation in tumor cells. Consequently, Glut-1 is elevated in CD8TILs, together with the expansion of activated dendritic cells. Moreover, tumor cells lacking in IFNγR signaling abolish IFN-γ production and proliferation of CD8TILs.
    CONCLUSIONS: We found that Met stimulates production of mtROS, which triggers Glut-1 elevation and Nrf2 activation in CD8TILs. Nrf2 activates mTORC1, whereas mTORC1 activates Nrf2 in a p-p62(S351)-dependent manner, thus creating a feedback loop that ensures CD8TILs' proliferation. In combination with anti-PD-1 Ab, Met stimulates robust proliferation of CD8TILs and IFN-γ secretion, resulting in an IFN-γ-dependent reprogramming of the tumor microenvironment.
    Keywords:  adaptive immunity; cd8-positive T-lymphocytes; immunomodulation; lymphocytes; tumor microenvironment; tumor-infiltrating
    DOI:  https://doi.org/10.1136/jitc-2021-002954
  45. Front Pharmacol. 2021 ;12 708093
      Introduction: The gastrointestinal malignancy, gastric cancer (GC), has a high incidence worldwide. Cisplatin is a traditional chemotherapeutic drug that is generally applied to treat cancer; however, drug tolerance affects its efficacy. Sodium butyrate is an intestinal flora derivative that has general anti-cancer effects in vitro and in vivo via pro-apoptosis effects and can improve prognosis in combination with traditional chemotherapy drugs. The present study aimed to assess the effect of sodium butyrate combined with cisplatin on GC. Methods: A Cell Counting Kit-8 assay was used to assess the viability of GC cells in vitro. Hoechst 33,258 staining and Annexin V-Phycoerythrin/7-Aminoactinomycin D were used to qualitatively and quantitatively detect apoptosis in GC cells. Intracellular reactive oxygen species (ROS) measurement and a mitochondrial membrane potential (MMP) assay kit were used to qualitatively and quantitatively reflect the function of mitochondria in GC cells. Western blotting was used to verify the above experimental results. A nude mouse xenograft tumor model was used to evaluate the anti-tumor efficacity of sodium and cisplatin butyrate in vivo. Results: Cisplatin combined with sodium butyrate increased the apoptosis of GC cells. In the nude mouse xenograft tumor model, sodium butyrate in combination with cisplatin markedly inhibited the growth of the tumor more effectively than either single agent. The combination of sodium butyrate and cisplatin increased the intracellular ROS, decreased the MMP, and suppressed the invasion and migration abilities of GC cells. Western blotting verified that the combination of sodium butyrate and cisplatin remarkably enhanced the levels of mitochondrial apoptosis-related pathway proteins. Conclusion: Sodium butyrate, a histone acetylation inhibitor produced by intestinal flora fermentation, combined with cisplatin enhanced the apoptosis of GC cells through the mitochondrial apoptosis-related pathway, which might be considered as a therapeutic option for GC.
    Keywords:  apoptosis; cisplatin; gastric cancer; mitochondrial pathway; sodium butyrate
    DOI:  https://doi.org/10.3389/fphar.2021.708093
  46. Math Biosci Eng. 2021 Jun 25. 18(5): 5758-5789
      Cardiac mitochondria are intracellular organelles that play an important role in energy metabolism and cellular calcium regulation. In particular, they influence the excitation-contraction cycle of the heart cell. A large number of mathematical models have been proposed to better understand the mitochondrial dynamics, but they generally show a high level of complexity, and their parameters are very hard to fit to experimental data. We derived a model based on historical free energy-transduction principles, and results from the literature. We proposed simple expressions that allow to reduce the number of parameters to a minimum with respect to the mitochondrial behavior of interest for us. The resulting model has thirty-two parameters, which are reduced to twenty-three after a global sensitivity analysis of its expressions based on Sobol indices. We calibrated our model to experimental data that consists of measurements of mitochondrial respiration rates controlled by external ADP additions. A sensitivity analysis of the respiration rates showed that only seven parameters can be identified using these observations. We calibrated them using a genetic algorithm, with five experimental data sets. At last, we used the calibration results to verify the ability of the model to accurately predict the values of a sixth dataset. Results show that our model is able to reproduce both respiration rates of mitochondria and transitions between those states, with very low variability of the parameters between each experiment. The same methodology may apply to recover all the parameters of the model, if corresponding experimental data were available.
    Keywords:   biological modeling ; experimental validation ; mitochondria ; ordinary differential equations ; sensitivity analysis
    DOI:  https://doi.org/10.3934/mbe.2021291
  47. Cell. 2021 Sep 16. pii: S0092-8674(21)00997-1. [Epub ahead of print]184(19): 5031-5052.e26
      Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with poor patient survival. Toward understanding the underlying molecular alterations that drive PDAC oncogenesis, we conducted comprehensive proteogenomic analysis of 140 pancreatic cancers, 67 normal adjacent tissues, and 9 normal pancreatic ductal tissues. Proteomic, phosphoproteomic, and glycoproteomic analyses were used to characterize proteins and their modifications. In addition, whole-genome sequencing, whole-exome sequencing, methylation, RNA sequencing (RNA-seq), and microRNA sequencing (miRNA-seq) were performed on the same tissues to facilitate an integrated proteogenomic analysis and determine the impact of genomic alterations on protein expression, signaling pathways, and post-translational modifications. To ensure robust downstream analyses, tumor neoplastic cellularity was assessed via multiple orthogonal strategies using molecular features and verified via pathological estimation of tumor cellularity based on histological review. This integrated proteogenomic characterization of PDAC will serve as a valuable resource for the community, paving the way for early detection and identification of novel therapeutic targets.
    Keywords:  CPTAC; KRAS; endothelial cell; glycoproteins; immune-cold tumors; kinase inhibitors; neoplastic cellularity; pancreatic ductal adenocarcinoma; proteogenomics; tumor subtyping
    DOI:  https://doi.org/10.1016/j.cell.2021.08.023
  48. Oncol Rep. 2021 Nov;pii: 237. [Epub ahead of print]46(5):
      Currently, high‑throughput quantitative proteomic and transcriptomic approaches have been widely used for exploring the molecular mechanisms and acquiring biomarkers for cancers. Our study aimed to illuminate the multi-dimensional molecular mechanisms underlying renal cell carcinoma (RCC) via investigating the quantitative global proteome and the profile of phosphorylation. A total of 5,428 proteins and 8,632 phosphorylation sites were quantified in RCC tissues, with 709 proteins and 649 phosphorylation sites found to be altered in expression compared with the matched adjacent non‑tumor tissues. These differentially expressed proteins were mainly involved in metabolic process terms involving the glycolysis pathway, oxidative phosphorylation and fatty acid metabolism which have been considered to be a potential mechanism of RCC progression. Moreover, phosphorylation analysis indicated that these upregulated phosphorylated proteins are implicated in the glucagon signaling pathway and cholesterol metabolism, while the downregulated phosphorylated proteins were found to be predominantly involved in glycolysis, the pentose phosphate pathway, carbon metabolism and biosynthesis of amino acids. In addition, several new candidate proteins, CD14, MPO, NCF2, SOD2, PARP1, were found to be upregulated and MUT, ACADM, PCK1 were downregulated in RCC. These proteins may be recognized as new biomarkers for RCC. These findings could broaden our insight into the underlying molecular mechanisms of RCC and identify candidate biomarkers for the treatment of RCC.
    Keywords:  biomarkers; pathways; phosphorylome; proteome; renal cell carcinoma
    DOI:  https://doi.org/10.3892/or.2021.8188
  49. Nat Commun. 2021 Sep 13. 12(1): 5395
      Knowledge of the genomic landscape of chronic lymphocytic leukemia (CLL) grows increasingly detailed, providing challenges in contextualizing the accumulated information. To define the underlying networks, we here perform a multi-platform molecular characterization. We identify major subgroups characterized by genomic instability (GI) or activation of epithelial-mesenchymal-transition (EMT)-like programs, which subdivide into non-inflammatory and inflammatory subtypes. GI CLL exhibit disruption of genome integrity, DNA-damage response and are associated with mutagenesis mediated through activation-induced cytidine deaminase or defective mismatch repair. TP53 wild-type and mutated/deleted cases constitute a transcriptionally uniform entity in GI CLL and show similarly poor progression-free survival at relapse. EMT-like CLL exhibit high genomic stability, reduced benefit from the addition of rituximab and EMT-like differentiation is inhibited by induction of DNA damage. This work extends the perspective on CLL biology and risk categories in TP53 wild-type CLL. Furthermore, molecular targets identified within each subgroup provide opportunities for new treatment approaches.
    DOI:  https://doi.org/10.1038/s41467-021-25403-y