bims-mibica Biomed News
on Mitochondrial bioenergetics in cancer
Issue of 2021‒03‒28
forty-two papers selected by
Kelsey Fisher-Wellman
East Carolina University


  1. Cell Metab. 2021 Mar 23. pii: S1550-4131(21)00110-8. [Epub ahead of print]
      Mitochondria have an independent genome (mtDNA) and protein synthesis machinery that coordinately activate for mitochondrial generation. Here, we report that the Krebs cycle intermediate fumarate links metabolism to mitobiogenesis through binding to malic enzyme 2 (ME2). Mechanistically, fumarate binds ME2 with two complementary consequences. First, promoting the formation of ME2 dimers, which activate deoxyuridine 5'-triphosphate nucleotidohydrolase (DUT). DUT fosters thymidine generation and an increase of mtDNA. Second, fumarate-induced ME2 dimers abrogate ME2 monomer binding to mitochondrial ribosome protein L45, freeing it for mitoribosome assembly and mtDNA-encoded protein production. Methylation of the ME2-fumarate binding site by protein arginine methyltransferase-1 inhibits fumarate signaling to constrain mitobiogenesis. Notably, acute myeloid leukemia is highly dependent on mitochondrial function and is sensitive to targeting of the fumarate-ME2 axis. Therefore, mitobiogenesis can be manipulated in normal and malignant cells through ME2, an unanticipated governor of mitochondrial biomass production that senses nutrient availability through fumarate.
    Keywords:  acute myeloid leukemia; arginine methylation; deoxyuridine 5′-triphosphate nucleotidohydrolase; fumarate; malic enzyme 2; mitobiogenesis; mitochondrial ribosome; mitochondrial ribosome protein L45; protein arginine methyltransferase 1
    DOI:  https://doi.org/10.1016/j.cmet.2021.03.003
  2. Nat Commun. 2021 03 22. 12(1): 1812
      Human hexokinase 2 is an essential regulator of glycolysis that couples metabolic and proliferative activities in cancer cells. The binding of hexokinase 2 to the outer membrane of mitochondria is critical for its oncogenic activity. However, the regulation of hexokinase 2 binding to mitochondria remains unclear. Here, we report that SUMOylation regulates the binding of hexokinase 2 to mitochondria. We find that hexokinase 2 can be SUMOylated at K315 and K492. SUMO-specific protease SENP1 mediates the de-SUMOylation of hexokinase 2. SUMO-defective hexokinase 2 preferably binds to mitochondria and enhances both glucose consumption and lactate production and decreases mitochondrial respiration in parallel. This metabolic reprogramming supports prostate cancer cell proliferation and protects cells from chemotherapy-induced cell apoptosis. Moreover, we demonstrate an inverse relationship between SENP1-hexokinase 2 axis and chemotherapy response in prostate cancer samples. Our data provide evidence for a previously uncovered posttranslational modification of hexokinase 2 in cancer cells, suggesting a potentially actionable strategy for preventing chemotherapy resistance in prostate cancer.
    DOI:  https://doi.org/10.1038/s41467-021-22163-7
  3. Mitochondrion. 2021 Mar 17. pii: S1567-7249(21)00035-0. [Epub ahead of print]
      Complex I is the largest and most intricate of the protein complexes of mitochondrial electron transport chain (ETC). This L-shaped enzyme consists of a peripheral hydrophilic matrix domain and a membrane-bound orthogonal hydrophobic domain. The interfacial region between these two arms is known to be critical for binding of ubiquinone moieties and has also been shown to be the binding site of Complex I inhibitors. Knowledge on specific roles of the ETC interfacial region proteins is scarce due to lack of knockout cell lines and animal models. Here we mutated nuclear encoded NADH dehydrogenase [ubiquinone] iron-sulfur protein 2 (NDUFS2), one of three protein subunits of the interfacial region, in a human embryonic kidney cell line 293 using a CRISPR/Cas9 procedure. Disruption of NDUFS2 significantly decreased cell growth in medium, Complex I specific respiration, glycolytic capacity, ATP pool and cell-membrane integrity, but significantly increased Complex II respiration, ROS generation, apoptosis, and necrosis. Treatment with idebenone, a clinical benzoquinone currently being investigated in other indications, partially restored growth, ATP pool, and oxygen consumption of the mutant. Overall, our results suggest that NDUFS2 is vital for growth and metabolism of mammalian cells, and respiratory defects of NDUFS2 dysfunction can be partially corrected with treatment of an established mitochondrial therapeutic candidate. This is the first report to use CRISPR/Cas9 approach to construct a knockout NDUFS2 cell line and use the constructed mutant to evaluate the efficacy of a known mitochondrial therapeutic to enhance bioenergetic capacity.
    Keywords:  ATP synthesis; CRISPR/Cas9; Complex I; Electron transport chain; ROS; apoptosis; glycolysis; idebenone; necrosis; oxygen consumption; respiration
    DOI:  https://doi.org/10.1016/j.mito.2021.03.003
  4. Proc Natl Acad Sci U S A. 2021 Mar 30. pii: e2100558118. [Epub ahead of print]118(13):
      Human mitochondrial ATP synthase is a molecular machine with a rotary action bound in the inner organellar membranes. Turning of the rotor, driven by a proton motive force, provides energy to make ATP from ADP and phosphate. Among the 29 component proteins of 18 kinds, ATP6 and ATP8 are mitochondrial gene products, and the rest are nuclear gene products that are imported into the organelle. The ATP synthase is assembled from them via intermediate modules representing the main structural elements of the enzyme. One such module is the c8-ring, which provides the membrane sector of the enzyme's rotor, and its assembly is influenced by another transmembrane (TMEM) protein, TMEM70. We have shown that subunit c interacts with TMEM70 and another hitherto unidentified mitochondrial transmembrane protein, TMEM242. Deletion of TMEM242, similar to deletion of TMEM70, affects but does not completely eliminate the assembly of ATP synthase, and to a lesser degree the assembly of respiratory enzyme complexes I, III, and IV. Deletion of TMEM70 and TMEM242 together prevents assembly of ATP synthase and the impact on complex I is enhanced. Removal of TMEM242, but not of TMEM70, also affects the introduction of subunits ATP6, ATP8, j, and k into the enzyme. TMEM70 and TMEM242 interact with the mitochondrial complex I assembly (the MCIA) complex that supports assembly of the membrane arm of complex I. The interactions of TMEM70 and TMEM242 with MCIA could be part of either the assembly of ATP synthase and complex I or the regulation of their levels.
    Keywords:  ATP synthase; TMEM242; TMEM70; assembly; human mitochondria
    DOI:  https://doi.org/10.1073/pnas.2100558118
  5. Theranostics. 2021 ;11(9): 4011-4029
      Rationale: Adenylosuccinate lyase (ADSL) is an essential enzyme for de novo purine biosynthesis. Here we sought to investigate the putative role of ADSL in colorectal carcinoma (CRC) carcinogenesis and response to antimetabolites. Methods: ADSL expression levels were assessed by immunohistochemistry or retrieved from The Cancer Genome Atlas (TCGA) dataset. The effects of ADSL silencing or overexpression were evaluated on CRC cell proliferation, cell migration and cell-cycle. In vivo tumor growth was assessed by the chicken chorioallantoic membrane (CAM). Transfected cell lines or patient-derived organoids (PDO) were treated with 5-fluorouracil (5-FU) and 6-mercaptopurine (6-MP) and drug response was correlated with ADSL expression levels. Metabolomic and transcriptomic profiling were performed to identify dysregulated pathways and ADSL downstream effectors. Mitochondrial respiration and glycolytic capacity were measured using Seahorse; mitochondrial membrane potential and the accumulation of ROS were measured by FACS using MitoTracker Red and MitoSOX staining, respectively. Activation of canonical pathways was assessed by immunohistochemistry and immunoblotting. Results: ADSL expression is significantly increased in CRC tumors compared to non-tumor tissue. ADSL-high CRCs show upregulation of genes involved in DNA synthesis, DNA repair and cell cycle. Accordingly, ADSL overexpression accelerated progression through the cell cycle and significantly increased proliferation and migration in CRC cell lines. Additionally, ADSL expression increased tumor growth in vivo and sensitized CRCs to 6-MP in vitro, ex vivo (PDOs) and in vivo (CAM model). ADSL exerts its oncogenic function by affecting mitochondrial function via alteration of the TCA cycle and impairment of mitochondrial respiration. The KEAP1-NRF2 and mTORC1-cMyc axis are independently activated upon ADSL overexpression and may favor the survival and proliferation of ROS-accumulating cells, favoring DNA damage and tumorigenesis. Conclusions: Our results suggest that ADSL is a novel oncogene in CRC, modulating mitochondrial function, metabolism and oxidative stress, thus promoting cell cycle progression, proliferation and migration. Our results also suggest that ADSL is a predictive biomarker of response to 6-mercaptopurine in the pre-clinical setting.
    Keywords:  ADSL; colorectal cancer; fumarate; mTOR-MYC-axis; mitochondria
    DOI:  https://doi.org/10.7150/thno.50051
  6. Biochem J. 2021 Mar 22. pii: BCJ20200897. [Epub ahead of print]
      Redox regulation of proteins via cysteine residue oxidation is involved in the control of various cellular signal pathways. Pyruvate kinase M2 (PKM2), a rate-limiting enzyme in glycolysis, is critical for the metabolic shift from glycolysis to the pentose phosphate pathway under oxidative stress in cancer cell growth. The PKM2 tetramer is required for optimal pyruvate kinase (PK) activity, whereas the inhibition of inter-subunit interaction of PKM2 induced by Cys358 oxidation has reduced PK activity. In the present study, we identified three oxidation-sensitive cysteine residues (Cys358, Cys423 and Cys424) responsible for four oxidation forms via the thiol oxidant diamide and/or hydrogen peroxide (H2O2). Possibly due to obstruction of the dimer-dimer interface, H2O2-induced sulfenylation (-SOH) and diamide-induced modification at Cys424 inhibited tetramer formation and PK activity. Cys423 is responsible for intermolecular disulphide bonds with heterologous proteins via diamide. Additionally, intramolecular polysulphide linkage (-Sn-, n≧3) between Cys358 and an unidentified PKM2 Cys could be induced by diamide. We observed that cells expressing the oxidation-resistant PKM2 (PKM2C358,424A) produced more intracellular reactive oxygen species (ROS) and exhibited greater sensitivity to ROS-generating reagents and ROS-inducible anti-cancer drugs compared to cells expressing wildtype PKM2. These results highlight the possibility that PKM2 inhibition via Cys358 and Cys424 oxidation contributes to eliminating excess ROS and oxidative stress.
    Keywords:  PKM2; cysteine oxidation; oxidative stress; polysulphide; pyruvate kinase M2; redox regulation
    DOI:  https://doi.org/10.1042/BCJ20200897
  7. FASEB J. 2021 Apr;35(4): e21426
      Mitochondrial remodeling through fusion and fission is crucial for progenitor cell differentiation but its role in myogenesis is poorly understood. Here, we characterized the function of mitofusin 2 (Mfn2), a mitochondrial outer membrane protein critical for mitochondrial fusion, in muscle progenitor cells (myoblasts). Mfn2 expression is upregulated during myoblast differentiation in vitro and muscle regeneration in vivo. Targeted deletion of Mfn2 gene in myoblasts (Mfn2MKO ) increases oxygen-consumption rates (OCR) associated with the maximal respiration and spare respiratory capacity, and increased levels of reactive oxygen species (ROS). Skeletal muscles of Mfn2MKO mice exhibit robust mitochondrial swelling with normal mitochondrial DNA content. Additionally, mitochondria isolated from Mfn2MKO muscles have reduced OCR at basal state and for complex I respiration, associated with decreased levels of complex I proteins NDUFB8 (NADH ubiquinone oxidoreductase subunit B8) and NDUFS3 (NADH ubiquinone oxidoreductase subunit S3). However, Mfn2MKO has no obvious effects on myoblast differentiation, muscle development and function, and muscle regeneration. These results demonstrate a novel role of Mfn2 in regulating mitochondrial complex I protein abundance and respiratory functions in myogenic progenitors and myofibers.
    Keywords:  Mfn2; mitochondrion; myogenesis; myogenic progenitor cells; oxidative respiration
    DOI:  https://doi.org/10.1096/fj.202002464R
  8. Nat Immunol. 2021 Mar 25.
      Individuals infected with human immunodeficiency virus type-1 (HIV-1) show metabolic alterations of CD4+ T cells through unclear mechanisms with undefined consequences. We analyzed the transcriptome of CD4+ T cells from patients with HIV-1 and revealed that the elevated oxidative phosphorylation (OXPHOS) pathway is associated with poor outcomes. Inhibition of OXPHOS by the US Food and Drug Administration-approved drug metformin, which targets mitochondrial respiratory chain complex-I, suppresses HIV-1 replication in human CD4+ T cells and humanized mice. In patients, HIV-1 peak viremia positively correlates with the expression of NLRX1, a mitochondrial innate immune receptor. Quantitative proteomics and metabolic analyses reveal that NLRX1 enhances OXPHOS and glycolysis during HIV-1-infection of CD4+ T cells to promote viral replication. At the mechanistic level, HIV infection induces the association of NLRX1 with the mitochondrial protein FASTKD5 to promote expression of mitochondrial respiratory complex components. This study uncovers the OXPHOS pathway in CD4+ T cells as a target for HIV-1 therapy.
    DOI:  https://doi.org/10.1038/s41590-021-00898-1
  9. J Exp Med. 2021 May 03. pii: e20200924. [Epub ahead of print]218(5):
      Mutations in IDH induce epigenetic and transcriptional reprogramming, differentiation bias, and susceptibility to mitochondrial inhibitors in cancer cells. Here, we first show that cell lines, PDXs, and patients with acute myeloid leukemia (AML) harboring an IDH mutation displayed an enhanced mitochondrial oxidative metabolism. Along with an increase in TCA cycle intermediates, this AML-specific metabolic behavior mechanistically occurred through the increase in electron transport chain complex I activity, mitochondrial respiration, and methylation-driven CEBPα-induced fatty acid β-oxidation of IDH1 mutant cells. While IDH1 mutant inhibitor reduced 2-HG oncometabolite and CEBPα methylation, it failed to reverse FAO and OxPHOS. These mitochondrial activities were maintained through the inhibition of Akt and enhanced activation of peroxisome proliferator-activated receptor-γ coactivator-1 PGC1α upon IDH1 mutant inhibitor. Accordingly, OxPHOS inhibitors improved anti-AML efficacy of IDH mutant inhibitors in vivo. This work provides a scientific rationale for combinatory mitochondrial-targeted therapies to treat IDH mutant AML patients, especially those unresponsive to or relapsing from IDH mutant inhibitors.
    DOI:  https://doi.org/10.1084/jem.20200924
  10. Nat Metab. 2021 Mar;3(3): 394-409
      Both obesity and sarcopenia are frequently associated in ageing, and together may promote the progression of related conditions such as diabetes and frailty. However, little is known about the pathophysiological mechanisms underpinning this association. Here we show that systemic alanine metabolism is linked to glycaemic control. We find that expression of alanine aminotransferases is increased in the liver in mice with obesity and diabetes, as well as in humans with type 2 diabetes. Hepatocyte-selective silencing of both alanine aminotransferase enzymes in mice with obesity and diabetes retards hyperglycaemia and reverses skeletal muscle atrophy through restoration of skeletal muscle protein synthesis. Mechanistically, liver alanine catabolism driven by chronic glucocorticoid and glucagon signalling promotes hyperglycaemia and skeletal muscle wasting. We further provide evidence for amino acid-induced metabolic cross-talk between the liver and skeletal muscle in ex vivo experiments. Taken together, we reveal a metabolic inter-tissue cross-talk that links skeletal muscle atrophy and hyperglycaemia in type 2 diabetes.
    DOI:  https://doi.org/10.1038/s42255-021-00369-9
  11. Oxid Med Cell Longev. 2021 ;2021 6626286
      Photobiomodulation with 808 nm laser light electively stimulates Complexes III and IV of the mitochondrial respiratory chain, while Complexes I and II are not affected. At the wavelength of 1064 nm, Complexes I, III, and IV are excited, while Complex II and some mitochondrial matrix enzymes seem to be not receptive to photons at that wavelength. Complex IV was also activated by 633 nm. The mechanism of action of wavelengths in the range 900-1000 nm on mitochondria is less understood or not described. Oxidative stress from reactive oxygen species (ROS) generated by mitochondrial activity is an inescapable consequence of aerobic metabolism. The antioxidant enzyme system for ROS scavenging can keep them under control. However, alterations in mitochondrial activity can cause an increment of ROS production. ROS and ATP can play a role in cell death, cell proliferation, and cell cycle arrest. In our work, bovine liver isolated mitochondria were irradiated for 60 sec, in continuous wave mode with 980 nm and powers from 0.1 to 1.4 W (0.1 W increment at every step) to generate energies from 6 to 84 J, fluences from 7.7 to 107.7 J/cm2, power densities from 0.13 to 1.79 W/cm2, and spot size 0.78 cm2. The control was equal to 0 W. The activity of the mitochondria's complexes, Krebs cycle enzymes, ATP production, oxygen consumption, generation of ROS, and oxidative stress were detected. Lower powers (0.1-0.2 W) showed an inhibitory effect; those that were intermediate (0.3-0.7 W) did not display an effect, and the higher powers (0.8-1.1 W) induced an increment of ATP synthesis. Increasing the power (1.2-1.4 W) recovered the ATP production to the control level. The interaction occurred on Complexes III and IV, as well as ATP production and oxygen consumption. Results showed that 0.1 W uncoupled the respiratory chain and induced higher oxidative stress and drastic inhibition of ATP production. Conversely, 0.8 W kept mitochondria coupled and induced an increase of ATP production by increments of Complex III and IV activities. An augmentation of oxidative stress was also observed, probably as a consequence of the increased oxygen consumption and mitochondrial isolation experimental conditions. No effect was observed using 0.5 W, and no effect was observed on the enzymes of the Krebs cycle.
    DOI:  https://doi.org/10.1155/2021/6626286
  12. J Lipid Res. 2021 Mar 20. pii: S0022-2275(21)00051-1. [Epub ahead of print] 100069
      Long-chain fatty acid oxidation is frequently impaired in primary and systemic metabolic diseases affecting the heart, thus therapeutically increasing reliance on normally minor energetic substrates, such as ketones and medium chain fatty acids, could benefit cardiac health. However, the molecular fundamentals of this therapy are not fully known. Here, we explored the ability of octanoate, an eight-carbon medium-chain fatty acid known as an unregulated mitochondrial energetic substrate, to ameliorate cardiac hypertrophy in long-chain fatty acid oxidation deficient hearts due to carnitine palmitoyltransferase 2 deletion (Cpt2M-/-). CPT2 converts acylcarnitines to acyl-CoAs in the mitochondrial matrix for oxidative bioenergetic metabolism. In Cpt2M-/- mice, high octanoate-ketogenic diet failed to alleviate myocardial hypertrophy, dysfunction, and acylcarnitine accumulation suggesting that this alternative substrate is not sufficiently compensatory for energy provision. Aligning this outcome, we identified a major metabolic distinction between muscles and liver, wherein heart and skeletal muscle mitochondria were unable to oxidize free octanoate but liver was able to oxidize free octanoate. Liver mitochondria, but not heart or muscle, highly expressed medium-chain acyl-CoA synthetases, potentially enabling octanoate activation for oxidation and circumventing acylcarnitine-shuttling. Conversely, octanoylcarnitine was oxidized by liver, skeletal muscle, and heart, with rates in heart 4-fold greater than liver and, in muscles, was not dependent upon CPT2. Together, these data suggest that dietary octanoate cannot rescue CPT2-deficient cardiac disease. These data also suggest the existence of tissue-specific mechanisms for octanoate oxidative metabolism, with liver being independent of free carnitine availability while cardiac and skeletal muscles depend on carnitine but not on CPT2.
    Keywords:  carnitine palmitoyltransferase; carnitine-shuttle; fatty acid oxidation; medium-chain fatty acids; mitochondria
    DOI:  https://doi.org/10.1016/j.jlr.2021.100069
  13. Cancer Discov. 2021 Mar 23. pii: candisc.1453.2020. [Epub ahead of print]
      Clear cell renal cell carcinoma (ccRCC) is characterized by accumulation of neutral lipids and adipogenic trans-differentiation. We assessed adipokine expression in ccRCC and found that tumor tissues and patient plasma exhibit obesity-dependent elevations of the adipokine chemerin. Attenuation of chemerin by several approaches led to significant reduction in lipid deposition, and impairment of tumor cell growth in vitro and in vivo. A multi-omics approach revealed that chemerin suppresses fatty acid oxidation, preventing ferroptosis, and maintains fatty acid levels that activate HIF2a expression. The lipid CoQ and mitochondrial complex IV, whose biogenesis are lipid-dependent, were found decreased after chemerin inhibition, contributing to lipid reactive oxygen species production. Monoclonal antibody targeting chemerin led to reduced lipid storage and diminished tumor growth, demonstrating translational potential of chemerin inhibition. Collectively, the results suggest that obesity and tumor cells contribute to ccRCC through the expression of chemerin, which is indispensable in ccRCC biology.
    DOI:  https://doi.org/10.1158/2159-8290.CD-20-1453
  14. Mol Cell Proteomics. 2021 Mar 20. pii: S1535-9476(21)00046-3. [Epub ahead of print] 100073
      Silver nanoparticles (AgNPs) are widely used nanomaterials in both commercial and clinical biomedical applications, but the molecular mechanisms underlying their activity remain elusive. In this study we profiled proteomics and redox proteomics changes induced by AgNPs in two lung cancer cell lines: AgNPs sensitive Calu-1 and AgNPs resistant NCI-H358. We show that AgNPs induce changes in protein abundance and reversible oxidation in a time and cell line dependent manner impacting critical cellular processes such as protein translation and modification, lipid metabolism, bioenergetics and mitochondrial dynamics. Supporting confocal microscopy and transmission electron microscopy (TEM) data further emphasize mitochondria as a target of AgNPs toxicity differentially impacting mitochondrial networks and morphology in Calu-1 and NCI-H358 lung cells. Proteomics data are available via ProteomeXchange with identifier PXD021493.
    Keywords:  Lung; Mitochondria; Proteomics; Reversible Protein Oxidation; Silver Nanoparticles
    DOI:  https://doi.org/10.1016/j.mcpro.2021.100073
  15. FASEB J. 2021 Apr;35(4): e21278
      Mitochondria share attributes of vesicular transport with their bacterial ancestors given their ability to form mitochondrial-derived vesicles (MDVs). MDVs are involved in mitochondrial quality control and their formation is enhanced with stress and may, therefore, play a potential role in mitochondrial-cellular communication. However, MDV proteomic cargo has remained mostly undefined. In this study, we strategically used an in vitro MDV budding/reconstitution assay on cardiac mitochondria, followed by graded oxidative stress, to identify and characterize the MDV proteome. Our results confirmed previously identified cardiac MDV markers, while also revealing a complete map of the MDV proteome, paving the way to a better understanding of the role of MDVs. The oxidative stress vulnerability of proteins directed the cargo loading of MDVs, which was enhanced by antimycin A (Ant-A). Among OXPHOS complexes, complexes III and V were found to be Ant-A-sensitive. Proteins from metabolic pathways such as the TCA cycle and fatty acid metabolism, along with Fe-S cluster, antioxidant response proteins, and autophagy were also found to be Ant-A sensitive. Intriguingly, proteins containing hyper-reactive cysteine residues, metabolic redox switches, including professional redox enzymes and those that mediate iron metabolism, were found to be components of MDV cargo with Ant-A sensitivity. Last, we revealed a possible contribution of MDVs to the formation of extracellular vesicles, which may indicate mitochondrial stress. In conclusion, our study provides an MDV proteomics signature that delineates MDV cargo selectivity and hints at the potential for MDVs and their novel protein cargo to serve as vital biomarkers during mitochondrial stress and related pathologies.
    Keywords:  hyper-reactive cysteine residues; mitochondrial iron transport; mitochondrial quality control; mitochondrial stress; mitochondrial-derived vesicle proteome
    DOI:  https://doi.org/10.1096/fj.202002151R
  16. Cancer Metab. 2021 Mar 24. 9(1): 13
      BACKGROUND: Majority of chondrosarcomas are associated with a number of genetic alterations, including somatic mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 genes, but the downstream effects of these mutated enzymes on cellular metabolism and tumor energetics are unknown. As IDH mutations are likely to be involved in malignant transformation of chondrosarcomas, we aimed to exploit metabolomic changes in IDH mutant and non-mutant chondrosarcomas.METHODS: Here, we profiled over 69 metabolites in 17 patient-derived xenografts by targeted mass spectrometry to determine if metabolomic differences exist in mutant IDH1, mutant IDH2, and non-mutant chondrosarcomas. UMAP (Uniform Manifold Approximation and Projection) analysis was performed on our dataset to examine potential similarities that may exist between each chondrosarcoma based on genotype.
    RESULTS: UMAP revealed that mutant IDH chondrosarcomas possess a distinct metabolic profile compared with non-mutant chondrosarcomas. More specifically, our targeted metabolomics study revealed large-scale differences in organic acid intermediates of the tricarboxylic acid (TCA) cycle, amino acids, and specific acylcarnitines in chondrosarcomas. Lactate and late TCA cycle intermediates were elevated in mutant IDH chondrosarcomas, suggestive of increased glycolytic metabolism and possible anaplerotic influx to the TCA cycle. A broad elevation of amino acids was found in mutant IDH chondrosarcomas. A few acylcarnitines of varying carbon chain lengths were also elevated in mutant IDH chondrosarcomas, but with minimal clustering in accordance with tumor genotype. Analysis of previously published gene expression profiling revealed increased expression of several metabolism genes in mutant IDH chondrosarcomas, which also correlated to patient survival.
    CONCLUSIONS: Overall, our findings suggest that IDH mutations induce global metabolic changes in chondrosarcomas and shed light on deranged metabolic pathways.
    Keywords:  Acylcarnitines; Amino acids; Cancer; Chondrosarcoma; Genetic mutation; Glycolysis; Metabolism; Mutant IDH; TCA cycle
    DOI:  https://doi.org/10.1186/s40170-021-00247-8
  17. Cancer Res. 2021 Mar 24. pii: canres.3134.2020. [Epub ahead of print]
      Defective mitosis with chromosome missegregation can have a dramatic effect on genome integrity by causing DNA damage, activation of the DNA damage response (DDR), and chromosomal instability. Although this is an energy-dependent process, mechanisms linking DDR to cellular metabolism are unknown. Here we show that checkpoint kinase 2 (CHK2), a central effector of DDR, regulates cellular energy production by affecting glycolysis and mitochondrial functions. Patients with hepatocellular carcinoma (HCC) had increased CHK2 mRNA in blood, which was associated with elevated tricarboxylic acid cycle (TCA) metabolites. CHK2 controlled expression of succinate dehydrogenase (SDH) and intervened with mitochondrial functions. DNA damage and CHK2 promoted SDH activity marked by increased succinate oxidation through the TCA cycle; this was confirmed in a transgenic model of HCC with elevated DNA damage. Mitochondrial analysis identified CHK2-controlled expression of SDH as key in sustaining reactive oxygen species production. Cells with DNA damage and elevated CHK2 relied significantly on glycolysis for ATP production due to dysfunctional mitochondria, which was abolished by CHK2 knockdown. This represents a vulnerability created by the DNA damage response that could be exploited for development of new therapies.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-20-3134
  18. Front Immunol. 2021 ;12 628062
      Complement component 3 fragment C3a is an anaphylatoxin involved in promoting cellular responses important in immune response and host defense. Its receptor (C3a receptor, C3aR) is distributed on the plasma membrane; however, lysosomal localization in immune cells has been reported. Oxidative stress increases intracellular reactive oxygen species (ROS), and ROS activate complement signaling in immune cells and metabolic reprogramming. Here we tested oxidative stress and intracellular complement in mitochondrial dysfunction in RPE cells using high resolution live-cell imaging, and metabolism analysis in isolated mitochondria using Seahorse technology. While C3aR levels were unaffected by oxidative stress, its cell membrane levels decreased and mitochondrial (mt) localization increased. Trafficking was dependent on endocytosis, utilizing endosomal-to-mitochondrial cargo transfer. H2O2-treatment also increased C3a-mtC3aR co-localization dose-dependently. In isolated mitochondria from H2O2-treated cells C3a increased mitochondrial Ca2+ uptake, that could be inhibited by C3aR antagonism (SB290157), mitochondrial Ca2+ uniporter blocker (Ru360), and Gαi-protein inhibition (pertussis toxin, PTX); and inhibited mitochondrial repiration in an SB290157- and PTX-dependent manner. Specifically, mtC3aR activation inhibited state III ADP-driven respiration and maximal respiratory capacity. Mitochondria from control cells did not respond to C3a. Furthermore, transmitochondrial cybrid ARPE-19 cells harboring J haplogroup mitochondria that confer risk for age-related macular degeneration, showed high levels of mtC3aR and reduced ATP production upon C3a stimulation. Our findings suggest that oxidative stress increases mtC3aR, leading to altered mitochondrial calcium uptake and ATP production. These studies will have important implication in our understanding on the balance of extra- and intracellular complement signaling in controlling cellular health and dysfunction.
    Keywords:  calcium imaging; complement C3a receptor; endosomal targeting; mitochondria; oxidative phosphorylation; translocation
    DOI:  https://doi.org/10.3389/fimmu.2021.628062
  19. Sci Rep. 2021 Mar 23. 11(1): 6671
      The mitochondrion is one of the key organelles for maintaining cellular homeostasis. External environmental stimuli and internal regulatory processes may alter the metabolism and functions of mitochondria. To understand these activities of mitochondria, it is critical to probe the key metabolic molecules inside these organelles. In this study, we used label-free chemical imaging modalities including coherent anti-Stokes Raman scattering and multiphoton-excited fluorescence to investigate the mitochondrial activities in living cancer cells. We found that hypothermia exposure tends to induce fatty-acid (FA) accumulation in some mitochondria of MIAPaCa-2 cells. Autofluorescence images show that the FA-accumulated mitochondria also have abnormal metabolism of nicotinamide adenine dinucleotide hydrogen, likely induced by the dysfunction of the electron transport chain. We also found that when the cells were re-warmed to physiological temperature after a period of hypothermia, the FA-accumulated mitochondria changed their structural features. To the best of our knowledge, this is the first time that FA accumulation in mitochondria was observed in live cells. Our research also demonstrates that multimodal label-free chemical imaging is an attractive tool to discover abnormal functions of mitochondria at the single-organelle level and can be used to quantify the dynamic changes of these organelles under perturbative conditions.
    DOI:  https://doi.org/10.1038/s41598-021-85795-1
  20. Nat Commun. 2021 03 25. 12(1): 1876
      Viruses hijack host cell metabolism to acquire the building blocks required for replication. Understanding how SARS-CoV-2 alters host cell metabolism may lead to potential treatments for COVID-19. Here we profile metabolic changes conferred by SARS-CoV-2 infection in kidney epithelial cells and lung air-liquid interface (ALI) cultures, and show that SARS-CoV-2 infection increases glucose carbon entry into the TCA cycle via increased pyruvate carboxylase expression. SARS-CoV-2 also reduces oxidative glutamine metabolism while maintaining reductive carboxylation. Consistent with these changes, SARS-CoV-2 infection increases the activity of mTORC1 in cell lines and lung ALI cultures. Lastly, we show evidence of mTORC1 activation in COVID-19 patient lung tissue, and that mTORC1 inhibitors reduce viral replication in kidney epithelial cells and lung ALI cultures. Our results suggest that targeting mTORC1 may be a feasible treatment strategy for COVID-19 patients, although further studies are required to determine the mechanism of inhibition and potential efficacy in patients.
    DOI:  https://doi.org/10.1038/s41467-021-22166-4
  21. Small. 2021 Mar 24. e2007672
      Multidrug resistance (MDR) is one of the biggest obstacles in cancer chemotherapy. Here, a remarkable reversal of MDR in breast cancer through the synergistic effects of bioactive hydroxyapatite nanoparticles (HAPNs) and doxorubicin (DOX) is shown. DOX loaded HAPNs (DHAPNs) exhibit a 150-fold reduction in IC50 compared with free DOX for human MDR breast cancer MCF-7/ADR cells, and lead to almost complete inhibition of tumor growth in vivo without obvious side effects of free DOX. This high efficacy and specificity could be attributed to multiple action mechanisms of HAPNs. In addition to acting as the conventional nanocarriers to facilitate the cellular uptake and retention of DOX in MCF-7/ADR cells, more importantly, drug-free HAPNs themselves are able to prevent drug being pumped out of MDR cells through targeting mitochondria to induce mitochondrial damage and inhibit ATP production and to trigger sustained mitochondrial calcium overload and apoptosis in MDR cancer cells while not affecting normal cells. The results demonstrate that this simple but versatile bioactive nanoparticle provides a practical approach to effectively overcome MDR.
    Keywords:  anti-tumor activity; bioactivity; hydroxyapatite nanoparticles; mitochondrial Ca 2+ overload; multidrug resistance reversal
    DOI:  https://doi.org/10.1002/smll.202007672
  22. Am J Physiol Cell Physiol. 2021 Mar 24.
      The nuclear genome-encoded mitochondrial DNA (mtDNA) transcription factor A (TFAM) is indispensable for mitochondrial energy production in the developing and postnatal heart; a similar role for TFAM is inferred in adult heart. Here, we provide evidence that challenges this long-standing paradigm. Unexpectedly, conditionalTfam ablation in vivo in adult mouse cardiomyocytes resulted in a prolonged period of functional resilience characterized by preserved mtDNA content, mitochondrial function, and cardiac function, despite mitochondrial structural alterations and decreased transcript abundance. Remarkably, TFAM protein levels did not directly dictate mtDNA content in the adult heart, and mitochondrial translation was preserved with acute TFAM inactivation, suggesting maintenance of respiratory chain assembly/function. Long-term Tfam inactivation, however, downregulated the core mtDNA transcription and replication machinery, leading to mitochondrial dysfunction and cardiomyopathy. Collectively, in contrast to the developing heart, these data reveal a striking resilience of the differentiated adult heart to acute insults to mtDNA regulation.
    Keywords:  heart; mitochondria; mtDNA
    DOI:  https://doi.org/10.1152/ajpcell.00508.2020
  23. Nat Commun. 2021 Mar 26. 12(1): 1920
      Adipogenesis associated Mth938 domain containing (AAMDC) represents an uncharacterized oncogene amplified in aggressive estrogen receptor-positive breast cancers. We uncover that AAMDC regulates the expression of several metabolic enzymes involved in the one-carbon folate and methionine cycles, and lipid metabolism. We show that AAMDC controls PI3K-AKT-mTOR signaling, regulating the translation of ATF4 and MYC and modulating the transcriptional activity of AAMDC-dependent promoters. High AAMDC expression is associated with sensitization to dactolisib and everolimus, and these PI3K-mTOR inhibitors exhibit synergistic interactions with anti-estrogens in IntClust2 models. Ectopic AAMDC expression is sufficient to activate AKT signaling, resulting in estrogen-independent tumor growth. Thus, AAMDC-overexpressing tumors may be sensitive to PI3K-mTORC1 blockers in combination with anti-estrogens. Lastly, we provide evidence that AAMDC can interact with the RabGTPase-activating protein RabGAP1L, and that AAMDC, RabGAP1L, and Rab7a colocalize in endolysosomes. The discovery of the RabGAP1L-AAMDC assembly platform provides insights for the design of selective blockers to target malignancies having the AAMDC amplification.
    DOI:  https://doi.org/10.1038/s41467-021-22101-7
  24. Oncogene. 2021 Mar 25.
      Treatment of patients with triple-negative breast cancer (TNBC) has been challenging due to a lack of well-defined molecular targets. The Wnt/β-catenin pathway is known to be activated in many TNBC patients and BCL9 and BCL9L are important transcriptional co-activators of β-catenin, but whether inhibition of BCL9/BCL9L can suppress TNBC growth and the underlying mechanism are not fully understood. Here we demonstrate that the expression of BCL9 and BCL9L is directly correlated with malignancy in TNBC patient tumors and that BCL9 and BCL9L promote tumor cell growth, cell migration and metastasis in TNBC models. Mechanistically, we found that BCL9/BCL9L promotes tumorigenicity through both the Wnt and TGF-β pathways. Besides, BCL9/BCL9L expression inversely correlates with CD8+ T cell infiltration in TNBC and BCL9/BCL9L inhibits the infiltration of CD8+ T cells in the tumor microenvironment. hsBCL9CT-24, an inhibitor of BCL9/β-catenin peptides, promotes intratumoral infiltration of cytotoxic T cells, reducing regulatory T cells (Treg) and increasing dendritic cells (DCs). Inhibition of BCL9/BCL9L and TGF-β suppresses activity of Treg. TGF-β signaling increases tumor infiltration of cytotoxic CD8+ T cells. In accordance, genetic or pharmacological inhibition of BCL9/BCL9L synergizes with PD-1/L1 antibodies to inhibit tumor growth. In summary, these results suggest that targeting BCL9/BCL9L has a direct anti-tumor effect and also unleashes an anti-cancer immune response through inhibition of both Wnt and TGF-β signaling, suggesting a viable therapeutic approach for TNBC treatment.
    DOI:  https://doi.org/10.1038/s41388-021-01756-y
  25. Comp Biochem Physiol B Biochem Mol Biol. 2021 Mar 20. pii: S1096-4959(21)00035-X. [Epub ahead of print]255 110596
      Oxidative phosphorylation is compromised in hypoxia, but many organisms live and exercise in low oxygen environments. Hypoxia-driven adaptations at the mitochondrial level are common and may enhance energetic efficiency or minimize deleterious reactive oxygen species (ROS) generation. Mitochondria from various hypoxia-tolerant animals exhibit robust functional changes following in vivo hypoxia and we hypothesized that similar plasticity would occur in naked mole-rat skeletal muscle. To test this, we exposed adult subordinate naked mole-rats to normoxia (21% O2) or acute (4 h, 7% O2) or chronic hypoxia (4-6 weeks, 11% O2) and then isolated skeletal muscle mitochondria. Using high-resolution respirometry and a fluorescent indicator of ROS production, we then probed for changes in: i) lipid- (palmitoylcarnitine-malate), ii) carbohydrate- (pyruvate-malate), and iii) succinate-fueled metabolism, and also iv) complex IV electron transfer capacity, and v) H2O2 production. Compared to normoxic values, a) lipid-fueled uncoupled respiration was reduced ~15% during acute and chronic hypoxia, b) complex I-II capacity and the rate of ROS efflux were both unaffected, and c) complex II and IV uncoupled respiration were supressed ~16% following acute hypoxia. Notably, complex II-linked H2O2 efflux was 33% lower after acute hypoxia, which may reduce deleterious ROS bursts during reoxygenation. These mild changes in lipid- and carbohydrate-fueled respiratory capacity may reflect the need for this animal to exercise regularly in highly variable and intermittently hypoxic environments in which more robust plasticity may be energetically expensive.
    Keywords:  Electron transport system; High resolution respirometry; Oxidative phosphorylation; Reactive oxygen species; Succinate
    DOI:  https://doi.org/10.1016/j.cbpb.2021.110596
  26. Mol Genet Metab. 2021 Mar 11. pii: S1096-7192(21)00062-7. [Epub ahead of print]
      Leigh syndrome is a severe mitochondrial neurodegenerative disease with no effective treatment. In the Ndufs4-/- mouse model of Leigh syndrome, continuously breathing 11% O2 (hypoxia) prevents neurodegeneration and leads to a dramatic extension (~5-fold) in lifespan. We investigated the effect of hypoxia on the brain metabolism of Ndufs4-/- mice by studying blood gas tensions and metabolite levels in simultaneously sampled arterial and cerebral internal jugular venous (IJV) blood. Relatively healthy Ndufs4-/- and wildtype (WT) mice breathing air until postnatal age ~38 d were compared to Ndufs4-/- and WT mice breathing air until ~38 days old followed by 4-weeks of breathing 11% O2. Compared to WT control mice, Ndufs4-/- mice breathing air have reduced brain O2 consumption as evidenced by an elevated partial pressure of O2 in IJV blood (PijvO2) despite a normal PO2 in arterial blood, and higher lactate/pyruvate (L/P) ratios in IJV plasma revealed by metabolic profiling. In Ndufs4-/- mice, hypoxia treatment normalized the cerebral venous PijvO2 and L/P ratios, and decreased levels of nicotinate in IJV plasma. Brain concentrations of nicotinamide adenine dinucleotide (NAD+) were lower in Ndufs4-/- mice breathing air than in WT mice, but preserved at WT levels with hypoxia treatment. Although mild hypoxia (17% O2) has been shown to be an ineffective therapy for Ndufs4-/- mice, we find that when combined with nicotinic acid supplementation it provides a modest improvement in neurodegeneration and lifespan. Therapies targeting both brain hyperoxia and NAD+ deficiency may hold promise for treating Leigh syndrome.
    Keywords:  A-V difference; Arterial-venous difference; Arteriovenous difference; Brain; Hypoxia; Leigh syndrome; Metabolism; Metabolomics; NAD; Ndufs4; Niacin; Nicotinamide adenine dinucleotide; Nicotinic acid; O(2); Oxygen
    DOI:  https://doi.org/10.1016/j.ymgme.2021.03.005
  27. Development. 2021 Mar 25. pii: dev.199026. [Epub ahead of print]
      Mammalian heart development relies hugely on cardiomyocyte mitochondrial maturation and metabolism. Embryonic cardiomyocytes make metabolic shift from anaerobic glycolysis to oxidative metabolism by mid-gestation. The VHL-HIF signaling favors anaerobic glycolysis but this process subsides by E14.5. Meanwhile, the oxidative metabolism becomes activated but its regulation is largely elusive. Here, we first pinpointed a critical temporal window for mitochondrial maturation and metabolic shift, and uncovered the pivotal role of the SRCAP chromatin remodeling complex in these processes. Disruption of this complex massively suppressed the transcription of key genes required for the tricarboxylic acid (TCA) cycle, fatty acid β-oxidation and ubiquinone biosynthesis, and destroyed respirasome stability. Furthermore, we found that the SRCAP complex functioned through H2A.Z deposition to activate transcription of metabolic genes. These findings unveiled the important physiological functions of SRCAP complex in regulating mitochondrial maturation and promoting oxidative metabolism during heart development, and shed new light on the transcriptional regulation of ubiquinone biosynthesis.
    Keywords:  H2A.Z; Heart development; Metabolism; Mitochondria; SRCAP chromatin remodeling complex; Znhit1
    DOI:  https://doi.org/10.1242/dev.199026
  28. Cell Biol Int. 2021 Mar 25.
      During myoblast differentiation, mitochondria undergo numerous changes that are necessary for the progression of the myogenic program. Notably, we previously showed that alteration in mitochondrial activity were able to control the expression of keys regulator of cell cycle withdrawal and terminal differentiation. Here, we assessed whether inhibition of one of the respiratory complexes was a key factor in the regulation of myogenic differentiation in C2C12 cells, and was associated with alteration in ROS production. C2C12 cells were treated from proliferation to differentiation with specific inhibitors of mitochondrial complexes at concentration that were inhibiting respiration but not altering cell morphology. Proliferation was significantly repressed with inhibition of complexes I, II and III, or mitochondrial protein synthesis (using CHL treatment), while complex IV inhibition did not alter myoblast proliferation compared to control cells. Moreover, inhibition of complex I and II altered cell cycle regulators, with p21 protein expression upregulated since proliferation and p27 protein expression reduced at differentiation. Myotubes formation and myogenin expression were blunted with complex I and II inhibitors while MyoD protein expression was maintained suggesting an alteration in its transcriptional activity. Finally, a decrease in overall ROS production was observed with continuous inhibition of mitochondrial complexes I to IV. In summary, our data provide evidence that complexes I and II may be the primary regulators of C2C12 myogenic differentiation. This occurs through specific regulation of myogenic rather than cell cycle regulators expression, and ROS production at mitochondrial rather than cell level. This article is protected by copyright. All rights reserved.
    Keywords:  ROS; mitochondria; myogenic differentiation; respiratory complexes
    DOI:  https://doi.org/10.1002/cbin.11602
  29. Cancer Metab. 2021 Mar 24. 9(1): 12
      BACKGROUND: Fructose is an abundant source of carbon and energy for cells to use for metabolism, but only certain cell types use fructose to proliferate. Tumor cells that acquire the ability to metabolize fructose have a fitness advantage over their neighboring cells, but the proteins that mediate fructose metabolism in this context are unknown. Here, we investigated the determinants of fructose-mediated cell proliferation.METHODS: Live cell imaging and crystal violet assays were used to characterize the ability of several cell lines (RKO, H508, HepG2, Huh7, HEK293T (293T), A172, U118-MG, U87, MCF-7, MDA-MB-468, PC3, DLD1 HCT116, and 22RV1) to proliferate in fructose (i.e., the fructolytic ability). Fructose metabolism gene expression was determined by RT-qPCR and western blot for each cell line. A positive selection approach was used to "train" non-fructolytic PC3 cells to utilize fructose for proliferation. RNA-seq was performed on parental and trained PC3 cells to find key transcripts associated with fructolytic ability. A CRISPR-cas9 plasmid containing KHK-specific sgRNA was transfected in 293T cells to generate KHK-/- cells. Lentiviral transduction was used to overexpress empty vector, KHK, or GLUT5 in cells. Metabolic profiling was done with seahorse metabolic flux analysis as well as LC/MS metabolomics. Cell Titer Glo was used to determine cell sensitivity to 2-deoxyglucose in media containing either fructose or glucose.
    RESULTS: We found that neither the tissue of origin nor expression level of any single gene related to fructose catabolism determine the fructolytic ability. However, cells cultured chronically in fructose can develop fructolytic ability. SLC2A5, encoding the fructose transporter, GLUT5, was specifically upregulated in these cells. Overexpression of GLUT5 in non-fructolytic cells enabled growth in fructose-containing media across cells of different origins. GLUT5 permitted fructose to flux through glycolysis using hexokinase (HK) and not ketohexokinase (KHK).
    CONCLUSIONS: We show that GLUT5 is a robust and generalizable driver of fructose-dependent cell proliferation. This indicates that fructose uptake is the limiting factor for fructose-mediated cell proliferation. We further demonstrate that cellular proliferation with fructose is independent of KHK.
    Keywords:  Fructose; GLUT5 (SLC2A5); Hexokinase; Ketohexokinase; Metabolism
    DOI:  https://doi.org/10.1186/s40170-021-00246-9
  30. Cell Rep. 2021 Mar 23. pii: S2211-1247(21)00189-3. [Epub ahead of print]34(12): 108875
      The maintenance of mitochondrial homeostasis requires PTEN-induced kinase 1 (PINK1)-dependent mitophagy, and mutations in PINK1 are associated with Parkinson's disease (PD). PINK1 is also downregulated in tumor cells with PTEN mutations. However, there is limited information concerning the role of PINK1 in tissue growth and tumorigenesis. Here, we show that the loss of pink1 caused multiple growth defects independent of its pathological target, Parkin. Moreover, knocking down pink1 in muscle cells induced hyperglycemia and limited systemic organismal growth by the induction of Imaginal morphogenesis protein-Late 2 (ImpL2). Similarly, disrupting PTEN activity in multiple tissues impaired systemic growth by reducing pink1 expression, resembling wasting-like syndrome in cancer patients. Furthermore, the re-expression of PINK1 fully rescued defects in carbohydrate metabolism and systemic growth induced by the tissue-specific pten mutations. Our data suggest a function for PINK1 in regulating systemic growth in Drosophila and shed light on its role in wasting in the context of PTEN mutations.
    Keywords:  ImpL2; PINK1; PTEN; Parkin; mitochondria
    DOI:  https://doi.org/10.1016/j.celrep.2021.108875
  31. PLoS One. 2021 ;16(3): e0249047
      Mitochondria are commonly viewed as highly elongated organelles with regularly spaced mtDNA genomes organized as compact nucleoids that generate the local transcripts essential for production of mitochondrial ribosomes and key components of the respiratory chain. In contrast, A549 human lung carcinoma cells frequently contain apparently swollen mitochondria harboring multiple discrete mtDNA nucleoids and RNA processing granules in a contiguous matrix compartment. While this seemingly aberrant mitochondrial morphology is akin to "mito-bulbs" previously described in cells exposed to a variety of genomic stressors, it occurs in A549 cells under typical culture conditions. We provide a detailed confocal and super-resolution microscopic investigation of the incidence of such mito-bulbs in A549 cells. Most mito-bulbs appear stable, engage in active replication and transcription, and maintain respiration but feature an elevated oxidative environment. High concentrations of glucose and/or L-glutamine in growth media promote a greater incidence of mito-bulbs. Furthermore, we demonstrate that treatment of A549 cells with TGFβ suppresses the formation of mito-bulbs while treatment with a specific TGFβ pathway inhibitor substantially increases incidence. This striking heterogeneity of mitochondrial form and function may play an important role in a variety of diseases involving mitochondrial dysfunction.
    DOI:  https://doi.org/10.1371/journal.pone.0249047
  32. Nat Commun. 2021 03 22. 12(1): 1807
      Mitochondria-lysosome contacts are recently identified sites for mediating crosstalk between both organelles, but their role in normal and diseased human neurons remains unknown. In this study, we demonstrate that mitochondria-lysosome contacts can dynamically form in the soma, axons, and dendrites of human neurons, allowing for their bidirectional crosstalk. Parkinson's disease patient derived neurons harboring mutant GBA1 exhibited prolonged mitochondria-lysosome contacts due to defective modulation of the untethering protein TBC1D15, which mediates Rab7 GTP hydrolysis for contact untethering. This dysregulation was due to decreased GBA1 (β-glucocerebrosidase (GCase)) lysosomal enzyme activity in patient derived neurons, and could be rescued by increasing enzyme activity with a GCase modulator. These defects resulted in disrupted mitochondrial distribution and function, and could be further rescued by TBC1D15 in Parkinson's patient derived GBA1-linked neurons. Together, our work demonstrates a potential role of mitochondria-lysosome contacts as an upstream regulator of mitochondrial function and dynamics in midbrain dopaminergic neurons in GBA1-linked Parkinson's disease.
    DOI:  https://doi.org/10.1038/s41467-021-22113-3
  33. BMC Complement Med Ther. 2021 Mar 09. 21(1): 88
      BACKGROUND: Tongue squamous cell carcinoma (TSCC) is a common type of oral cancer, with a relatively poor prognosis and low post-treatment survival rate. Various strategies and novel drugs to treat TSCC are emerging and under investigation. Trichosanthin (TCS), extracted from the root tubers of Tian-Hua-Fen, has been found to have multiple biological and pharmacological functions, including inhibiting the growth of cancer cells. Granzyme B (GrzB) is a common toxic protein secreted by natural killer cells and cytotoxic T cells. Our group has reported that TCS combined with GrzB might be a superior approach to inhibit liver tumor progression, but data relating to the use of this combination to treat TSCC remain limited. The aim of this study was to examine the effectiveness of TCS on TSCC processes and underlying mechanisms.METHODS: First, we screened the potential antitumor activity of TCS using two types of SCC cell lines. Subsequently, a subcutaneous squamous cell carcinoma xenograft model in nude mice was established. These model mice were randomly divided into four groups and treated as follows: control group, TCS treatment group, GrzB treatment group, and TCS/GrzB combination treatment group. Various tumorigenesis parameters, such as Ki67, PCNA, caspase-3, Bcl-2 and VEGFA, et al., were performed to determine the effects of these treatments on tumor development.
    RESULTS: Screening confirmed that the SCC25 line exhibited greater sensitivity than the SCC15 line to TCS in vitro studies. TCS or GrzB treatment significantly inhibited tumor growth compared with the inhibition seen in the control group. The TCS/GrzB combination inhibited tumor growth more than either drug alone. TCS treatment inhibited tumor proliferation by downregulating Ki67 and Bcl2 protein expression while accelerating tumor apoptosis. In the TCS/GrzB-treated group, expression of Ki67 was further downregulated, while the level of activated caspase-3 was increased, compared with their expression in either of the single drug treatment groups.
    CONCLUSION: These results suggest that the TCS/GrzB combination could represent an effective immunotherapy for TSCC.
    Keywords:  Apoptosis; Granzyme B (GrzB); Oral squamous cell cancer (OSCC); Tongue squamous cell cancer (TSCC); Trichosanthin (TCS)
    DOI:  https://doi.org/10.1186/s12906-021-03266-6
  34. Front Oncol. 2021 ;11 645821
      Lung adenocarcinoma (LUAD) accounts for ~30% of all lung cancers and is one of the causes of cancer-related death worldwide. As the role of monoamine oxidase A (MAOA) in LUAD remains unclear, in this study, we examine how MAOA affects LUAD cell proliferation. Analyses of both public data and our data reveal that the expression of MAOA is downregulated in LUAD compared with non-tumor tissue. In addition, the expression of MAOA in tumors correlates with clinicopathologic features, and the expression of MAOA serves as an independent biomarker in LUAD. In addition, the overexpression of MAOA inhibits LUAD cell proliferation by inducing G1 arrest in vitro. Further mechanistic studies show that MAOA abrogates aerobic glycolysis in LUAD cells by decreasing hexokinase 2 (HK2). Finally, the expression of HK2 shows a negative correlation with MAOA in LUAD, and high HK2 predicts poor clinical outcome. In conclusion, our findings indicate that MAOA functions as a tumor suppressor in LUAD. Our results indicate that the MAOA/HK2 axis could be potential targets in LUAD therapy.
    Keywords:  aerobic glycolysis; cell prolferation; hexokinase 2; lung adenocarcinoma; monoamine oxidase A
    DOI:  https://doi.org/10.3389/fonc.2021.645821
  35. Mol Cell. 2021 Mar 19. pii: S1097-2765(21)00178-7. [Epub ahead of print]
      Dysregulated mTORC1 signaling alters a wide range of cellular processes, contributing to metabolic disorders and cancer. Defining the molecular details of downstream effectors is thus critical for uncovering selective therapeutic targets. We report that mTORC1 and its downstream kinase S6K enhance eIF4A/4B-mediated translation of Wilms' tumor 1-associated protein (WTAP), an adaptor for the N6-methyladenosine (m6A) RNA methyltransferase complex. This regulation is mediated by 5' UTR of WTAP mRNA that is targeted by eIF4A/4B. Single-nucleotide-resolution m6A mapping revealed that MAX dimerization protein 2 (MXD2) mRNA contains m6A, and increased m6A modification enhances its degradation. WTAP induces cMyc-MAX association by suppressing MXD2 expression, which promotes cMyc transcriptional activity and proliferation of mTORC1-activated cancer cells. These results elucidate a mechanism whereby mTORC1 stimulates oncogenic signaling via m6A RNA modification and illuminates the WTAP-MXD2-cMyc axis as a potential therapeutic target for mTORC1-driven cancers.
    Keywords:  MXD2; Protein translation; S6K1; WTAP; YTHDF readers; cMyc; eIF4A; m(6)A mRNA modification; mRNA stability; mTORC1
    DOI:  https://doi.org/10.1016/j.molcel.2021.03.010
  36. Nat Metab. 2021 Mar;3(3): 428-441
      Obesity reduces adipocyte mitochondrial function, and expanding adipocyte oxidative capacity is an emerging strategy to improve systemic metabolism. Here, we report that serine/threonine-protein kinase 3 (STK3) and STK4 are key physiological suppressors of mitochondrial capacity in brown, beige and white adipose tissues. Levels of STK3 and STK4, kinases in the Hippo signalling pathway, are greater in white than brown adipose tissues, and levels in brown adipose tissue are suppressed by cold exposure and greatly elevated by surgical denervation. Genetic inactivation of Stk3 and Stk4 increases mitochondrial mass and function, stabilizes uncoupling protein 1 in beige adipose tissue and confers resistance to metabolic dysfunction induced by high-fat diet feeding. Mechanistically, STK3 and STK4 increase adipocyte mitophagy in part by regulating the phosphorylation and dimerization status of the mitophagy receptor BNIP3. STK3 and STK4 expression levels are elevated in human obesity, and pharmacological inhibition improves metabolic profiles in a mouse model of obesity, suggesting STK3 and STK4 as potential targets for treating obesity-related diseases.
    DOI:  https://doi.org/10.1038/s42255-021-00362-2
  37. Nat Commun. 2021 03 25. 12(1): 1850
      Artificial intelligence and machine learning (ML) promise to transform cancer therapies by accurately predicting the most appropriate therapies to treat individual patients. Here, we present an approach, named Drug Ranking Using ML (DRUML), which uses omics data to produce ordered lists of >400 drugs based on their anti-proliferative efficacy in cancer cells. To reduce noise and increase predictive robustness, instead of individual features, DRUML uses internally normalized distance metrics of drug response as features for ML model generation. DRUML is trained using in-house proteomics and phosphoproteomics data derived from 48 cell lines, and it is verified with data comprised of 53 cellular models from 12 independent laboratories. We show that DRUML predicts drug responses in independent verification datasets with low error (mean squared error < 0.1 and mean Spearman's rank 0.7). In addition, we demonstrate that DRUML predictions of cytarabine sensitivity in clinical leukemia samples are prognostic of patient survival (Log rank p < 0.005). Our results indicate that DRUML accurately ranks anti-cancer drugs by their efficacy across a wide range of pathologies.
    DOI:  https://doi.org/10.1038/s41467-021-22170-8
  38. Oxid Med Cell Longev. 2021 ;2021 6667355
      We previously found that marine sponge-derived manoalide induced antiproliferation and apoptosis of oral cancer cells as well as reactive species generations probed by dichloro-dihydrofluorescein diacetate (DCFH-DA) and MitoSOX Red. However, the sources of cellular and mitochondrial redox stresses and the mutual interacting effects between these redox stresses and apoptosis remain unclear. To address this issue, we examined a panel of reactive species and used the inhibitors of cellular reactive species (N-acetylcysteine (NAC)), mitochondrial reactive species (MitoTEMPO), and apoptosis (Z-VAD-FMK; ZVAD) to explore their interactions in manoalide-treated oral cancer Ca9-22 and CAL 27 cells. Hydroxyl (˙OH), nitrogen dioxide (NO2˙), nitric oxide (˙NO), carbonate radical-anion (CO3 ˙-), peroxynitrite (ONOO-), and superoxide (O2 ˙-) were increased in oral cancer cells following manoalide treatments in terms of fluorescence staining and flow cytometry. Cellular reactive species (˙OH, NO2 ·, ˙NO, CO3 ˙-, and ONOO-) as well as cellular and mitochondrial reactive species (O2 ˙-) were induced in oral cancer cells following manoalide treatment for 6 h. NAC, MitoTEMPO, and ZVAD inhibit manoalide-induced apoptosis in terms of annexin V and pancaspase activity assays. Moreover, NAC inhibits mitochondrial reactive species and MitoTEMPO inhibits cellular reactive species, suggesting that cellular and mitochondrial reactive species can crosstalk to regulate each other. ZVAD shows suppressing effects on the generation of both cellular and mitochondrial reactive species. In conclusion, manoalide induces reciprocally activation between cellular and mitochondrial reactive species and apoptosis in oral cancer cells.
    DOI:  https://doi.org/10.1155/2021/6667355
  39. Aging (Albany NY). 2021 Mar 23. 13
      CVD remains the major cause of mortality with graft functioning in Kidney transplant recipients (KTRs), with an estimated risk of CV events about 50-fold higher than in the general population. Many strategies have been considered to reduce the CV risk such as the use of mTOR inhibitors. We evaluate whether chronic mTOR inhibition might influence CV aging in KTRs studying the molecular mechanisms involved in this effect. We retrospectively analyzed 210 KTRs with stable graft function on therapy with CNI and mycophenolic acid (Group A, 105 pts.), or with CNI and mTORi (Everolimus, Group B, 105 pts.). The presence of mTOR inhibitor in immunosuppressive therapy was associated to increase serum levels of Klotho with concomitant reduction in FGF-23, with a significant decrease in left ventricular mass. In addition, KTRs with mTORi improved mitochondrial function/biogenesis in PBMC with more efficient oxidative phosphorylation, antioxidant capacity and glutathione peroxidase activity. Finally, group B KTRs presented reduced levels of inflammaging markers such as reduced serum pentraxin-3 and p21ink expression in PBMC. In conclusion, we demonstrated that mTOR inhibition in immunosuppressive protocols prevents the occurrence and signs of CV aging in KTRs.
    Keywords:  cardiovascular aging; kidney disease; kidney transplantation; mTOR inhibitor; mitochondria
    DOI:  https://doi.org/10.18632/aging.202863
  40. Aging (Albany NY). 2021 Mar 10. 13(5): 6298-6329
      The effect of calorie restriction (CR) on the microbiome, fecal metabolome, and colon transcriptome of adult and old male mice was compared. Life-long CR increased microbial diversity and the Bacteroidetes/Firmicutes ratio and prevented the age-related changes in the microbiota, shifting it to a younger microbial and fecal metabolite profile in both C57BL/6JN and B6D2F1 mice. Old mice fed CR were enriched in the Rikenellaceae, S24-7 and Bacteroides families. The changes in the microbiome that occur with age and CR were initiated in the cecum and further modified in the colon. Short-term CR in adult mice had a minor effect on the microbiome but a major effect on the transcriptome of the colon mucosa. These data suggest that CR has a major impact on the physiological status of the gastrointestinal system, maintaining it in a more youthful state, which in turn could result in a more diverse and youthful microbiome.
    Keywords:  aging; calorie restriction; metabolome; microbiome; transcriptome
    DOI:  https://doi.org/10.18632/aging.202753
  41. Nat Metab. 2021 Mar;3(3): 327-336
      Glycogen accumulation is a highly consistent, distinguishable characteristic of clear cell renal cell carcinoma (ccRCC)1. While elevated glycogen pools might be advantageous for ccRCC cells in nutrient-deprived microenvironments to sustain tumour viability, data supporting a biological role for glycogen in ccRCC are lacking. Here, we demonstrate that glycogen metabolism is not required for ccRCC proliferation in vitro nor xenograft tumour growth in vivo. Disruption of glycogen synthesis by CRISPR-mediated knockout of glycogen synthase 1 (GYS1) has no effect on proliferation in multiple cell lines, regardless of glucose concentrations or oxygen levels. Similarly, prevention of glycogen breakdown by deletion or pharmacological inhibition of glycogen phosphorylase B (PYGB) and L (PYGL) has no impact on cell viability under any condition tested. Lastly, in vivo xenograft experiments using the ccRCC cell line, UMRC2, reveal no substantial changes in tumour size or volume when glycogen metabolism is altered, largely mimicking the phenotype of our in vitro observations. Our findings suggest that glycogen build-up in established ccRCC tumour cells is likely to be a secondary, and apparently dispensable, consequence of constitutively active hypoxia-inducible factor 1-alpha (HIF-1α) signalling.
    DOI:  https://doi.org/10.1038/s42255-021-00367-x
  42. Nat Commun. 2021 03 22. 12(1): 1808
      Mutational activation of KRAS promotes the initiation and progression of cancers, especially in the colorectum, pancreas, lung, and blood plasma, with varying prevalence of specific activating missense mutations. Although epidemiological studies connect specific alleles to clinical outcomes, the mechanisms underlying the distinct clinical characteristics of mutant KRAS alleles are unclear. Here, we analyze 13,492 samples from these four tumor types to examine allele- and tissue-specific genetic properties associated with oncogenic KRAS mutations. The prevalence of known mutagenic mechanisms partially explains the observed spectrum of KRAS activating mutations. However, there are substantial differences between the observed and predicted frequencies for many alleles, suggesting that biological selection underlies the tissue-specific frequencies of mutant alleles. Consistent with experimental studies that have identified distinct signaling properties associated with each mutant form of KRAS, our genetic analysis reveals that each KRAS allele is associated with a distinct tissue-specific comutation network. Moreover, we identify tissue-specific genetic dependencies associated with specific mutant KRAS alleles. Overall, this analysis demonstrates that the genetic interactions of oncogenic KRAS mutations are allele- and tissue-specific, underscoring the complexity that drives their clinical consequences.
    DOI:  https://doi.org/10.1038/s41467-021-22125-z