bims-mibica Biomed News
on Mitochondrial bioenergetics in cancer
Issue of 2021‒04‒04
fifty-two papers selected by
Kelsey Fisher-Wellman
East Carolina University

  1. Redox Biol. 2021 Mar 19. pii: S2213-2317(21)00092-6. [Epub ahead of print]41 101944
      Reactive oxygen species (ROS) are a common product of active mitochondrial respiration carried in mitochondrial cristae, but whether cristae shape influences ROS levels is unclear. Here we report that the mitochondrial fusion and cristae shape protein Opa1 requires mitochondrial ATP synthase oligomers to reduce ROS accumulation. In cells fueled with galactose to force ATP production by mitochondria, cristae are enlarged, ATP synthase oligomers destabilized, and ROS accumulate. Opa1 prevents both cristae remodeling and ROS generation, without impinging on levels of mitochondrial antioxidant defense enzymes that are unaffected by Opa1 overexpression. Genetic and pharmacologic experiments indicate that Opa1 requires ATP synthase oligomerization and activity to reduce ROS levels upon a blockage of the electron transport chain. Our results indicate that the converging effect of Opa1 and mitochondrial ATP synthase on mitochondrial ultrastructure regulate ROS abundance to sustain cell viability.
    Keywords:  Bioenergetics; F(1)F(O)-ATP synthase; Mitochondrial cristae; Opa1; ROS; Ultrastructure
  2. Cells. 2021 Mar 12. pii: 634. [Epub ahead of print]10(3):
      BTB domain and CNC homology 1 (BACH1) is a transcription factor that is highly expressed in tumors including breast and lung, relative to their non-tumor tissues. BACH1 is known to regulate multiple physiological processes including heme homeostasis, oxidative stress response, senescence, cell cycle, and mitosis. In a tumor, BACH1 promotes invasion and metastasis of cancer cells, and the expression of BACH1 presents a poor outcome for cancer patients including breast and lung cancer patients. Recent studies identified novel functional roles of BACH1 in the regulation of metabolic pathways in cancer cells. BACH1 inhibits mitochondrial metabolism through transcriptional suppression of mitochondrial membrane genes. In addition, BACH1 suppresses activity of pyruvate dehydrogenase (PDH), a key enzyme that converts pyruvate to acetyl-CoA for the citric acid (TCA) cycle through transcriptional activation of pyruvate dehydrogenase kinase (PDK). Moreover, BACH1 increases glucose uptake and lactate secretion through the expression of metabolic enzymes involved such as hexokinase 2 (HK2) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) for aerobic glycolysis. Pharmacological or genetic inhibition of BACH1 could reprogram by increasing mitochondrial metabolism, subsequently rendering metabolic vulnerability of cancer cells against mitochondrial respiratory inhibition. Furthermore, inhibition of BACH1 decreased antioxidant-induced glycolysis rates as well as reduced migration and invasion of cancer cells, suggesting BACH1 as a potentially useful cancer therapeutic target.
    Keywords:  BTB and CNC homology 1 BACH1; Nrf2 (encoded by Nfe2l2); breast cancer; glycolysis; heme oxygenase 1 (HMOX1); hemin; lung cancer; metformin; mitochondrial electron transport chain (ETC); mitochondrial metabolism
  3. Life (Basel). 2021 Mar 15. pii: 242. [Epub ahead of print]11(3):
      Under aerobic conditions, mitochondrial oxidative phosphorylation (OXPHOS) converts the energy released by nutrient oxidation into ATP, the currency of living organisms. The whole biochemical machinery is hosted by the inner mitochondrial membrane (mtIM) where the protonmotive force built by respiratory complexes, dynamically assembled as super-complexes, allows the F1FO-ATP synthase to make ATP from ADP + Pi. Recently mitochondria emerged not only as cell powerhouses, but also as signaling hubs by way of reactive oxygen species (ROS) production. However, when ROS removal systems and/or OXPHOS constituents are defective, the physiological ROS generation can cause ROS imbalance and oxidative stress, which in turn damages cell components. Moreover, the morphology of mitochondria rules cell fate and the formation of the mitochondrial permeability transition pore in the mtIM, which, most likely with the F1FO-ATP synthase contribution, permeabilizes mitochondria and leads to cell death. As the multiple mitochondrial functions are mutually interconnected, changes in protein composition by mutations or in supercomplex assembly and/or in membrane structures often generate a dysfunctional cascade and lead to life-incompatible diseases or severe syndromes. The known structural/functional changes in mitochondrial proteins and structures, which impact mitochondrial bioenergetics because of an impaired or defective energy transduction system, here reviewed, constitute the main biochemical damage in a variety of genetic and age-related diseases.
    Keywords:  ATP synthase/hydrolase; ROS; cellular signaling; cristae; mitochondrial dysfunction; mitochondrial permeability transition pore; oxidative phosphorylation; respiratory supercomplexes
  4. Cell Chem Biol. 2021 Mar 30. pii: S2451-9456(21)00143-4. [Epub ahead of print]
      Three limonoid natural products with selective anti-proliferative activity against BRAF(V600E) and NRAS(Q61K)-mutation-dependent melanoma cell lines were identified. Differential transcriptome analysis revealed dependency of compound activity on expression of the mitochondrial cytochrome P450 oxidase CYP27A1, a transcriptional target of melanogenesis-associated transcription factor (MITF). We determined that CYP27A1 activity is necessary for the generation of a reactive metabolite that proceeds to inhibit cellular proliferation. A genome-wide small interfering RNA screen in combination with chemical proteomics experiments revealed gene-drug functional epistasis, suggesting that these compounds target mitochondrial biogenesis and inhibit tumor bioenergetics through a covalent mechanism. Our work suggests a strategy for melanoma-specific targeting by exploiting the expression of MITF target gene CYP27A1 and inhibiting mitochondrial oxidative phosphorylation in BRAF mutant melanomas.
    Keywords:  BRAF; CYP27A1; MITF; cancer metabolism; melanoma; mitochondrial complex I; natural products; oncology; oxidative phosphorylation; prodrug
  5. Int J Mol Sci. 2021 Mar 23. pii: 3245. [Epub ahead of print]22(6):
      Depending on their tissue of origin, genetic and epigenetic marks and microenvironmental influences, cancer cells cover a broad range of metabolic activities that fluctuate over time and space. At the core of most metabolic pathways, mitochondria are essential organelles that participate in energy and biomass production, act as metabolic sensors, control cancer cell death, and initiate signaling pathways related to cancer cell migration, invasion, metastasis and resistance to treatments. While some mitochondrial modifications provide aggressive advantages to cancer cells, others are detrimental. This comprehensive review summarizes the current knowledge about mitochondrial transfers that can occur between cancer and nonmalignant cells. Among different mechanisms comprising gap junctions and cell-cell fusion, tunneling nanotubes are increasingly recognized as a main intercellular platform for unidirectional and bidirectional mitochondrial exchanges. Understanding their structure and functionality is an important task expected to generate new anticancer approaches aimed at interfering with gains of functions (e.g., cancer cell proliferation, migration, invasion, metastasis and chemoresistance) or damaged mitochondria elimination associated with mitochondrial transfer.
    Keywords:  cancer; cancer metabolism; chemoresistance; metastasis; mitochondria; mitochondrial transfer; oxidative phosphorylation (OXPHOS); reactive oxygen species (ROS); tricarboxylic acid (TCA) cycle; tunneling nanotubes (TNT)
  6. Cancers (Basel). 2021 Mar 24. pii: 1488. [Epub ahead of print]13(7):
      Pyruvate is a key molecule in the metabolic fate of mammalian cells; it is the crossroads from where metabolism proceeds either oxidatively or ends with the production of lactic acid. Pyruvate metabolism is regulated by many enzymes that together control carbon flux. Mitochondrial pyruvate carrier (MPC) is responsible for importing pyruvate from the cytosol to the mitochondrial matrix, where it is oxidatively phosphorylated to produce adenosine triphosphate (ATP) and to generate intermediates used in multiple biosynthetic pathways. MPC activity has an important role in glucose homeostasis, and its alteration is associated with diabetes, heart failure, and neurodegeneration. In cancer, however, controversy surrounds MPC function. In some cancers, MPC upregulation appears to be associated with a poor prognosis. However, most transformed cells undergo a switch from oxidative to glycolytic metabolism, the so-called Warburg effect, which, amongst other possibilities, is induced by MPC malfunction or downregulation. Consequently, impaired MPC function might induce tumors with strong proliferative, migratory, and invasive capabilities. Moreover, glycolytic cancer cells secrete lactate, acidifying the microenvironment, which in turn induces angiogenesis, immunosuppression, and the expansion of stromal cell populations supporting tumor growth. This review examines the latest findings regarding the tumorigenic processes affected by MPC.
    Keywords:  MPC; SLC; Warburg effect; glycolysis; lactate; mitochondrial matrix; oxidative phosphorylation
  7. Antioxidants (Basel). 2021 Mar 29. pii: 533. [Epub ahead of print]10(4):
      We investigated the relationship between mitochondrial production of reactive oxygen species (ROS) and mitochondrial energetics in various rat tissues with different contents of the reduced coenzyme Q (Q) pool (Q9 + Q10). Our results indicate that similar to the tissue level, mitochondrial H2O2 release under nonphosphorylating conditions was strongly dependent on the amount of the reduced Q pool. Namely, in brain and lung mitochondria, less H2O2 release corresponded to a less reduced Q pool, while in liver and heart mitochondria, higher H2O2 release corresponded to a more reduced Q pool. We can conclude that the differences observed in rat tissues in the size of the reduced Q pool reflect different levels of ROS production and hence may reflect different demands for reduced Q as an antioxidant. Moreover, differences in mitochondrial H2O2 release were observed in different types of rat mitochondria during the oxidation of succinate (complex II substrate), malate plus glutamate (complex I substrate), and their mixture under phosphorylating and nonphosphorylating conditions. Our results indicate the existence of a tissue-specific maximum respiratory chain capacity in ROS production, possibly related to the membrane potential-mediated control of oxidative phosphorylation. We propose the use of a new parameter for the study of isolated mitochondria, RCRROS, the ratio between the formation of mitochondrial ROS under nonphosphorylating and phosphorylating conditions, which represents the maximum factorial increase in mitochondrial ROS formation that can be achieved after all ADP is phosphorylated.
    Keywords:  coenzyme Q; mitochondrial energetics; mitochondrial reactive oxygen species
  8. Toxicology. 2021 Mar 25. pii: S0300-483X(21)00089-5. [Epub ahead of print] 152766
      Azure A (AA) is a cationic molecule of the class of phenothiazines that has been applied in vitro as a photosensitising agent in photodynamic antimicrobial chemotherapy. It is a di-demethylated analogue of methylene blue (MB), which has been demonstrated to be intrinsically and photodynamically highly active on mitochondrial bioenergetics. However, as far as we know, there are no studies about the photodynamic effects of AA on mammalian mitochondria. Therefore, this investigation aimed to characterise the intrinsic and photodynamic acute effects of AA (0.540 μM) on isolated rat liver mitochondria, isolated hepatocytes, and isolated perfused rat liver. The effects of AA were assessed by evaluating several parameters of mitochondrial bioenergetics, oxidative stress, cell viability, and hepatic energy metabolism. The photodynamic effects of AA were assessed under simulated hypoxic conditions, a suitable way for mimicking the microenvironment of hypoxic solid tumour cells. AA interacted with the mitochondria and, upon photostimulation (10 min of light exposure), produced toxic amounts of reactive oxygen species (ROS), which damaged the organelle, as demonstrated by the high levels of lipid peroxidation and protein carbonylation. The photostimulated AA also depleted the GSH pool, which could compromise the mitochondrial antioxidant defence. Bioenergetically, AA photoinactivated the complexes I, II, and IV of the mitochondrial respiratory chain and the F1FO-ATP synthase complex, sharply inhibiting the oxidative phosphorylation. Upon photostimulation (10 min of light exposure), AA reduced the efficiency of mitochondrial energy transduction and oxidatively damaged lipids in isolated hepatocytes but did not decrease the viability of cells. Despite the useful photobiological properties, AA presented noticeable dark toxicity on mitochondrial bioenergetics, functioning predominantly as an uncoupler of oxidative phosphorylation. This harmful effect of AA was evidenced in isolated hepatocytes, in which AA diminished the cellular ATP content. In this case, the cells exhibited signs of cell viability reduction in the presence of high AA concentrations, but only after a long time of incubation (at least 90 min). The impairments on mitochondrial bioenergetics were also clearly manifested in intact perfused rat liver, in which AA diminished the cellular ATP content and stimulated the oxygen uptake. Consequently, gluconeogenesis and ureogenesis were strongly inhibited, whereas glycogenolysis and glycolysis were stimulated. AA also promoted the release of cytosolic and mitochondrial enzymes into the perfusate concomitantly with inhibition of oxygen consumption. In general, the intrinsic and photodynamic effects of AA were similar to those of MB, but AA caused some distinct effects such as the photoinactivation of the complex IV of the mitochondrial respiratory chain and a diminution of the ATP levels in the liver. It is evident that AA has the potential to be used in mitochondria-targeted photodynamic therapy, even under low oxygen concentrations. However, the fact that AA directly disrupts mitochondrial bioenergetics and affects several hepatic pathways that are linked to ATP metabolism, along with its ability to perturb cellular membranes and its little potential to reduce cell viability, could result in significant adverse effects especially in long-term treatments.
    Keywords:  ATP synthesis; Electron transfer; Hepatotoxicity; Photooxidation; Photosensitisers; Uncoupling
  9. Int J Mol Sci. 2021 Mar 03. pii: 2537. [Epub ahead of print]22(5):
      Mitochondrial apoptosis is one of the main mechanisms for cancer cells to overcome chemoresistance. Hexokinase 2 (HK2) can resist cancer cell apoptosis by expressing on mitochondria and binding to voltage-dependent anion channel 1 (VDAC1). We previously reported that peroxisome proliferator-activated receptor coactivator 1 α (PGC1α) is highly expressed in ovarian cancer cisplatin-resistant cells. However, the underlying mechanism remains unclear. Therefore, we evaluated the interaction between PGC1α and HK2 in ovarian cancer cisplatin-resistant cells. We found that the knockdown of PGC1α promotes the apoptosis of ovarian cancer cisplatin-resistant cells and increases their sensitivity to cisplatin. In addition, we found that the knockdown of PGC1α affects the mitochondrial membrane potential and the binding of HK2 and VDAC1. As the heat shock protein 70 (HSP70) family can help protein transport, we detected it and found that PGC1α can promote HSP70 gene transcription. Furthermore, HSP70 can promote an increase of HK2 expression on mitochondria and an increase of binding to VDAC1. Based on these results, PGC1α may reduce apoptosis through the HSP70/HK2/VDAC1 signaling pathway, thus promoting cisplatin resistance of ovarian cancer. These findings provide strong theoretical support for PGC1α as a potential therapeutic target of cisplatin resistance in ovarian cancer.
    Keywords:  HK2; HSP70; PGC1α; cisplatin; mitochondria; resistance
  10. Antioxidants (Basel). 2021 Mar 26. pii: 520. [Epub ahead of print]10(4):
      Coenzyme Q10 (CoQ10) is classically viewed as an important endogenous antioxidant and key component of the mitochondrial respiratory chain. For this second function, CoQ molecules seem to be dynamically segmented in a pool attached and engulfed by the super-complexes I + III, and a free pool available for complex II or any other mitochondrial enzyme that uses CoQ as a cofactor. This CoQ-free pool is, therefore, used by enzymes that link the mitochondrial respiratory chain to other pathways, such as the pyrimidine de novo biosynthesis, fatty acid β-oxidation and amino acid catabolism, glycine metabolism, proline, glyoxylate and arginine metabolism, and sulfide oxidation metabolism. Some of these mitochondrial pathways are also connected to metabolic pathways in other compartments of the cell and, consequently, CoQ could indirectly modulate metabolic pathways located outside the mitochondria. Thus, we review the most relevant findings in all these metabolic functions of CoQ and their relations with the pathomechanisms of some metabolic diseases, highlighting some future perspectives and potential therapeutic implications.
    Keywords:  OxPhos; coenzyme Q10; mitochondria; one-carbon metabolism; proline metabolism; sulfide metabolism; super-complexes; ubiquinol-10; ubiquinone-10
  11. Int J Mol Sci. 2021 Mar 24. pii: 3315. [Epub ahead of print]22(7):
      Chemo-resistance hinders treatment of patients with hepatocellular carcinoma. Although there are many models that can be found in the literature, the root mechanism to explain chemo-resistance is still not fully understood. To gain a better understanding of this phenomenon, a chemo-resistant line, R-HepG2, was developed from a chemo-sensitive HepG2 line through an exposure of doxorubicin (DOX). The R-HepG2 exhibited a cancer stem cell (CSC) phenotype with an over-expression of P-glycoprotein (P-gp), conferring it a significant enhancement in drug efflux and survival. With these observations, we hypothesize that metabolic alteration in this drug-resistant CSC is the root cause of chemo-resistance. Our results show that, unlike other metabolic-reprogrammed CSCs that exhibit glycolytic phenotype described by the "Warburg effect", the R-HepG2 was metabolically quiescent with glucose independence, high metabolic plasticity, and relied on glutamine metabolism via the mitochondria for its chemo-resistance Intriguingly, drug efflux by P-gp in R-HepG2 depended on the mitochondrial ATP fueled by glutamine instead of glycolytic ATP. Armed with these observations, we blocked the glutamine metabolism in the R-HepG2 and a significant reduction of DOX efflux was obtained. We exploited this metabolic vulnerability using a combination of DOX and metformin in a glutamine-free condition to target the R-HepG2, resulting in a significant DOX sensitization. In conclusion, our findings highlight the metabolic modulation of chemo-resistance in CSCs. We delineate the altered metabolism that drives chemo-resistance and offer a new approach to target this CSC through metabolic interventions.
    Keywords:  P-glycoprotein; cancer cell metabolism; cancer stem cells; chemo-resistance; hepatocellular carcinoma; metabolic alteration; mitochondria
  12. Int J Mol Sci. 2021 Mar 25. pii: 3387. [Epub ahead of print]22(7):
      Metabolic plasticity is a hallmark of the ability of metastatic cancer cells to survive under stressful conditions. The intracellular Fer kinase is a selective constituent of the reprogramed mitochondria and metabolic system of cancer cells. In the current work, we deciphered the modulatory roles of Fer in the reprogrammed metabolic systems of metastatic, lung (H358), non-small cell lung cancer (NSCLC), and breast (MDA-MB-231), triple-negative breast cancer (TNBC), carcinoma cells. We show that H358 cells devoid of Fer (H358ΔFer), strictly depend on glucose for their proliferation and growth, and fail to compensate for glucose withdrawal by oxidizing and metabolizing glutamine. Furthermore, glucose deficiency caused increased reactive oxygen species (ROS) production and induction of a DNA damage response (DDR), accompanied by the onset of apoptosis and attenuated cell-cycle progression. Analysis of mitochondrial function revealed impaired respiratory and electron transport chain (ETC) complex 1 (comp. I) activity in the Fer-deficient H358ΔFer cells. This was manifested by decreased levels of NAD+ and ATP and relatively low abundance of tricarboxylic acid (TCA) cycle metabolites. Impaired electron transport chain comp. I activity and dependence on glucose were also confirmed in Fer-deficient, MDA-MB-231ΔFer cells. Although both H358ΔFer and MDA-MB-231ΔFer cells showed a decreased aspartate level, this seemed to be compensated by the predominance of pyrimidines synthesis over the urea cycle progression. Notably, absence of Fer significantly impeded the growth of H358ΔFer and MDA-MB-231ΔFer xenografts in mice provided with a carb-deficient, ketogenic diet. Thus, Fer plays a key role in the sustention of metabolic plasticity of malignant cells. In compliance with this notion, targeting Fer attenuates the progression of H358 and MDA-MB-231 tumors, an effect that is potentiated by a glucose-restrictive diet.
    Keywords:  Fer; Mitochondrial homeostasis; metabolic plasticity; non-small cell lung cancer; triple-negative breast cancer
  13. Front Cell Dev Biol. 2021 ;9 626316
      Interpreting connections between the multiple networks of cell metabolism is indispensable for understanding how cells maintain homeostasis or transform into the decontrolled proliferation phenotype of cancer. Situated at a critical metabolic intersection, citrate, derived via glycolysis, serves as either a combustible fuel for aerobic mitochondrial bioenergetics or as a continuously replenished cytosolic carbon source for lipid biosynthesis, an essentially anaerobic process. Therein lies the paradox: under what conditions do cells control the metabolic route by which they process citrate? The Warburg effect exposes essentially the same dilemma-why do cancer cells, despite an abundance of oxygen needed for energy-generating mitochondrial respiration with citrate as fuel, avoid catabolizing mitochondrial citrate and instead rely upon accelerated glycolysis to support their energy requirements? This review details the genesis and consequences of the metabolic paradigm of a "truncated" Krebs/TCA cycle. Abundant data are presented for substrate utilization and membrane cholesterol enrichment in tumors that are consistent with criteria of the Warburg effect. From healthy cellular homeostasis to the uncontrolled proliferation of tumors, metabolic alterations center upon the loss of regulation of the cholesterol biosynthetic pathway. Deregulated tumor cholesterogenesis at the HMGR locus, generating enhanced carbon flux through the cholesterol synthesis pathway, is an absolute prerequisite for DNA synthesis and cell division. Therefore, expedited citrate efflux from cholesterol-enriched tumor mitochondria via the CTP/SLC25A1 citrate transporter is fundamental for sustaining the constant demand for cytosolic citrate that fuels the elevated flow of carbons from acetyl-CoA through the deregulated pathway of cholesterol biosynthesis.
    Keywords:  Warburg effect; mitochondrial citrate export; truncated Krebs/TCA cycle; tumor cholesterogenesis; tumor membrane cholesterol
  14. Free Radic Biol Med. 2021 Mar 29. pii: S0891-5849(21)00189-1. [Epub ahead of print]
      Early treatment can prevent the occurrence of diabetes; however, there are few pharmacological treatment strategies to date. The liver is a major metabolic organ, and hepatic glucose homeostasis is dysregulated in type 1 and type 2 diabetes mellitus. However, the potential of specifically targeting the liver to prevent diabetes has not been fully exploited. In this study, we found that compartmentally inhibiting hepatic oxidants by nano-MitoPBN, a liver mitochondrial-targeting ROS scavenger, could effectively prevent diabetes. Our results demonstrated that nano-MitoPBN reversed the downregulation of PGC-1α and the enhanced gluconeogenesis in the livers of diabetic mice. PGC-1α, through an AMPK- and SIRT3-mediated mechanism, promoted mitochondrial biogenesis, increased the number of mitochondria, and enhanced the rate of aerobic oxidation, leading to decreased glucose levels in the blood by increasing glucose uptake and catabolism in the liver. Moreover, the increase in PGC-1α activity did not promote the activation of gluconeogenesis. Our study demonstrated that by regulating the redox balance of liver mitochondria in the early stage of diabetes, PGC-1α could selectively inhibit gluconeogenesis in the liver and promote hepatic mitochondrial function, which accelerated the catabolism of hepatic glucose and reduced blood glucose. Thus, glucose tolerance can be normalized through only three weeks of intervention. Our results showed that nano-MitoPBN could effectively prevent diabetes in a short period of time, highlighting the effectiveness and importance of early intervention for diabetes and suggesting the potential advantages of hepatic mitochondrial targeting oxidants nano-inhibitors in the prevention and early treatment of diabetes.
    Keywords:  AMPK/SIRT3-PGC1α axis; Nanoparticle; glucose catabolism; hepatic ROS inhibition; mitochondrial biogenesis; oxidants; prevention of diabetes
  15. Int J Mol Sci. 2021 Mar 09. pii: 2746. [Epub ahead of print]22(5):
      Mitochondrial misreading, conferred by mutation V338Y in mitoribosomal protein Mrps5, in-vivo is associated with a subtle neurological phenotype. Brain mitochondria of homozygous knock-in mutant Mrps5V338Y/V338Y mice show decreased oxygen consumption and reduced ATP levels. Using a combination of unbiased RNA-Seq with untargeted metabolomics, we here demonstrate a concerted response, which alleviates the impaired functionality of OXPHOS complexes in Mrps5 mutant mice. This concerted response mitigates the age-associated decline in mitochondrial gene expression and compensates for impaired respiration by transcriptional upregulation of OXPHOS components together with anaplerotic replenishment of the TCA cycle (pyruvate, 2-ketoglutarate).
    Keywords:  aging; brain; metabolome; misreading; mitochondria
  16. Int J Mol Sci. 2021 Mar 15. pii: 2982. [Epub ahead of print]22(6):
      Glioblastoma multiforme (GBM) is a malignant primary brain tumor with poor patient prognosis. Although the standard treatment of GBM is surgery followed by chemotherapy and radiotherapy, often a small portion of surviving tumor cells acquire therapeutic resistance and become more aggressive. Recently, altered kinase expression and activity have been shown to determine metabolic flux in tumor cells and metabolic reprogramming has emerged as a tumor progression regulatory mechanism. Here we investigated novel kinase-mediated metabolic alterations that lead to acquired GBM radioresistance and malignancy. We utilized transcriptomic analyses within a radioresistant GBM orthotopic xenograft mouse model that overexpresses the dual specificity tyrosine-phosphorylation-regulated kinase 3 (DYRK3). We find that within GBM cells, radiation exposure induces DYRK3 expression and DYRK3 regulates mammalian target of rapamycin complex 1 (mTORC1) activity through phosphorylation of proline-rich AKT1 substrate 1 (PRAS40). We also find that DYRK3 knockdown inhibits dynamin-related protein 1 (DRP1)-mediated mitochondrial fission, leading to increased oxidative phosphorylation (OXPHOS) and reduced glycolysis. Importantly, enforced DYRK3 downregulation following irradiation significantly impaired GBM cell migration and invasion. Collectively, we suggest DYRK3 suppression may be a novel strategy for preventing GBM malignancy through regulating mitochondrial metabolism.
    Keywords:  DYRK3; glioblastoma multiforme; mitochondrial fission; radioresistance
  17. Mol Metab. 2021 Mar 26. pii: S2212-8778(21)00066-1. [Epub ahead of print] 101222
      Cancer is a global health burden with yearly diagnoses and deaths estimated to reach 29.5 million and 16.4 million, respectively, by 2040. As such, there is a need for novel therapeutics that can broadly target phenotypes shared across cancer types, whilst limiting damage to healthy cells. Mitochondrial uncouplers decrease mitochondrial membrane potential and ATP levels, as well as alter reactive oxygen species (ROS) production, anabolic signalling pathways, and mitochondrial calcium. Many of these effects counter aberrant phenotypes common in cancer cells. Since the first pharmacological application of the mitochondrial uncoupler 2,4-dinitrophenol (DNP) to humans in the 1930s, there are now dozens of structurally and functionally novel mitochondrial uncouplers in pre-clinical development. DNP was never designed to be a drug as it was identified serendipitously, it has structural chemistry alerts, off-target effects, and a narrow therapeutic window in humans. However, newer mitochondrial uncouplers have been developed that have druglike properties, improved selectivity to mitochondria, controlled or self-limited uncoupling, directed tissue targeting, and improved pharmacokinetics. Studies in cell and animal models demonstrate the potential of mitochondrial uncouplers as anti-cancer agents, but to date there are only a few clinical studies evaluating uncouplers as cancer therapeutics. This review summarizes published studies where mitochondrial uncouplers have been investigated as an anti-cancer therapy in preclinical models and highlights several gaps in knowledge that need to be addressed before we have a clear direction and strategy for the application of mitochondrial uncouplers as anti-cancer agents.
    Keywords:  cancer therapy; cytotoxicity; mitochondrial uncouplers; mouse models of cancer
  18. Front Oncol. 2021 ;11 632181
      Childhood acute lymphoblastic leukaemia (cALL) accounts for about one third of all paediatric malignancies making it the most common cancer in children. Alterations in tumour cell metabolism were first described nearly a century ago and have been acknowledged as one of the key characteristics of cancers including cALL. Two of the backbone chemotherapeutic agents in the treatment of this disease, Glucocorticoids and L-asparaginase, are exerting their anti-leukaemic effects through targeting cell metabolism. Even though risk stratification and treatment regimens have improved cure rates to nearly 90%, prognosis for relapsed children remains poor. Therefore, new therapeutic approaches are urgently required. Atovaquone is a well-tolerated drug used in the clinic mainly against malaria. Being a ubiquinone analogue, this drug inhibits co-enzyme Q10 of the electron transport chain (ETC) affecting oxidative phosphorylation and cell metabolism. In this study we tested the effect of Atovaquone on cALL cells in vitro. Pharmacologically relevant concentrations of the inhibitor could effectively target mitochondrial respiration in both cALL cell lines (REH and Sup-B15) and primary patient samples. We found that Atovaquone leads to a marked decrease in basal respiration and ATP levels, as well as reduced proliferation, cell cycle arrest, and induction of apoptosis. Importantly, we observed an enhanced anti-leukaemic effect when Atovaquone was combined with the standard chemotherapeutic Idarubicin, or with Prednisolone in an in vitro model of Glucocorticoid resistance. Repurposing of this clinically approved inhibitor renders further investigations, but also presents opportunities for fast-track trials as a single agent or in combination with standard chemotherapeutics.
    Keywords:  acute B-cell lymphoblastic leukaemia; atovaquone; glucocorticoid resistance; metabolism; mitochondria
  19. Appl Physiol Nutr Metab. 2021 Mar 27.
      We investigated the effects of the acute and chronic exercise, prescribed in different intensity zones, but with total load-matched on mitochondrial markers (COX-IV, Tfam, and citrate synthase (CS) activity in skeletal muscles, heart, and liver), glycogen stores, aerobic capacity and anaerobic index in swimming rats. For this, two experimental designs were performed (acute and chronic efforts). Load-matched exercises were prescribed below and above and on the anaerobic threshold (AnT), determined by the Lactate Minimum test. In chronic programs, two training prescription strategies were assessed (monotonous and linear periodized model). Results show changes in glycogen stores but no modification in the COX-IV and Tfam contents after acute exercises. In the chronic protocols, COX-IV and Tfam proteins and CS adaptations were intensity and tissue dependents. Monotonous training promoted better adaptations than the periodized model. Training at 80% of the AnT improved both performance variables, emphasizing the anaerobic index, concomitant to CS and COX-IV improvement (soleus muscle). The aerobic capacity and CS activity (gastrocnemius) were increased after 120% AnT training. In conclusion, acute exercise protocol did not promote responses in mitochondrial target proteins. An intensity and tissue dependence are reported in the chronic protocols, highlighting training at 80 and 120% of the AnT. Novelty: • Load-matched acute exercise did not enhance COX-IV and Tfam contents in skeletal muscles, heart, and liver. • In chronic exercise, COX-IV, Tfam, and citrate synthase activity adaptations were intensity and tissue dependents. •Monotonous training was more efficient than the periodized linear model in adaptations of target proteins and enzymatic activity.
  20. Int J Mol Sci. 2021 Mar 02. pii: 2490. [Epub ahead of print]22(5):
      Adenine nucleotide translocase (ANT) is a well-known mitochondrial exchanger of ATP against ADP. In contrast, few studies have shown that ANT also mediates proton transport across the inner mitochondrial membrane. The results of these studies are controversial and lead to different hypotheses about molecular transport mechanisms. We hypothesized that the H+-transport mediated by ANT and uncoupling proteins (UCP) has a similar regulation pattern and can be explained by the fatty acid cycling concept. The reconstitution of purified recombinant ANT1 in the planar lipid bilayers allowed us to measure the membrane current after the direct application of transmembrane potential ΔΨ, which would correspond to the mitochondrial states III and IV. Experimental results reveal that ANT1 does not contribute to a basal proton leak. Instead, it mediates H+ transport only in the presence of long-chain fatty acids (FA), as already known for UCPs. It depends on FA chain length and saturation, implying that FA's transport is confined to the lipid-protein interface. Purine nucleotides with the preference for ATP and ADP inhibited H+ transport. Specific inhibitors of ATP/ADP transport, carboxyatractyloside or bongkrekic acid, also decreased proton transport. The H+ turnover number was calculated based on ANT1 concentration determined by fluorescence correlation spectroscopy and is equal to 14.6 ± 2.5 s-1. Molecular dynamic simulations revealed a large positively charged area at the protein/lipid interface that might facilitate FA anion's transport across the membrane. ANT's dual function-ADP/ATP and H+ transport in the presence of FA-may be important for the regulation of mitochondrial membrane potential and thus for potential-dependent processes in mitochondria. Moreover, the expansion of proton-transport modulating drug targets to ANT1 may improve the therapy of obesity, cancer, steatosis, cardiovascular and neurodegenerative diseases.
    Keywords:  ADP/ATP carrier protein; arachidonic acid; fatty acid anion transport; long-chain fatty acids; mitochondrial transporter; proton transport
  21. Neoplasia. 2021 Mar 27. pii: S1476-5586(21)00009-9. [Epub ahead of print]23(4): 391-399
      Notwithstanding that high rates of glucose uptake and glycolysis are common in neoplasia, pharmacological efforts to inhibit glucose utilization for cancer treatment have not been successful. Recent evidence suggests that in addition to classical glucose transporters, sodium-glucose transporters (SGLTs) are expressed by cancers. We therefore investigated the possibility that SGLT inhibitors, which are used in treatment of type 2 diabetes, may exert antineoplastic activity by limiting glucose uptake. We show that the SGLT2 inhibitor canagliflozin inhibits proliferation of breast cancer cells. Surprisingly, the antiproliferative effects of canagliflozin are not affected by glucose availability nor by the level of expression of SGLT2. Canagliflozin reduces oxygen consumption and glutamine metabolism through the citric acid cycle. The antiproliferative effects of canagliflozin are linked to inhibition of glutamine metabolism that fuels respiration, which represents a previously unanticipated mechanism of its potential antineoplastic action.
    Keywords:  Breast cancer; Canagliflozin; Dapagliflozin; Glutamine; Tumor metabolism
  22. Nat Commun. 2021 03 29. 12(1): 1940
      Metabolic enzymes and metabolites display non-metabolic functions in immune cell signalling that modulate immune attack ability. However, whether and how a tumour's metabolic remodelling contributes to its immune resistance remain to be clarified. Here we perform a functional screen of metabolic genes that rescue tumour cells from effector T cell cytotoxicity, and identify the embryo- and tumour-specific folate cycle enzyme methylenetetrahydrofolate dehydrogenase 2 (MTHFD2). Mechanistically, MTHFD2 promotes basal and IFN-γ-stimulated PD-L1 expression, which is necessary for tumourigenesis in vivo. Moreover, IFN-γ stimulates MTHFD2 through the AKT-mTORC1 pathway. Meanwhile, MTHFD2 drives the folate cycle to sustain sufficient uridine-related metabolites including UDP-GlcNAc, which promotes the global O-GlcNAcylation of proteins including cMYC, resulting in increased cMYC stability and PD-L1 transcription. Consistently, the O-GlcNAcylation level positively correlates with MTHFD2 and PD-L1 in pancreatic cancer patients. These findings uncover a non-metabolic role for MTHFD2 in cell signalling and cancer biology.
  23. Apoptosis. 2021 Apr 03.
      Melanoma is an aggressive tumor with still poor therapy outcomes. δ-tocotrienol (δ-TT) is a vitamin E derivative displaying potent anti-cancer properties. Previously, we demonstrated that δ-TT triggers apoptosis in human melanoma cells. Here, we investigated whether it might also activate paraptosis, a non-canonical programmed cell death. In accordance with the main paraptotic features, δ-TT was shown to promote cytoplasmic vacuolization, associated with endoplasmic reticulum/mitochondrial dilation and protein synthesis, as well as MAPK activation in A375 and BLM cell lines. Moreover, treated cells exhibited a significant reduced expression of OXPHOS complex I and a marked decrease in oxygen consumption and mitochondrial membrane potential, culminating in decreased ATP synthesis and AMPK phosphorylation. This mitochondrial dysfunction resulted in ROS overproduction, found to be responsible for paraptosis induction. Additionally, δ-TT caused Ca2+ homeostasis disruption, with endoplasmic reticulum-derived ions accumulating in mitochondria and activating the paraptotic signaling. Interestingly, by using both IP3R and VDAC inhibitors, a close cause-effect relationship between mitochondrial Ca2+ overload and ROS generation was evidenced. Collectively, these results provide novel insights into δ-TT anti-melanoma activity, highlighting its ability to induce mitochondrial dysfunction-mediated paraptosis. δ-tocotrienol induces paraptotic cell death in human melanoma cells, causing endoplasmic reticulum dilation and mitochondrial swelling. These alterations induce an impairment of mitochondrial function, ROS production and calcium overload.
    Keywords:  Ca2+ overload; Melanoma; Mitochondrial impairment; Paraptosis; ROS production; Tocotrienols
  24. Sci Transl Med. 2021 Mar 31. pii: eaaz6314. [Epub ahead of print]13(587):
      The functional state of T cells is a key determinant for effective antitumor immunity and immunotherapy. Cellular metabolism, including lipid metabolism, controls T cell differentiation, survival, and effector functions. Here, we report that development of T cell senescence driven by both malignant tumor cells and regulatory T cells is a general feature in cancers. Senescent T cells have active glucose metabolism but exhibit unbalanced lipid metabolism. This unbalanced lipid metabolism results in changes of expression of lipid metabolic enzymes, which, in turn, alters lipid species and accumulation of lipid droplets in T cells. Tumor cells and Treg cells drove elevated expression of group IVA phospholipase A2, which, in turn, was responsible for the altered lipid metabolism and senescence induction observed in T cells. Mitogen-activated protein kinase signaling and signal transducer and activator of transcription signaling coordinately control lipid metabolism and group IVA phospholipase A2 activity in responder T cells during T cell senescence. Inhibition of group IVA phospholipase A2 reprogrammed effector T cell lipid metabolism, prevented T cell senescence in vitro, and enhanced antitumor immunity and immunotherapy efficacy in mouse models of melanoma and breast cancer in vivo. Together, these findings identify mechanistic links between T cell senescence and regulation of lipid metabolism in the tumor microenvironment and provide a new target for tumor immunotherapy.
  25. Front Oncol. 2021 ;11 632623
      Acute myeloid leukemia (AML) is a heterogeneous disease with poor clinical outcomes. We have previously shown that constitutive activation of NADPH oxidase 2 (NOX2), resulting in over-production of reactive oxygen species (ROS), occurs in over 60% of AML patients. We have also shown that increased ROS production promotes increased glucose uptake and proliferation in AML cells, mediated by changes in carbohydrate metabolism. Given that carbohydrate, lipid, and protein metabolisms are all intricately interconnected, we aimed to examine the effect of cellular ROS levels on these pathways and establish further evidence that ROS rewires metabolism in AML. We carried out metabolomic profiling of AML cell lines in which NOX2-derived ROS production was inhibited and conversely in cells treated with exogenous H2O2. We report significant ROS-specific metabolic alterations in sphingolipid metabolism, fatty acid oxidation, purine metabolism, amino acid homeostasis and glycolysis. These data provide further evidence of ROS directed metabolic changes in AML and the potential for metabolic targeting as novel therapeutic arm to combat this disease.
    Keywords:  NADPH Oxidase (NOX); acute myeloid leukemia; metabolism; reactive oxygen species; redox signaling
  26. ACS Omega. 2021 Mar 23. 6(11): 7815-7828
      Here, we demonstrate an interesting strategy of modulating mitochondrial reactive oxygen species (ROS) using the organic electron acceptor molecule carbonyl-bridged bithiazole attached with bis-trifluoroacetophenone (BBT). This molecule was found to affect complex I activity. It has the propensity to bind close to the flavin mononucleotide site of complex I of mitochondria where it traps electron released from nicotinamide adenine dinucleotide (NADH) and elevates intracellular ROS, which suggests that the bridged carbonyl in BBT plays a crucial role in the acceptance of electron from NADH. We understand that the potential of the NADH/NAD+ redox couple and low-lying LUMO energy level of BBT are compatible with each other, thus favoring its entrapment of released electrons in complex I. This effect of BBT in ROS generation activates JNK and p38 stress-dependent pathways and resulted in mitochondrial-dependent apoptotic cell death with the reduction in expression of several important cyto-protecting factors (Hsp27 and NFκB), indicating its potential in inhibition of cancer cell relapse. Intriguingly, we found that BBT is not a P-glycoprotein substrate, which further reveals its excellent anticancer potential. This study enlightens us on how the power of electron acceptor ability became an emerging strategy for modulation of intracellular function.
  27. Cancer Sci. 2021 Apr 02.
      Mitochondrial DNA (mtDNA) mutations occur frequently in cancer cells, and some of them are often homoplasmic. Targeting such mtDNA mutations could be a new method for killing cancer cells with minimal impact on normal cells. Pyrrole-imidazole polyamides (PIPs) are cell-permeable minor groove binders that show sequence-specific binding to double-stranded DNA and inhibit the transcription of target genes. PIP conjugated with the lipophilic triphenylphosphonium (TPP) cation can be delivered to mitochondria without uptake into the nucleus. Here, we investigated the feasibility of the use of PIP-TPP to target a mtDNA mutation in order to kill cancer cells that harbor the mutation. We synthesized hairpin-type PIP-TPP targeting the A3243G mutation and examined its effects on the survival of HeLa cybrid cells with or without the mutation (HeLamtA3243G cells or HeLamtHeLa cells, respectively). A surface plasmon resonance assay demonstrated that PIP-TPP showed approximately 60-fold higher binding affinity for the mutant G-containing synthetic double-stranded DNA than for the wild-type A-containing DNA. When added to cells, it localized in mitochondria and induced mitochondrial reactive oxygen species production, extensive mitophagy and apoptosis in HeLamtA3243G cells while only slightly exerting these effects in HeLamtHeLa cells. These results suggest that PIP-TPPs targeting mtDNA mutations could be potential chemotherapeutic drugs to treat cancers without severe adverse effects.
    Keywords:  Apoptosis; Mitochondria; Mutation; Pyrrole-imidazole polyamide; mtDNA
  28. J Mol Diagn. 2021 Mar 26. pii: S1525-1578(21)00066-0. [Epub ahead of print]
      Mitochondria harbor multiple copies of a maternally inherited non-nuclear genome; point mutations, deletions, or depletion of the mitochondrial DNA have been associated with various human diseases. Different approaches have been used to investigate mitochondrial DNA defects: Sanger sequencing, Southern blot, long and quantitative PCR. All these technologies are inherently hampered by limitations in speed, throughput, sensitivity, and associated costs. Recently, Next Generation Sequencing has been introduced in this field and all its potential applications still need to be fully validated. Analysis of mitochondrial DNA from 16 control samples and 33 affected samples, previously investigated by traditional techniques, was performed. Different Next Generation Sequencing approaches were tested, using classical library preparation based on PCR amplifications and an innovative PCR-free protocol, defining their suitability and utility for: (i) generating full accurate mtDNA sequence, (ii) assessing heteroplasmy for single point mutations with high accuracy, (iii) detecting break positions and heteroplasmy of single large deletions. This study confirmed that PCR-based library preparations are appropriate for the first two points while showed that a new PCR-free method gave the best results for the third aim.
  29. Trends Endocrinol Metab. 2021 Mar 29. pii: S1043-2760(21)00049-7. [Epub ahead of print]
      Targeting tumor cell metabolism is an attractive form of therapy, as it may enhance treatment response in therapy resistant cancers as well as mitigate treatment-related toxicities by reducing the need for genotoxic agents. To meet their increased demand for biomass accumulation and energy production and to maintain redox homeostasis, tumor cells undergo profound changes in their metabolism. In addition to the diversion of glucose metabolism, this is achieved by upregulation of amino acid metabolism. Interfering with amino acid availability can be selectively lethal to tumor cells and has proven to be a cancer specific Achilles' heel. Here we review the biology behind such cancer specific amino acid dependencies and discuss how these vulnerabilities can be exploited to improve cancer therapies.
    Keywords:  amino acid depletion therapy; amino acid metabolism; cancer; tumor metabolism
  30. J Immunol Res. 2021 ;2021 6618837
      Mitochondrial Pyruvate Carrier 1 (MPC1), one of the rate-limiting proteins involved in glycolysis metabolism, has been demonstrated as a tumor inhibitor in several cancers. This study was conducted with the aim of exploring the role and underlying mechanisms of MPC2 in colorectal cancer (CRC). Here, we found that MPC2 expression was decreased in CRC samples. According to the analysis on our TMA data, lower expression of MPC2 is correlated with a higher incidence of distant metastasis and lymph node invasion, bigger tumor size, low survival rate of patients, and advanced T stages. Functionally, in vivo/vitro experiments showed that MPC2 knockdown induced CRC cell proliferation and growth, while MPC2 overexpression inhibited the proliferation and growth of CRC. Further study demonstrated that MPC2 knockdown resulted in aerobic glycolysis in CRC cells. Similarly, MPC2 overexpression in CRC cells also caused inhibited aerobic glycolysis. Further study found that MPC2 knockdown in CRC cell lines activated the mTOR signaling pathway, and the addition of rapamycin reversed the promoting effect of MPC2 knockdown on CRC proliferation and glycolysis. Likewise, the addition of MHY1485 also reversed the MPC2 overexpression's role in hindering aerobic glycolysis in CRC cells. Collectively, our study established that low expression of MPC2 led to CRC growth as well as aerobic glycolysis through the regulation of the mTOR pathway in CRC cells, indicating a potential biomarker and therapy target for CRC.
  31. Nat Commun. 2021 Mar 30. 12(1): 1971
      Most cells constitutively secrete mitochondrial DNA and proteins in extracellular vesicles (EVs). While EVs are small vesicles that transfer material between cells, Mitochondria-Derived Vesicles (MDVs) carry material specifically between mitochondria and other organelles. Mitochondrial content can enhance inflammation under pro-inflammatory conditions, though its role in the absence of inflammation remains elusive. Here, we demonstrate that cells actively prevent the packaging of pro-inflammatory, oxidized mitochondrial proteins that would act as damage-associated molecular patterns (DAMPs) into EVs. Importantly, we find that the distinction between material to be included into EVs and damaged mitochondrial content to be excluded is dependent on selective targeting to one of two distinct MDV pathways. We show that Optic Atrophy 1 (OPA1) and sorting nexin 9 (Snx9)-dependent MDVs are required to target mitochondrial proteins to EVs, while the Parkinson's disease-related protein Parkin blocks this process by directing damaged mitochondrial content to lysosomes. Our results provide insight into the interplay between mitochondrial quality control mechanisms and mitochondria-driven immune responses.
  32. Front Cell Dev Biol. 2021 ;9 655889
      Oncogene c-Myc (referred in this report as MYC) promotes tumorigenesis in multiple human cancers. MYC regulates numerous cellular programs involved in cell growth and cell metabolism. Tumor cells exhibit obligatory dependence on cholesterol metabolism, which provides essential membrane components and metabolites to support cell growth. To date, how cholesterol biosynthesis is delicately regulated to promote tumorigenesis remains unclear. Here, we show that MYC enhances cholesterol biosynthesis and promotes cell proliferation. Through transcriptional upregulation of SQLE, a rate-limiting enzyme in cholesterol synthesis pathway, MYC increases cholesterol production and promotes tumor cell growth. SQLE overexpression restores the cellular cholesterol levels in MYC-knockdown cells. More importantly, in SQLE-depleted cells, enforced expression of MYC has no effect on cholesterol levels. Therefore, our findings reveal that SQLE is critical for MYC-mediated cholesterol synthesis, and further demonstrate that SQLE may be a potential therapeutic target in MYC-amplified cancers.
    Keywords:  MYC; SQLE; cancer; cell proliferation; cholesterol synthesis
  33. FEBS J. 2021 Apr 03.
      Many metabolic phenotypes in cancer cells are also characteristic of proliferating non-transformed mammalian cells, and attempts to distinguish between phenotypes resulting from oncogenic perturbation from those associated with increased proliferation are limited. Here, we examined the extent to which metabolic changes corresponding to oncogenic KRAS expression differed from those corresponding to epidermal growth factor (EGF)-driven proliferation in human mammary epithelial cells (HMECs). Removal of EGF from culture medium reduced growth rates and glucose/glutamine consumption in control HMECs despite limited changes in respiration and fatty acid synthesis, while the relative contribution of branched-chain amino acids to the TCA cycle and lipogenesis increased in the near-quiescent conditions. Most metabolic phenotypes measured in HMECs expressing mutant KRAS were similar to those observed in EGF-stimulated control HMECs that were growing at comparable rates. However, glucose and glutamine consumption as well as lactate and glutamate production were lower in KRAS-expressing cells cultured in media without added EGF, and these changes correlated with reduced sensitivity to GLUT1 inhibitor and phenformin treatment. Our results demonstrate the strong dependence of metabolic behavior on growth rate, and provide a model to distinguish the metabolic influences of oncogenic mutations and non-oncogenic growth.
    Keywords:  Cancer metabolism; KRAS; branched-chain amino acids; cell growth; cell proliferation
  34. Mol Cancer Ther. 2021 Mar 30. pii: molcanther.0521.2020. [Epub ahead of print]
      Leiomyosarcomas (LMS) are rare and aggressive tumors characterized by a complex karyotype. Surgical resection with or without radiotherapy and chemotherapy is the standard curative treatment. Unfortunately, a high percentage of LMS recurs and metastasizes. In these cases, doxorubicin and ifosfamide represent the standard treatment but with low response rates. Here, we evaluated the induction of proteotoxic stress as a possible strategy to kill LMS cells in a therapeutic perspective. We show that aggressive LMS coexist with high levels of proteotoxic stress. As a consequence, we hypothesized that LMS cells are vulnerable to further increases of proteotoxic stress. The small compound 2c is a strong inducer of proteotoxic stress. In LMS cells, it triggers cell death coupled to a profound re-organization of the mitochondrial network. By using STED microscopy, we have unveiled the existence of DIABLO/SMAC clusters that are modulated by 2c. Finally, we have engineered a new version of 2c linked to PEG though a short peptide, named 2cPP. This new pro-drug is specifically activated by proteases present in the tumor microenvironment. 2cPP shows a strong anti-tumor activity in vivo against LMS and no toxicity against normal cells.
  35. Cancers (Basel). 2021 Mar 17. pii: 1350. [Epub ahead of print]13(6):
      Even though colorectal cancer (CRC) is one of the most preventable cancers, it is one of the deadliest, and recent data show that the incidence in people <50 years has unexpectedly increased. While new techniques for CRC molecular classification are emerging, no molecular feature is as yet firmly associated with prognosis. Imaging mass spectrometry (IMS) lipidomic analyses have demonstrated the specificity of the lipid fingerprint in differentiating pathological from healthy tissues. During IMS lipidomic analysis, the formation of ionic adducts is common. Of particular interest is the [Na+]/[K+] adduct ratio, which already functions as a biomarker for homeostatic alterations. Herein, we show a drastic shift of the [Na+]/[K+] adduct ratio in adenomatous colon mucosa compared to healthy mucosa, suggesting a robust increase in K+ levels. Interrogating public databases, a strong association was found between poor diagnosis and voltage-gated potassium channel subunit beta-2 (KCNAB2) overexpression. We found this overexpression in three CRC molecular subtypes defined by the CRC Subtyping Consortium, making KCNAB2 an interesting pharmacological target. Consistently, its pharmacological inhibition resulted in a dramatic halt in commercial CRC cell proliferation. Identification of potential pharmacologic targets using lipid adduct information emphasizes the great potential of IMS lipidomic techniques in the clinical field.
    Keywords:  colorectal cancer; ion adducts; lipidomics; potassium channels
  36. Int J Mol Sci. 2021 Mar 27. pii: 3469. [Epub ahead of print]22(7):
      Metabolic dysfunction is a comorbidity of many types of cancers. Disruption of glucose metabolism is of concern, as it is associated with higher cancer recurrence rates and reduced survival. Current evidence suggests many health benefits from exercise during and after cancer treatment, yet only a limited number of studies have addressed the effect of exercise on cancer-associated disruption of metabolism. In this review, we draw on studies in cells, rodents, and humans to describe the metabolic dysfunctions observed in cancer and the tissues involved. We discuss how the known effects of acute exercise and exercise training observed in healthy subjects could have a positive outcome on mechanisms in people with cancer, namely: insulin resistance, hyperlipidemia, mitochondrial dysfunction, inflammation, and cachexia. Finally, we compile the current limited knowledge of how exercise corrects metabolic control in cancer and identify unanswered questions for future research.
    Keywords:  adipose tissue; cancer; cancer cachexia; exercise; insulin resistance; metabolism; skeletal muscle
  37. Biochim Biophys Acta Bioenerg. 2021 Mar 30. pii: S0005-2728(21)00061-X. [Epub ahead of print] 148428
      Non-shivering thermogenesis in brown adipose tissue is mediated by uncoupling protein 1 (UCP1), which provides a carefully regulated proton re-entry pathway across the mitochondrial inner membrane operating in parallel to the ATP synthase and allowing respiration, and hence thermogenesis, to be released from the constraints of respiratory control. In the 40 years since UCP1 was first described, an extensive, and frequently contradictory, literature has accumulated, focused on the acute physiological regulation of the protein by fatty acids, purine nucleotides and possible additional factors. The purpose of this review is to examine, in detail, the experimental evidence underlying these proposed mechanisms. Emphasis will be placed on the methodologies employed and their relation to the physiological constraints under which the protein functions in the intact cell. The nature of the endogenous, UCP1-independent, proton leak will also be discussed. Finally, the troubled history of the putative novel uncoupling proteins, UCP2 and UCP3, will be evaluated.
    Keywords:  Mitochondria; UCP1; UCP2; UCP3; brown adipose tissue; brown fat; uncoupling protein
  38. Oncoimmunology. 2021 Mar 12. 10(1): 1898753
      M2-like tumor-associated macrophages promote tumor progression by establishing an immunosuppressive tumor microenvironment. The phenotype and activity of immunosuppressive macrophages are related to their mitochondrial metabolism. Thus, we studied if drugs targeting mitochondrial metabolic pathways can repolarize macrophages from M2 into an M1-like phenotype or can prevent M0-to-M2 polarization. The drugs selected are clinically approved or in clinical trials and target M2-specific metabolic pathways: fatty acid oxidation (Perhexiline and Trimetazidine), glutaminolysis (CB-839), PPAR activation (HX531), and mitochondrial electron transport chain (VLX-600). Murine bone marrow-derived macrophages were either polarized to M2 using IL-4 in the presence of the drugs or polarized first into M2 and then treated with the drugs in presence of IFN-γ for re-polarization. Targeting both fatty acid oxidation with Perhexiline or the electron transport chain with VLX-600 in the presence of IFN-γ, impaired mitochondrial basal, and maximal respiration and resulted in M2 to M1-like re-polarization (increased iNOS expression, NO production, IL-23, IL-27, and TNF-α secretion), similar to LPS+IFN-γ re-polarization. Moreover, drug-induced macrophage re-polarization resulted in a strong tumor-cytotoxic activity. Furthermore, the polarization of M0- to M2-like macrophages was impaired by CB-839, Trimetazidine, HX531, and Perhexiline, while Hx531 and Perhexiline also reduced MCP-1 secretion. Our results show that by targeting cell metabolism, macrophages could be re-polarized from M2- into an anti-tumoral M1-like phenotype and that M0-to-M2 polarization could be prevented. Overall, this study provides rational for the use of clinically applicable drugs to change an immunosuppressive tumor environment into a pro-inflammatory tumor environment that could support cancer immunotherapies.
    Keywords:  Macrophage polarization; immunometabolism; macrophage re-polarization; mitochondrial respiration
  39. Cell Death Dis. 2021 Apr 01. 12(4): 347
      Papillary thyroid carcinoma (PTC) is one of the most common kinds of endocrine-related cancer and has a heterogeneous prognosis. Metabolic reprogramming is one of the hallmarks of cancers. Aberrant glucose metabolism is associated with malignant biological behavior. However, the functions and mechanisms of glucose metabolism genes in PTC are not fully understood. Thus, data from The Cancer Genome Atlas database were analyzed, and lactate dehydrogenase A (LDHA) was determined to be a potential novel diagnostic and therapeutic target for PTCs. The research objective was to investigate the expression of LDHA in PTCs and to explore the main functions and relative mechanisms of LDHA in PTCs. Higher expression levels of LDHA were found in PTC tissues than in normal thyroid tissues at both the mRNA and protein levels. Higher expression levels of LDHA were correlated with aggressive clinicopathological features and poor prognosis. Moreover, we found that LDHA not only promoted PTC migration and invasion but also enhanced tumor growth both in vitro and in vivo. In addition, we revealed that the metabolic products of LDHA catalyzed induced the epithelial-mesenchymal transition process by increasing the relative gene H3K27 acetylation. Moreover, LDHA knockdown activated the AMPK pathway and induced protective autophagy. An autophagy inhibitor significantly enhanced the antitumor effect of FX11. These results suggested that LDHA enhanced the cell metastasis and proliferation of PTCs and may therefore become a potential therapeutic target for PTCs.
  40. Am J Cancer Res. 2021 ;11(3): 729-745
      Resisting cell death is one of the hallmarks of cancer. Necroptosis is a form of non-caspase dependent necrotic cell death mediated by receptor-interacting protein kinase-1/3 (RIP1/3), which represents another mode of programmed cell death besides apoptosis. RIP3 also acts as an energy metabolism regulator associated with switching cell death from apoptosis to necroptosis. Trichothecin (TCN) is a sesquiterpenoid originating from endophytic fungi and shows potent anti-tumor bioactivity. Our current findings reveal that RIP3 mediates TCN-induced necroptosis through up-regulating PYGL and PDC-E1α to promote mitochondria energy metabolism and ROS production. RIP3 might be involved in sensitizing tumor cells to chemotherapy induced by TCN. Therefore, activating RIP3 to initiate necroptosis contributes to the bioactivity of TCN. Moreover, TCN could be exploited for therapeutic gain through up-regulating RIP3 to sensitize cancer chemotherapy.
    Keywords:  RIP3; ROS; Trichothecin; mitochondrial metabolism; necroptosis
  41. Nat Aging. 2021 Jan;1(1): 73-86
      Protein restricted (PR) diets promote health and longevity in many species. While the precise components of a PR diet that mediate the beneficial effects to longevity have not been defined, we recently showed that many metabolic effects of PR can be attributed to reduced dietary levels of the branched-chain amino acids (BCAAs) leucine, isoleucine, and valine. Here, we demonstrate that restricting dietary BCAAs increases the survival of two different progeroid mouse models, delays frailty and promotes the metabolic health of wild-type C57BL/6J mice when started in midlife, and leads to a 30% increase in lifespan and a reduction in frailty in male, but not female, wild-type mice when fed lifelong. Our results demonstrate that restricting dietary BCAAs can increase healthspan and longevity in mice, and suggest that reducing dietary BCAAs may hold potential as a translatable intervention to promote healthy aging.
    Keywords:  branched-chain amino acids; healthspan; lifespan; mTOR; mTORC1; progeria; protein restriction; rapamycin
  42. Mol Oncol. 2021 Apr 01.
      SMAC/Diablo, a pro-apoptotic protein, yet it is overexpressed in several cancer types. We have described a non-canonical function for SMAC/Diablo as a regulator of lipid synthesis during cancer cell proliferation and development. Here, we explore the molecular mechanism through which SMAC/Diablo regulates phospholipid synthesis. We showed that SMAC/Diablo directly interacts with mitochondrial phosphatidylserine decarboxylase (PSD) and inhibits its catalytic activity during synthesis of phosphatidylethanolamine (PE) from phosphatidylserine (PS). Unlike other phospholipids, PE is synthesized not only in the endoplasmic reticulum but also in mitochondria. As a result, PSD activity and mitochondrial PE levels were increased in the mitochondria of SMAC/Diablo-deficient cancer cells, with the total amount of cellular phospholipids and phosphatidylcholine (PC) being lower as compared to SMAC-expressing cancer cells. Moreover, in the absence of SMAC/Diablo, PSD inhibited cancer cell proliferation by catalysing the overproduction of mitochondrial PE and depleting the cellular levels of PC, PE and PS. Additionally, we demonstrated that both SMAC/Diablo and PSD co-localization in the nucleus resulted in increased levels of nuclear PE, that acts as a signalling molecule in regulating several nuclear activities. By using a peptide array composed of 768-peptides derived from 11 SMAC-interacting proteins, we identified six nuclear proteins ARNT, BIRC2, MAML2, NR4A1, BIRC5 and HTRA2 Five of them-also interacted with PSD through motifs that are not involved in SMAC binding. Synthetic peptides carrying the PSD-interacting motifs of these proteins could bind purified PSD and inhibit the PSD catalytic activity. When targeted specifically to the mitochondria or the nucleus, these synthetic peptides inhibited cancer cell proliferation. To our knowledge, these are the first reported inhibitors of PSD acting also as inhibitors of cancer cell proliferation. Altogether, we demonstrated that phospholipid metabolism and PE synthesis regulated by the SMAC-PSD interaction are essential for cancer cell proliferation and may be potentially targeted for treating cancer.
    Keywords:  PSD; SMAC/Diablo; cancer; mitochondria; phosphatidylethanolamine synthesis; phospholipids
  43. Proc Natl Acad Sci U S A. 2021 Apr 06. pii: e2020215118. [Epub ahead of print]118(14):
      Autophagy is a catabolic pathway that provides self-nourishment and maintenance of cellular homeostasis. Autophagy is a fundamental cell protection pathway through metabolic recycling of various intracellular cargos and supplying the breakdown products. Here, we report an autophagy function in governing cell protection during cellular response to energy crisis through cell metabolic rewiring. We observe a role of selective type of autophagy in direct activation of cyclic AMP protein kinase A (PKA) and rejuvenation of mitochondrial function. Mechanistically, autophagy selectively degrades the inhibitory subunit RI of PKA holoenzyme through A-kinase-anchoring protein (AKAP) 11. AKAP11 acts as an autophagy receptor that recruits RI to autophagosomes via LC3. Glucose starvation induces AKAP11-dependent degradation of RI, resulting in PKA activation that potentiates PKA-cAMP response element-binding signaling, mitochondria respiration, and ATP production in accordance with mitochondrial elongation. AKAP11 deficiency inhibits PKA activation and impairs cell survival upon glucose starvation. Our results thus expand the view of autophagy cytoprotection mechanism by demonstrating selective autophagy in RI degradation and PKA activation that fuels the mitochondrial metabolism and confers cell resistance to glucose deprivation implicated in tumor growth.
    Keywords:  AKAP11; PKA; autophagy; cell survival; mitochondrial metabolism
  44. Cancers (Basel). 2021 Mar 21. pii: 1434. [Epub ahead of print]13(6):
      In our previous study, we showed that a cystine transporter (xCT) plays a pivotal role in ferroptosis of pancreatic ductal adenocarcinoma (PDAC) cells in vitro. However, in vivo xCTKO cells grew normally indicating that a mechanism exists to drastically suppress the ferroptotic phenotype. We hypothesized that plasma and neighboring cells within the tumor mass provide a source of cysteine to confer full ferroptosis resistance to xCTKO PDAC cells. To evaluate this hypothesis, we (co-) cultured xCTKO PDAC cells with different xCT-proficient cells or with their conditioned media. Our data unequivocally showed that the presence of a cysteine/cystine shuttle between neighboring cells is the mechanism that provides redox and nutrient balance, and thus ferroptotic resistance in xCTKO cells. Interestingly, although a glutathione shuttle between cells represents a good alternative hypothesis as a "rescue-mechanism", our data clearly demonstrated that the xCTKO phenotype is suppressed even with conditioned media from cells lacking the glutathione biosynthesis enzyme. Furthermore, we demonstrated that prevention of lipid hydroperoxide accumulation in vivo is mediated by import of cysteine into xCTKO cells via several genetically and pharmacologically identified transporters (ASCT1, ASCT2, LAT1, SNATs). Collectively, these data highlight the importance of the tumor environment in the ferroptosis sensitivity of cancer cells.
    Keywords:  cysteine transporters; cysteine-cystine shuttle; ferroptosis; resistance; tumor environment
  45. Blood. 2021 Mar 30. pii: blood.2020007651. [Epub ahead of print]
      The abundance of genetic abnormalities and phenotypic heterogeneities in AML pose significant challenges to developing improved treatments. Here we demonstrated that a key GAS6/AXL axis is highly activated in AML patient cells, particularly in stem/progenitor cells. We developed a potent, selective AXL inhibitor that has favorable pharmaceutical properties and efficacy against preclinical patient-derived xenotransplantation (PDX) models of AML. Importantly, inhibition of AXL sensitized AML stem/progenitor cells to venetoclax treatment, with strong synergistic effects in vitro and in PDX models. Mechanistically, single-cell RNA-sequencing and functional validation studies uncovered that AXL inhibition or in combination with venetoclax potentially targets intrinsic metabolic vulnerabilities of AML stem/progenitor cells, which shows a distinct transcriptomic profile and inhibits mitochondrial oxidative phosphorylation. Inhibition of AXL or BCL-2 also differentially targets key signaling proteins to synergize in leukemic cell killing. These findings have direct translational impact on the treatment of AML and other cancers with high AXL activity.
  46. J Proteome Res. 2021 Apr 01.
      Decreased cellular NAD+ levels are causally linked to aging and aging-associated diseases. NAD+ precursors in oxidized form such as nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) have gained much attention and been well studied for their ability to restore NAD+ levels in model organisms. Less is known about whether NAD+ precursors in reduced form can also efficiently increase the tissue and cellular NAD+ levels and have different effects on cellular processes than NMN or NR. In the present study, we developed a chemical method to produce dihydronicotinamide mononucleotide (NMNH), which is the reduced form of NMN. We demonstrated that NMNH was a better NAD+ enhancer than NMN both in vitro and in vivo, mediated by nicotinamide mononucleotide adenylyltransferase (NMNAT). Additionally, NMNH increased the reduced NAD (NADH) levels in cells and in mouse livers. Metabolomic analysis revealed that NMNH inhibited glycolysis and the TCA cycle. In vitro experiments demonstrated that NMNH induced cell cycle arrest and suppressed cell growth. Nevertheless, NMNH treatment did not cause an observable difference in mouse weight. Taken together, our work demonstrates that NMNH is a potent NAD+ enhancer and suppresses glycolysis, the TCA cycle, and cell growth.
    Keywords:  TCA cycle; cell growth; glycolysis; nicotinamide adenine dinucleotide (NAD+ and NADH); nicotinamide mononucleotide adenylyltransferase (NMNAT); reduced nicotinamide mononucleotide (NMNH)
  47. Biochim Biophys Acta Mol Cell Res. 2021 Mar 30. pii: S0167-4889(21)00077-X. [Epub ahead of print] 119023
      Changes in cytosolic free Ca2+ concentration play a central role in many fundamental cellular processes including muscle contraction, neurotransmission, cell proliferation, differentiation, gene transcription and cell death. Many of these processes are known to be regulated by Store-Operated Calcium channels (SOCs), mong which ORAI1 is the most studied in cancer cells, leaving the role of other ORAI channels yet inadequately addressed. Here we demonstrate that ORAI3 channels are expressed in both normal (HPDE) and pancreatic ductal adenocarcinoma (PDAC) cell lines, where they form functional channels, their knockdown affecting Store Operated Calcium Entry (SOCE). More specifically, ORAI3 silencing increased SOCE in PDAC cell lines, while decreasing SOCE in normal pancreatic cell line. We also show the role of ORAI3 in proliferation, cell cycle, viability, mitotic catastrophe and cell death. Finally, we demonstrate that ORAI3 silencing impairs pancreatic tumor growth and induces cell death in vivo, suggesting that ORAI3 could represent a potential therapeutic target in PDAC treatment.
    Keywords:  Apoptosis; Calcium channels; Mitotic catastrophe; ORAI3; PDAC
  48. Cancers (Basel). 2021 Mar 11. pii: 1229. [Epub ahead of print]13(6):
      Chimeric antigen receptor (CAR) T-cell therapy has revolutionized adoptive cell therapy with impressive therapeutic outcomes of >80% complete remission (CR) rates in some haematological malignancies. Despite this, CAR T cell therapy for the treatment of solid tumours has invariably been unsuccessful in the clinic. Immunosuppressive factors and metabolic stresses in the tumour microenvironment (TME) result in the dysfunction and exhaustion of CAR T cells. A growing body of evidence demonstrates the importance of the mitochondrial and metabolic state of CAR T cells prior to infusion into patients. The different T cell subtypes utilise distinct metabolic pathways to fulfil their energy demands associated with their function. The reprogramming of CAR T cell metabolism is a viable approach to manufacture CAR T cells with superior antitumour functions and increased longevity, whilst also facilitating their adaptation to the nutrient restricted TME. This review discusses the mitochondrial and metabolic state of T cells, and describes the potential of the latest metabolic interventions to maximise CAR T cell efficacy for solid tumours.
    Keywords:  CAR T cell therapy; T cell metabolism; memory T cell; metabolic reprogramming; mitochondria
  49. Life (Basel). 2021 Mar 11. pii: 232. [Epub ahead of print]11(3):
      Viral diseases account for an increasing proportion of deaths worldwide. Viruses maneuver host cell machinery in an attempt to subvert the intracellular environment favorable for their replication. The mitochondrial network is highly susceptible to physiological and environmental insults, including viral infections. Viruses affect mitochondrial functions and impact mitochondrial metabolism, and innate immune signaling. Resurgence of host-virus interactions in recent literature emphasizes the key role of mitochondria and host metabolism on viral life processes. Mitochondrial dysfunction leads to damage of mitochondria that generate toxic compounds, importantly mitochondrial DNA, inducing systemic toxicity, leading to damage of multiple organs in the body. Mitochondrial dynamics and mitophagy are essential for the maintenance of mitochondrial quality control and homeostasis. Therefore, metabolic antagonists may be essential to gain a better understanding of viral diseases and develop effective antiviral therapeutics. This review briefly discusses how viruses exploit mitochondrial dynamics for virus proliferation and induce associated diseases.
    Keywords:  MAVS; MDA5; RIG-I; RSV; SARS CoV-2; influenza; innate immune response; mitochondria; mitochondrial dynamics; viral infections
  50. Bio Protoc. 2021 Mar 05. 11(5): e3945
      Various stem cells have been found to be dependent on mitochondrial energetics. The role of mitochondria in regulating the self-renewal of normal stem cells and stem-like tumor initiating cells (TICs) is increasingly being appreciated. We proposed that TIC populations have a sub population of cells that are "primed" by mitochondria for self-renewal. Using ovarian cancer model, we have developed a protocol to identify and isolate these "primed" cells using Fluorescence-Assisted Cell Sorting (FACS). We combined live cell stains for a functional marker of TICs and for mitochondrial transmembrane potential to enrich TICs with higher mitochondrial potential that form in vitro spheroids 10-fold more than the other TICs with lower mitochondrial potential. This protocol can be directly used or modified to be used in various cell types. Thus, this protocol is anticipated to be invaluable for the basic understanding of mitochondrial and energetic heterogeneity within stem cell population, and may also prove valuable in translational studies in regenerative medicine and cancer biology.
    Keywords:  FACS; Mitochondrial energetics; Self-Renewal; Stem Cell Priming; Tumor initiating cells
  51. Cells. 2021 Mar 30. pii: 757. [Epub ahead of print]10(4):
      Mitochondrial F1Fo-ATP-synthase dimers play a critical role in shaping and maintenance of mitochondrial ultrastructure. Previous studies have revealed that ablation of the F1Fo-ATP-synthase assembly factor PaATPE of the ascomycete Podospora anserina strongly affects cristae formation, increases hydrogen peroxide levels, impairs mitochondrial function and leads to premature cell death. In the present study, we investigated the underlying mechanistic basis. Compared to the wild type, we observed a slight increase in non-selective and a pronounced increase in mitophagy, the selective vacuolar degradation of mitochondria. This effect depends on the availability of functional cyclophilin D (PaCYPD), the regulator of the mitochondrial permeability transition pore (mPTP). Simultaneous deletion of PaAtpe and PaAtg1, encoding a key component of the autophagy machinery or of PaCypD, led to a reduction of mitophagy and a partial restoration of the wild-type specific lifespan. The same effect was observed in the PaAtpe deletion strain after inhibition of PaCYPD by its specific inhibitor, cyclosporin A. Overall, our data identify autophagy-dependent cell death (ADCD) as part of the cellular response to impaired F1Fo-ATP-synthase dimerization, and emphasize the crucial role of functional mitochondria in aging.
    Keywords:  ADCD; F1Fo-ATP-synthase; Podospora anserina; mPTP; mitophagy
  52. Biology (Basel). 2021 Mar 23. pii: 250. [Epub ahead of print]10(3):
      Colon cancer is one of the most lethal malignancies worldwide. Berberine has been found to exert potential anti-colon cancer activity in vitro and in vivo, although the detailed regulatory mechanism is still unclear. This study aims to identify the underlying crucial proteins and regulatory networks associated with berberine treatment of colon cancer by using proteomics as well as publicly available transcriptomics and tissue array data. Proteome profiling of berberine-treated colon cancer cells demonstrated that among 5130 identified proteins, the expression of 865 and 675 proteins were changed in berberine-treated HCT116 and DLD1 cells, respectively. Moreover, 54 differently expressed proteins that overlapped in both cell lines were mainly involved in mitochondrial protein synthesis, calcium mobilization, and metabolism of fat-soluble vitamins. Finally, GTPase ERAL1 and mitochondrial ribosomal proteins including MRPL11, 15, 30, 37, 40, and 52 were identified as hub proteins of berberine-treated colon cancer cells. These proteins have higher transcriptional and translational levels in colon tumor samples than that of colon normal samples, and were significantly down-regulated in berberine-treated colon cancer cells. Genetic dependency analysis showed that silencing the gene expression of seven hub proteins could inhibit the proliferation of colon cancer cells. This study sheds a light for elucidating the berberine-related regulatory signaling pathways in colon cancer, and suggests that ERAL1 and several mitochondrial ribosomal proteins might be promising therapeutic targets for colon cancer.
    Keywords:  berberine; colon cancer; potential targets; proteomics