bims-mibica Biomed News
on Mitochondrial bioenergetics in cancer
Issue of 2021‒03‒07
forty-eight papers selected by
Kelsey Fisher-Wellman
East Carolina University


  1. EMBO Rep. 2021 Mar 03. e51606
      Reduction of mitochondrial membrane potential (Δψm ) is a hallmark of mitochondrial dysfunction. It activates adaptive responses in organisms from yeast to human to rewire metabolism, remove depolarized mitochondria, and degrade unimported precursor proteins. It remains unclear how cells maintain Δψm , which is critical for maintaining iron-sulfur cluster (ISC) synthesis, an indispensable function of mitochondria. Here, we show that yeast oxidative phosphorylation mutants deficient in complex III, IV, V, and mtDNA, respectively, exhibit activated stress responses and progressive reduction of Δψm . Extensive omics analyses of these mutants show that these mutants progressively activate adaptive responses, including transcriptional downregulation of ATP synthase inhibitor Inh1 and OXPHOS subunits, Puf3-mediated upregulation of import receptor Mia40 and global mitochondrial biogenesis, Snf1/AMPK-mediated upregulation of glycolysis and repression of ribosome biogenesis, and transcriptional upregulation of cytoplasmic chaperones. These adaptations disinhibit mitochondrial ATP hydrolysis, remodel mitochondrial proteome, and optimize ATP supply to mitochondria to convergently maintain Δψm , ISC biosynthesis, and cell proliferation.
    Keywords:  mitochondrial membrane potential; mitochondrial stress responses; oxidative phosphorylation
    DOI:  https://doi.org/10.15252/embr.202051606
  2. Oncogene. 2021 Mar 01.
      Pancreatic ductal adenocarcinoma (PDA) is aggressive cancer characterized by rapid progression, metastatic recurrence, and highly resistant to treatment. PDA cells exhibit aerobic glycolysis, or the Warburg effect, which reduces the flux of pyruvate into mitochondria. As a result, more glycolytic metabolites are shunted to pathways for the production of building blocks (e.g., ribose) and reducing agents (e.g., NADPH) for biosynthesis that are necessary for cell proliferation. In addition, PDA cells are highly addicted to glutamine for both maintaining biosynthetic pathways and achieving redox balance. Mitochondrial uncoupling facilitates proton influx across the mitochondrial inner membrane without generating ATP, leading to a futile cycle that consumes glucose metabolites and glutamine. We synthesized a new mitochondrial uncoupler MB1-47 and tested its effect on cancer cell metabolism and the anticancer activity in pancreatic cancer cell models and murine tumor transplantation models. MB1-47 uncouples mitochondria in the pancreatic cancer cells, resulting in: (1) the acceleration of pyruvate oxidation and TCA turnover; (2) increases in AMP/ATP and ADP/AMP ratios; and (3) a decrease in the synthesis rate of nucleotides and sugar nucleotides. Moreover, MB1-47 arrests cell cycle at G0-G1 phase, reduces clonogenicity, and inhibits cell growth of murine and human pancreatic cancer cells. In vivo studies showed that MB1-47 inhibits tumor growth in murine tumor transplantation models, and inhibits the hepatic metastasis when tumor cells were transplanted intrasplenically. Our results provide proof of concept for a potentially new strategy of treating PDA, and a novel prototype experimental drug for future studies and development.
    DOI:  https://doi.org/10.1038/s41388-021-01688-7
  3. Mol Genet Metab. 2021 Feb 20. pii: S1096-7192(21)00048-2. [Epub ahead of print]
      Osteogenesis imperfecta (OI) is a heritable connective tissue disorder with patients exhibiting bone fragility and muscle weakness. The synergistic biochemical and biomechanical relationship between bone and muscle is a critical potential therapeutic target, such that muscle weakness should not be ignored. Previous studies demonstrated mitochondrial dysfunction in the skeletal muscle of oim/oim mice, which model a severe human type III OI. Here, we further characterize this mitochondrial dysfunction and evaluate several parameters of whole body and skeletal muscle metabolism. We demonstrate reduced mitochondrial respiration in female gastrocnemius muscle, but not in liver or heart mitochondria, suggesting that mitochondrial dysfunction is not global in the oim/oim mouse. Myosin heavy chain fiber type distributions were altered in the oim/oim soleus muscle with a decrease (-33 to 50%) in type I myofibers and an increase (+31%) in type IIa myofibers relative to their wildtype (WT) littermates. Additionally, altered body composition and increased energy expenditure were observed oim/oim mice relative to WT littermates. These results suggest that skeletal muscle mitochondrial dysfunction is linked to whole body metabolic alterations and to skeletal muscle weakness in the oim/oim mouse.
    Keywords:  Genetic mouse models; Mitochondrial dysfunction; Osteogenesis imperfecta; Skeletal muscle
    DOI:  https://doi.org/10.1016/j.ymgme.2021.02.004
  4. Proc Natl Acad Sci U S A. 2021 Mar 09. pii: e2003014118. [Epub ahead of print]118(10):
      Pancreatic ductal adenocarcinoma (PDA) is a lethal, therapy-resistant cancer that thrives in a highly desmoplastic, nutrient-deprived microenvironment. Several studies investigated the effects of depriving PDA of either glucose or glutamine alone. However, the consequences on PDA growth and metabolism of limiting both preferred nutrients have remained largely unknown. Here, we report the selection for clonal human PDA cells that survive and adapt to limiting levels of both glucose and glutamine. We find that adapted clones exhibit increased growth in vitro and enhanced tumor-forming capacity in vivo. Mechanistically, adapted clones share common transcriptional and metabolic programs, including amino acid use for de novo glutamine and nucleotide synthesis. They also display enhanced mTORC1 activity that prevents the proteasomal degradation of glutamine synthetase (GS), the rate-limiting enzyme for glutamine synthesis. This phenotype is notably reversible, with PDA cells acquiring alterations in open chromatin upon adaptation. Silencing of GS suppresses the enhanced growth of adapted cells and mitigates tumor growth. These findings identify nongenetic adaptations to nutrient deprivation in PDA and highlight GS as a dependency that could be targeted therapeutically in pancreatic cancer patients.
    Keywords:  epigenetics; glutamine synthetase; mTORC1; nutrient deprivation; pancreatic cancer
    DOI:  https://doi.org/10.1073/pnas.2003014118
  5. Biochem Biophys Rep. 2021 Jul;26 100928
      VWA8 (Von Willebrand A Domain Containing Protein 8) is a AAA+ ATPase that is localized to the mitochondrial matrix and is widely expressed in highly energetic tissues. Originally found to be higher in abundance in livers of mice fed a high fat diet, deletion of the VWA8 gene in differentiated mouse AML12 hepatocytes unexpectedly produced a phenotype of higher mitochondrial and nonmitochondrial oxidative metabolism, higher ROS (reactive oxygen species) production mainly from NADPH oxidases, and increased HNF4a expression. The purposes of this study were first, to determine whether higher mitochondrial oxidative capacity in VWA8 null hepatocytes is the product of higher capacity in all aspects of the electron transport chain and oxidative phosphorylation, and second, the density of cristae in mitochondria and mitochondrial content was measured to determine if higher mitochondrial oxidative capacity is accompanied by greater cristae area and mitochondrial abundance. Electron transport chain complexes I, II, III, and IV activities all were higher in hepatocytes in which the VWA8 gene had been deleted using CRISPR/Cas9. A comparison of abundance of proteins in electron transport chain complexes I, III and ATP synthase previously determined using an unbiased proteomics approach in hepatocytes in which VWA8 had been deleted showed agreement with the activity assays. Mitochondrial cristae, the site where electron transport chain complexes are located, were quantified using electron microscopy and stereology. Cristae density, per mitochondrial area, was almost two-fold higher in the VWA8 null cells (P < 0.01), and mitochondrial area was two-fold higher in the VWA8 null cells (P < 0.05). The results of this study allow us to conclude that despite sustained, higher ROS production in VWA8 null cells, a global mitochondrial compensatory response was maintained, resulting in overall higher mitochondrial oxidative capacity.
    Keywords:  ADP, adenine dinucleotide phosphate; ANT, adenine nucleotide translocase; ATP, adenine trinucleotide phosphate; ETC, electron transport chain; Electron transport chain; HNF4, hepatocyte nuclear factor 4; Hepatocytes; Mitochondria; NADPH, nicotinamide adenine dinucleotide phosphate; OCR, oxygen consumption rate; PFO, perfringolysin; ROS, reactive oxygen species; TMHQ, Tetramethylhydroquinone; TMPD, N,N,N′,N'-Tetramethyl-p-phenylenediamine; VWA8; VWA8, Von Willebrand Domain-containing Protein 8
    DOI:  https://doi.org/10.1016/j.bbrep.2021.100928
  6. Int J Mol Sci. 2021 Feb 28. pii: 2466. [Epub ahead of print]22(5):
      Metabolic reprogramming is a hallmark of malignancy. It implements profound metabolic changes to sustain cancer cell survival and proliferation. Although the Warburg effect is a common feature of metabolic reprogramming, recent studies have revealed that tumor cells also depend on mitochondrial metabolism. Due to the essential role of mitochondria in metabolism and cell survival, targeting mitochondria in cancer cells is an attractive therapeutic strategy. However, the metabolic flexibility of cancer cells may enable the upregulation of compensatory pathways, such as glycolysis, to support cancer cell survival when mitochondrial metabolism is inhibited. Thus, compounds capable of targeting both mitochondrial metabolism and glycolysis may help overcome such resistance mechanisms. Normal prostate epithelial cells have a distinct metabolism as they use glucose to sustain physiological citrate secretion. During the transformation process, prostate cancer cells consume citrate to mainly power oxidative phosphorylation and fuel lipogenesis. A growing number of studies have assessed the impact of triterpenoids on prostate cancer metabolism, underlining their ability to hit different metabolic targets. In this review, we critically assess the metabolic transformations occurring in prostate cancer cells. We will then address the opportunities and challenges in using triterpenoids as modulators of prostate cancer cell metabolism.
    Keywords:  Warburg effect; mitochondrial metabolism; prostate cancer; triterpenoids
    DOI:  https://doi.org/10.3390/ijms22052466
  7. iScience. 2021 Mar 19. 24(3): 102149
      Obesity is an important risk factor and a potential treatment target for hepatic steatosis. The maladaptation of hepatic mitochondrial flexibility plays a key role in the hepatic steatosis. Herein, we found that hepatocyte-like cells derived from human adipose stem cell of obese patients exhibited the characteristics of hepatic steatosis and accompanied with lower expression of the subunits of mitochondrial complex I and lower oxidative phosphorylation levels. The GSK3 inhibitor CHIR-99021 promoted the expression of NDUFB8, NDUFB9, the subunits of mitochondrial complex I, the basal oxygen consumption rate, and the fatty acid oxidation of the hepatocytes of obese patients by upregulating the expression of the transcription factor PGC-1α, TFAM, and NRF1 involved in mitochondrial biogenesis. Moreover, CHIR-99021 decreased the lipid droplets size and the triglyceride levels in hepatocytes of obese patients. The results demonstrate that GSK3 inhibition ameliorates hepatic steatosis by elevating the mitochondrial function in hepatocytes of obese patients.
    Keywords:  human metabolism; molecular biology
    DOI:  https://doi.org/10.1016/j.isci.2021.102149
  8. Circulation. 2021 Mar 05.
      Background: Neonatal mouse cardiomyocytes undergo a metabolic switch from glycolysis to oxidative phosphorylation, which results in a significant increase in reactive oxygen species (ROS) production that induces DNA damage. These cellular changes contribute to cardiomyocyte cell cycle exit and loss of the capacity for cardiac regeneration. The mechanisms that regulate this metabolic switch and the increase in ROS production have been relatively unexplored. Current evidence suggests that elevated ROS production in ischemic tissues occurs due to accumulation of the mitochondrial metabolite succinate during ischemia via succinate dehydrogenase (SDH), and this succinate is rapidly oxidized at reperfusion. Interestingly, mutations in SDH in familial cancer syndromes have been demonstrated to promote a metabolic shift into glycolytic metabolism, suggesting a potential role for SDH in regulating cellular metabolism. Whether succinate and SDH regulate cardiomyocyte cell cycle activity and the cardiac metabolic state remains unclear. Methods: Here, we investigated the role of succinate and succinate dehydrogenase (SDH) inhibition in regulation of postnatal cardiomyocyte cell cycle activity and heart regeneration. Results: Our results demonstrate that injection of succinate in neonatal mice results in inhibition of cardiomyocyte proliferation and regeneration. Our evidence also shows that inhibition of SDH by malonate treatment after birth extends the window of cardiomyocyte proliferation and regeneration in juvenile mice. Remarkably, extending malonate treatment to the adult mouse heart following myocardial infarction injury results in a robust regenerative response within 4 weeks following injury via promoting adult cardiomyocyte proliferation and revascularization. Our metabolite analysis following SDH inhibition by malonate induces dynamic changes in adult cardiac metabolism. Conclusions: Inhibition of SDH by malonate promotes adult cardiomyocyte proliferation, revascularization, and heart regeneration via metabolic reprogramming. These findings support a potentially important new therapeutic approach for human heart failure.
    Keywords:  heart regeneration; succinate dehydrogenase
    DOI:  https://doi.org/10.1161/CIRCULATIONAHA.120.049952
  9. Theranostics. 2021 ;11(8): 3595-3606
      Background: In hypoxic tumors, positive feedback between oncogenic KRAS and HIF-1α involves impressive metabolic changes correlating with drug resistance and poor prognosis in colorectal cancer. Up to date, designed KRAS-targeting molecules do not show clear benefits in patient overall survival (POS) so pharmacological modulation of aberrant tricarboxylic acid (TCA) cycle in hypoxic cancer has been proposed as a metabolic vulnerability of KRAS-driven tumors. Methods: Annexin V-FITC and cell viability assays were carried out in order to verify vitamin C citotoxicity in KRAS mutant SW480 and DLD1 as well as in Immortalized Human Colonic Epithelial Cells (HCEC). HIF1a expression and activity were determined by western blot and functional analysis assays. HIF1a direct targets GLUT1 and PDK1 expression was checked using western blot and qRT-PCR. Inmunohistochemical assays were perfomed in tumors derived from murine xenografts in order to validate previous observations in vivo. Vitamin C dependent PDH expression and activity modulation were detected by western blot and colorimetric activity assays. Acetyl-Coa levels and citrate synthase activity were assessed using colorimetric/fluorometric activity assays. Mitochondrial membrane potential (Δψ) and cell ATP levels were assayed using fluorometric and luminescent test. Results: PDK-1 in KRAS mutant CRC cells and murine xenografts was downregulated using pharmacological doses of vitamin C through the proline hydroxylation (Pro402) of the Hypoxia inducible factor-1(HIF-1)α, correlating with decreased expression of the glucose transporter 1 (GLUT-1) in both models. Vitamin C induced remarkable ATP depletion, rapid mitochondrial Δψ dissipation and diminished pyruvate dehydrogenase E1-α phosphorylation at Serine 293, then boosting PDH and citrate synthase activity. Conclusion: We report a striking and previously non reported role of vitamin C in the regulation of the pyruvate dehydrogenase (PDH) activity, then modulating the TCA cycle and mitochondrial metabolism in KRAS mutant colon cancer. Potential impact of vitamin C in the clinical management of anti-EGFR chemoresistant colorectal neoplasias should be further considered.
    Keywords:  KRAS; PDK-1; cancer; chemoresistance; hypoxia; metabolism; vitamin C
    DOI:  https://doi.org/10.7150/thno.51265
  10. Amino Acids. 2021 Feb 28.
      Dysregulated cellular energetics has recently been recognized as a hallmark of cancer and garnered attention as a potential targeting strategy for cancer therapeutics. Cancer cells reprogram metabolic activities to meet bio-energetic, biosynthetic and redox requirements needed to sustain indefinite proliferation. In many cases, metabolic reprogramming is the result of complex interactions between genetic alterations in well-known oncogenes and tumor suppressors and epigenetic changes. While the metabolism of the two most abundant nutrients, glucose and glutamine, is reprogrammed in a wide range of cancers, accumulating evidence demonstrates that additional metabolic pathways are also critical for cell survival and growth. Proline metabolism is one such metabolic pathway that promotes tumorigenesis in multiple cancer types, including liver cancer, which is the fourth main cause of cancer mortality in the world. Despite the recent spate of approved treatments, including targeted therapy and combined immunotherapies, there has been no significant gain in clinical benefits in the majority of liver cancer patients. Thus, exploring novel therapeutic strategies and identifying new molecular targets remains a top priority for liver cancer. Two of the enzymes in the proline biosynthetic pathway, pyrroline-5-carboxylate reductase (PYCR1) and Aldehyde Dehydrogenase 18 Family Member A1 (ALDH18A1), are upregulated in liver cancer of both human and animal models, while proline catabolic enzymes, such as proline dehydrogenase (PRODH) are downregulated. Here we review the latest evidence linking proline metabolism to liver and other cancers and potential mechanisms of action for the proline pathway in cancer development.
    Keywords:  Cancer; Enzyme; Hepatocellular carcinoma; Metabolism; Proline
    DOI:  https://doi.org/10.1007/s00726-021-02961-5
  11. Oncogenesis. 2021 Mar 03. 10(3): 22
      Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers, which lacks effective treatment strategies. There is an urgent need for the development of new strategies for PDAC therapy. The genetic and phenotypic heterogeneity of PDAC cancer cell populations poses further challenges in the clinical management of PDAC. In this study, we performed single-cell RNA sequencing to characterize PDAC tumors from KPC mice. Functional studies and clinical analysis showed that PDAC cluster 2 cells with highly Hsp90 expression is much more aggressive than the other clusters. Genetic and pharmacologic inhibition of Hsp90 impaired tumor cell growth both in vitro and in vivo. Further mechanistic study revealed that HSP90 inhibition disrupted the interaction between HSP90 and OPA1, leading to a reduction in mitochondrial cristae amount and mitochondrial energy production. Collectively, our study reveals that HSP90 might be a potential therapeutic target for PDAC.
    DOI:  https://doi.org/10.1038/s41389-021-00311-4
  12. Cancers (Basel). 2021 Feb 24. pii: 941. [Epub ahead of print]13(5):
      Increased glycolytic activity is a hallmark of cancer initiation and progression and is often observed in non-small cell lung cancer (NSCLC). Pyruvate dehydrogenase (PDH) complex acts as a gatekeeper between glycolysis and oxidative phosphorylation, and activation of PDH is known to inhibit glycolytic activity. As part of a standard therapeutic regimen, patients with NSCLC harboring oncogenic mutations in the epidermal growth factor receptor (EGFR) are treated with EGFR tyrosine kinase inhibitors (EGFR TKIs). Independent of good initial response, development of resistance to this therapy is inevitable. In the presented work, we propose that inhibition of glycolysis will add to the therapeutic effects and possibly prevent development of resistance against both EGFR TKIs and ionizing radiation in NSCLC. Analysis of transcriptome data from two independent NSCLC patient cohorts identified increased expression of pyruvate dehydrogenase kinase 1 (PDHK1) as well as upregulated expression of genes involved in glucose metabolism in tumors compared to normal tissue. We established in vitro models of development of resistance to EGFR TKIs to study metabolism and determine if targeting PDHK would prevent development of resistance to EGFR TKIs in NSCLC cells. The PDHK1 inhibitor dichloroacetate (DCA) in combination with EGFR TKIs and/or ionizing radiation was shown to increase the therapeutic effect in our NSCLC cell models. This mechanism was associated with redirected metabolism towards pyruvate oxidation and reduced lactate production, both in EGFR TKI sensitive and resistant NSCLC cells. Using DCA, the intracellular pool of pyruvate available for lactic fermentation becomes limited. Consequently, pyruvate is redirected to the mitochondria, and reinforces mitochondrial activity. Addition of DCA to cell culture deacidifies the extracellular microenvironment as less lactate is produced and excreted. In our study, we find that this redirection of metabolism adds to the therapeutic effect of EGFR TKI and ionizing radiation in NSCLC.
    Keywords:  DCA; EGFR TKI; NSCLC; PDH; PDHK; Warburg effect; glycolysis; ionizing radiation; mitochondria
    DOI:  https://doi.org/10.3390/cancers13050941
  13. J Biol Chem. 2021 Feb 25. pii: S0021-9258(21)00248-9. [Epub ahead of print] 100474
      Respiratory complex I (NADH:ubiquinone oxidoreductase), the first enzyme of the electron-transport chain, captures the free energy released by NADH oxidation and ubiquinone reduction to translocate protons across an energy-transducing membrane and drive ATP synthesis during oxidative phosphorylation. The cofactor that transfers the electrons directly to ubiquinone is an iron-sulfur cluster (N2) located in the NDUFS2/NUCM subunit. A nearby arginine residue (R121), which forms part of the second coordination sphere of the N2 cluster, is known to be post-translationally dimethylated but its functional and structural significance are not known. Here, we show that mutations of this arginine residue (R121M/K) abolish the quinone-reductase activity, concomitant with disappearance of the N2 signature from the electron paramagnetic resonance (EPR) spectrum. Analysis of the cryo-EM structure of NDUFS2-R121M complex I at 3.7 Å resolution identified the absence of the cubane N2 cluster as the cause of the dysfunction, within an otherwise intact enzyme. The mutation further induced localised disorder in nearby elements of the quinone-binding site, consistent with the close connections between the cluster and substrate-binding regions. Our results demonstrate that R121 is required for the formation and/or stability of the N2 cluster, and highlight the importance of structural analyses for mechanistic interpretation of biochemical and spectroscopic data on complex I variants.
    Keywords:  Complex I; NADH:ubiquinone oxidoreductase; Yarrowia lipolytica; cryo‐electron microscopy; dimethyl-arginine; electron paramagnetic resonance (EPR); iron‐sulfur cluster
    DOI:  https://doi.org/10.1016/j.jbc.2021.100474
  14. EMBO J. 2021 Mar 05. e106283
      Mitochondrial DNA (mtDNA) encodes several key components of respiratory chain complexes that produce cellular energy through oxidative phosphorylation. mtDNA is vulnerable to damage under various physiological stresses, especially oxidative stress. mtDNA damage leads to mitochondrial dysfunction, and dysfunctional mitochondria can be removed by mitophagy, an essential process in cellular homeostasis. However, how damaged mtDNA is selectively cleared from the cell, and how damaged mtDNA triggers mitophagy, remain mostly unknown. Here, we identified a novel mitophagy receptor, ATAD3B, which is specifically expressed in primates. ATAD3B contains a LIR motif that binds to LC3 and promotes oxidative stress-induced mitophagy in a PINK1-independent manner, thus promoting the clearance of damaged mtDNA induced by oxidative stress. Under normal conditions, ATAD3B hetero-oligomerizes with ATAD3A, thus promoting the targeting of the C-terminal region of ATAD3B to the mitochondrial intermembrane space. Oxidative stress-induced mtDNA damage or mtDNA depletion reduces ATAD3B-ATAD3A hetero-oligomerization and leads to exposure of the ATAD3B C-terminus at the mitochondrial outer membrane and subsequent recruitment of LC3 for initiating mitophagy. Furthermore, ATAD3B is little expressed in m.3243A > G mutated cells and MELAS patient fibroblasts showing endogenous oxidative stress, and ATAD3B re-expression promotes the clearance of m.3243A > G mutated mtDNA. Our findings uncover a new pathway to selectively remove damaged mtDNA and reveal that increasing ATAD3B activity is a potential therapeutic approach for mitochondrial diseases.
    Keywords:  ATAD3B; mitochondrial DNA; mitophagy; oxidative stress
    DOI:  https://doi.org/10.15252/embj.2020106283
  15. Metabolites. 2021 Feb 18. pii: 117. [Epub ahead of print]11(2):
      Itaconate is a small molecule metabolite that is endogenously produced by cis-aconitate decarboxylase-1 (ACOD1) in mammalian cells and influences numerous cellular processes. The metabolic consequences of itaconate in cells are diverse and contribute to its regulatory function. Here, we have applied isotope tracing and mass spectrometry approaches to explore how itaconate impacts various metabolic pathways in cultured cells. Itaconate is a competitive and reversible inhibitor of Complex II/succinate dehydrogenase (SDH) that alters tricarboxylic acid (TCA) cycle metabolism leading to succinate accumulation. Upon activation with coenzyme A (CoA), itaconyl-CoA inhibits adenosylcobalamin-mediated methylmalonyl-CoA (MUT) activity and, thus, indirectly impacts branched-chain amino acid (BCAA) metabolism and fatty acid diversity. Itaconate, therefore, alters the balance of CoA species in mitochondria through its impacts on TCA, amino acid, vitamin B12, and CoA metabolism. Our results highlight the diverse metabolic pathways regulated by itaconate and provide a roadmap to link these metabolites to potential downstream biological functions.
    Keywords:  TCA cycle metabolism; acetyl-CoA; branched-chain amino acids (BCAA); isotopic tracing; itaconate; itaconyl-CoA; methylmalonate; odd-chain fatty acids (OCFAs); propionyl-CoA; succinate; succinate dehydrogenase; vitamin B12
    DOI:  https://doi.org/10.3390/metabo11020117
  16. Cancers (Basel). 2021 Feb 18. pii: 850. [Epub ahead of print]13(4):
      Objective: Cachexia is a complex metabolic syndrome frequently occurring in cancer patients and exacerbated by chemotherapy. In skeletal muscle of cancer hosts, reduced oxidative capacity and low intracellular ATP resulting from abnormal mitochondrial function were described. Methods: The present study aimed at evaluating the ability of the mitochondria-targeted compound SS-31 to counteract muscle wasting and altered metabolism in C26-bearing (C26) mice either receiving chemotherapy (OXFU: oxaliplatin plus 5-fluorouracil) or not. Results: Mitochondrial dysfunction in C26-bearing (C26) mice associated with alterations of cardiolipin fatty acid chains. Selectively targeting cardiolipin with SS-31 partially counteracted body wasting and prevented the reduction of glycolytic myofiber area. SS-31 prompted muscle mitochondrial succinate dehydrogenase (SDH) activity and rescued intracellular ATP levels, although it was unable to counteract mitochondrial protein loss. Progressively increased dosing of SS-31 to C26 OXFU mice showed transient (21 days) beneficial effects on body and muscle weight loss before the onset of a refractory end-stage condition (28 days). At day 21, SS-31 prevented mitochondrial loss and abnormal autophagy/mitophagy. Skeletal muscle, liver and plasma metabolomes were analyzed, showing marked energy and protein metabolism alterations in tumor hosts. SS-31 partially modulated skeletal muscle and liver metabolome, likely reflecting an improved systemic energy homeostasis. Conclusions: The results suggest that targeting mitochondrial function may be as important as targeting protein anabolism/catabolism for the prevention of cancer cachexia. With this in mind, prospective multi-modal therapies including SS-31 are warranted.
    Keywords:  SS-31; cancer cachexia; liver; metabolomics; mitochondria; muscle wasting
    DOI:  https://doi.org/10.3390/cancers13040850
  17. Nat Commun. 2021 03 01. 12(1): 1366
      Cancer stem cells drive disease progression and relapse in many types of cancer. Despite this, a thorough characterization of these cells remains elusive and with it the ability to eradicate cancer at its source. In acute myeloid leukemia (AML), leukemic stem cells (LSCs) underlie mortality but are difficult to isolate due to their low abundance and high similarity to healthy hematopoietic stem cells (HSCs). Here, we demonstrate that LSCs, HSCs, and pre-leukemic stem cells can be identified and molecularly profiled by combining single-cell transcriptomics with lineage tracing using both nuclear and mitochondrial somatic variants. While mutational status discriminates between healthy and cancerous cells, gene expression distinguishes stem cells and progenitor cell populations. Our approach enables the identification of LSC-specific gene expression programs and the characterization of differentiation blocks induced by leukemic mutations. Taken together, we demonstrate the power of single-cell multi-omic approaches in characterizing cancer stem cells.
    DOI:  https://doi.org/10.1038/s41467-021-21650-1
  18. Nat Commun. 2021 Mar 05. 12(1): 1482
      Immune evasion is a hallmark of KRAS-driven cancers, but the underlying causes remain unresolved. Here, we use a mouse model of pancreatic ductal adenocarcinoma to inactivate KRAS by CRISPR-mediated genome editing. We demonstrate that at an advanced tumor stage, dependence on KRAS for tumor growth is reduced and is manifested in the suppression of antitumor immunity. KRAS-deficient cells retain the ability to form tumors in immunodeficient mice. However, they fail to evade the host immune system in syngeneic wild-type mice, triggering strong antitumor response. We uncover changes both in tumor cells and host immune cells attributable to oncogenic KRAS expression. We identify BRAF and MYC as key mediators of KRAS-driven tumor immune suppression and show that loss of BRAF effectively blocks tumor growth in mice. Applying our results to human PDAC we show that lowering KRAS activity is likewise associated with a more vigorous immune environment.
    DOI:  https://doi.org/10.1038/s41467-021-21736-w
  19. Nature. 2021 Mar 03.
      Symmetric cell division requires the even partitioning of genetic information and cytoplasmic contents between daughter cells. Whereas the mechanisms coordinating the segregation of the genome are well known, the processes that ensure organelle segregation between daughter cells remain less well understood1. Here we identify multiple actin assemblies with distinct but complementary roles in mitochondrial organization and inheritance in mitosis. First, we find a dense meshwork of subcortical actin cables assembled throughout the mitotic cytoplasm. This network scaffolds the endoplasmic reticulum and organizes three-dimensional mitochondrial positioning to ensure the equal segregation of mitochondrial mass at cytokinesis. Second, we identify a dynamic wave of actin filaments reversibly assembling on the surface of mitochondria during mitosis. Mitochondria sampled by this wave are enveloped within actin clouds that can spontaneously break symmetry to form elongated comet tails. Mitochondrial comet tails promote randomly directed bursts of movement that shuffle mitochondrial position within the mother cell to randomize inheritance of healthy and damaged mitochondria between daughter cells. Thus, parallel mechanisms mediated by the actin cytoskeleton ensure both equal and random inheritance of mitochondria in symmetrically dividing cells.
    DOI:  https://doi.org/10.1038/s41586-021-03309-5
  20. Cell Stem Cell. 2021 Mar 04. pii: S1934-5909(21)00061-8. [Epub ahead of print]28(3): 394-408
      Recent evidence supports the notion that mitochondrial metabolism is necessary for the determination of stem cell fate. Historically, mitochondrial metabolism is linked to the production of ATP and tricarboxylic acid (TCA) cycle metabolites to support stem cell survival and growth, respectively. However, it is now clear that beyond these canonical roles, mitochondria as signaling organelles dictate stem cell fate and function. In this review, we focus on key conceptual ideas on how mitochondria control mammalian stem cell fate and function through reactive oxygen species (ROS) generation, TCA cycle metabolite production, NAD+/NADH ratio regulation, pyruvate metabolism, and mitochondrial dynamics.
    Keywords:  L-2-HG; ROS; TCA cycle; acetyl-CoA; epigenetics; mitochondrial dynamics; pyruvate
    DOI:  https://doi.org/10.1016/j.stem.2021.02.011
  21. J Biol Chem. 2021 Feb 24. pii: S0021-9258(21)00242-8. [Epub ahead of print] 100469
      Alterations in mitochondrial fission may contribute to the pathophysiology of several neurodegenerative diseases, including Alzheimer's disease (AD). However, we understand very little about the normal functions of fission, or how fission disruption may interact with AD-associated proteins to modulate pathogenesis. Here we show that loss of the central mitochondrial fission protein dynamin-related 1 (Drp1) in CA1 and other forebrain neurons markedly worsens the learning and memory of mice expressing mutant human amyloid-precursor protein (hAPP) in neurons. In cultured neurons, Drp1KO and hAPP converge to produce mitochondrial Ca2+ (mitoCa2+) overload, despite decreasing mitochondria-associated ER membranes (MAMs) and cytosolic Ca2+. This mitoCa2+ overload occurs independently of ATP levels. These findings reveal a potential mechanism by which mitochondrial fission protects against hAPP-driven pathology.
    Keywords:  Alzheimer’s disease; Drp1; amyloid precursor protein (APP); mitochondria; mitochondrial calcium; mitochondrial fission; neurodegeneration; neurodegenerative disease
    DOI:  https://doi.org/10.1016/j.jbc.2021.100469
  22. Cell Metab. 2021 Mar 02. pii: S1550-4131(21)00060-7. [Epub ahead of print]33(3): 468-470
      As age is the greatest risk factor for the development of most prevalent chronic diseases, there is an enormous interest in understanding the process of aging, with the hope of delaying or preventing age-related comorbidities. Along these lines, a recent study by Minhas et al. (2021) describes how aged macrophages downregulate glycolysis and mitochondrial oxidative phosphorylation (OXPHOS), inducing an energy-deficient state that compromises macrophage function and supports maladaptive inflammation that together cause brain dysfunction.
    DOI:  https://doi.org/10.1016/j.cmet.2021.02.004
  23. Cell Metab. 2021 Mar 02. pii: S1550-4131(21)00067-X. [Epub ahead of print]33(3): 462-463
      Obesity is a risk factor for many cancers. Maguire et al. (2021) found increased creatine synthesis by the adipocytes adjacent to breast cancers in obese mice. The creatine is transported into the cancer cells, producing larger tumors, possibly due to greater energy availability.
    DOI:  https://doi.org/10.1016/j.cmet.2021.02.011
  24. J Evol Biol. 2021 Feb 28.
      Across eukaryotes, genes encoding bioenergetic machinery are located in both mitochondrial and nuclear DNA, and incompatibilities between the two genomes can be devastating. Mitochondria are often inherited maternally, and theory predicts sex-specific fitness effects of mitochondrial mutational diversity. Yet how evolution acts on linkage patterns between mitochondrial and nuclear genomes is poorly understood. Using novel mito-nuclear population genetic models, we show that the interplay between nuclear and mitochondrial genes maintains mitochondrial haplotype diversity within populations, and it selects both for sex-independent segregation of mitochondrion-interacting genes and for paternal leakage. These effects of genetic linkage evolution can eliminate male-harming fitness effects of mtDNA mutational diversity. With maternal mitochondrial inheritance, females maintain a tight mitochondrial-nuclear match, but males accumulate mismatch mutations because of the weak statistical associations between the two genomic components. Sex-independent segregation of mitochondria-interacting loci improves the mito-nuclear match. In a sexually antagonistic evolutionary process, male nuclear alleles evolve to increase the rate of recombination, while females evolve to suppress it. Paternal leakage of mitochondria can evolve as an alternative mechanism to improve the mito-nuclear linkage. Our modelling framework provides an evolutionary explanation for the observed paucity of mitochondrion-interacting genes on mammalian sex chromosomes and for paternal leakage in protists, plants, fungi, and some animals.
    DOI:  https://doi.org/10.1111/jeb.13776
  25. Cancer Discov. 2021 Mar 02. pii: candisc.0119.2020. [Epub ahead of print]
      Although pancreatic ductal adenocarcinoma (PDAC) cells are exposed to a nutrient-depleted tumor microenvironment, they can acquire nutrients via macropinocytosis, an endocytic form of protein scavenging that functions to support cancer metabolism. Here, we provide evidence that macropinocytosis is operational in the pancreatic tumor stroma. We find that glutamine deficiency triggers macropinocytic uptake in pancreatic cancer-associated fibroblasts (CAFs). Mechanistically, we decipher that stromal macropinocytosis is potentiated via the enhancement of cytosolic Ca2+ and dependent on ARHGEF2 and CaMKK2-AMPK signaling. We elucidate that macropinocytosis has dual function in CAFs - it serves as a source of intracellular amino acids that sustain CAF cell fitness and function, and it provides secreted amino acids that promote tumor cell survival. Importantly, we demonstrate that stromal macropinocytosis supports PDAC tumor growth. These results highlight the functional role of macropinocytosis in the tumor stroma and provide a mechanistic understanding of how nutrient deficiency can control stromal protein scavenging.
    DOI:  https://doi.org/10.1158/2159-8290.CD-20-0119
  26. Redox Biol. 2021 Feb 20. pii: S2213-2317(21)00055-0. [Epub ahead of print]41 101907
      BACKGROUND: Numerous pathologies result in multiple-organ failure, which is thought to be a direct consequence of compromised cellular bioenergetic status. Neither the nature of this phenotype nor its relevance to survival are well understood, limiting the efficacy of modern life-support.METHODS: To explore the hypothesis that survival from critical illness relates to changes in cellular bioenergetics, we combined assessment of mitochondrial respiration with metabolomic, lipidomic and redox profiling in skeletal muscle and blood, at multiple timepoints, in 21 critically ill patients and 12 reference patients.
    RESULTS: We demonstrate an end-organ cellular phenotype in critical illness, characterized by preserved total energetic capacity, greater coupling efficiency and selectively lower capacity for complex I and fatty acid oxidation (FAO)-supported respiration in skeletal muscle, compared to health. In survivors, complex I capacity at 48 h was 27% lower than in non-survivors (p = 0.01), but tended to increase by day 7, with no such recovery observed in non-survivors. By day 7, survivors' FAO enzyme activity was double that of non-survivors (p = 0.048), in whom plasma triacylglycerol accumulated. Increases in both cellular oxidative stress and reductive drive were evident in early critical illness compared to health. Initially, non-survivors demonstrated greater plasma total antioxidant capacity but ultimately higher lipid peroxidation compared to survivors. These alterations were mirrored by greater levels of circulating total free thiol and nitrosated species, consistent with greater reductive stress and vascular inflammation, in non-survivors compared to survivors. In contrast, no clear differences in systemic inflammatory markers were observed between the two groups.
    CONCLUSION: Critical illness is associated with rapid, specific and coordinated alterations in the cellular respiratory machinery, intermediary metabolism and redox response, with different trajectories in survivors and non-survivors. Unravelling the cellular and molecular foundation of human resilience may enable the development of more effective life-support strategies.
    Keywords:  Critical illness; Energy metabolism; Mitochondria; Oxidative stress; Redox signaling; Stress physiology
    DOI:  https://doi.org/10.1016/j.redox.2021.101907
  27. Aging (Albany NY). 2021 Feb 26. 13
      mTOR is well known to promote tumor growth but its roles in enhancing chemotherapy and radiotherapy have not been well studied. mTOR inhibition by rapamycin can sensitize cancer cells to radiotherapy. Here we show that Maf1 is required for rapamycin to increase radio-sensitivity in A549 lung cancer cells. In response to ionizing radiation (IR), Maf1 is inhibited by Akt-dependent re-phosphorylation, which activates mitochondrial unfolded protein response (UPRmt) through ATF5. Rapamycin suppresses IR-induced Maf1 re-phosphorylation and UPRmt activation in A549 cells, resulting in increased sensitivity to IR-mediated cytotoxicity. Consistently, Maf1 knockdown activates ATF5-transcription of mtHSP70 and HSP60, enhances mitochondrial membrane potential, reduces intracellular ROS levels and dampens rapamycin's effect on increasing IR-mediated cytotoxicity. In addition, Maf1 overexpression suppresses ethidium bromide-induced UPRmt and enhances IR-mediated cytotoxicity. Supporting our cell-based studies, elevated expression of UPRmt makers (mtHSP70 and HSP60) are associated with poor prognosis in patients with lung adenocarcinoma (LAUD). Together, our study reveals a novel role of Maf1-UPRmt axis in mediating rapamycin's enhancing effect on IR sensitivity in A549 lung cancer cells.
    Keywords:  Maf1; mTOR; mitochondrial unfolded protein response; non-small cell lung cancer cell; radio-resistance
    DOI:  https://doi.org/10.18632/aging.202584
  28. Nat Commun. 2021 Mar 05. 12(1): 1460
      Mitochondria are important regulators of macrophage polarisation. Here, we show that arginase-2 (Arg2) is a microRNA-155 (miR-155) and interleukin-10 (IL-10) regulated protein localized at the mitochondria in inflammatory macrophages, and is critical for IL-10-induced modulation of mitochondrial dynamics and oxidative respiration. Mechanistically, the catalytic activity and presence of Arg2 at the mitochondria is crucial for oxidative phosphorylation. We further show that Arg2 mediates this process by increasing the activity of complex II (succinate dehydrogenase). Moreover, Arg2 is essential for IL-10-mediated downregulation of the inflammatory mediators succinate, hypoxia inducible factor 1α (HIF-1α) and IL-1β in vitro. Accordingly, HIF-1α and IL-1β are highly expressed in an LPS-induced in vivo model of acute inflammation using Arg2-/- mice. These findings shed light on a new arm of IL-10-mediated metabolic regulation, working to resolve the inflammatory status of the cell.
    DOI:  https://doi.org/10.1038/s41467-021-21617-2
  29. Int J Mol Sci. 2021 Feb 19. pii: 2046. [Epub ahead of print]22(4):
      Although understanding of the biomedical basis of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is growing, the underlying pathological mechanisms remain uncertain. We recently reported a reduction in the proportion of basal oxygen consumption due to ATP synthesis by Complex V in ME/CFS patient-derived lymphoblast cell lines, suggesting mitochondrial respiratory inefficiency. This was accompanied by elevated respiratory capacity, elevated mammalian target of rapamycin complex 1 (mTORC1) signaling activity and elevated expression of enzymes involved in the TCA cycle, fatty acid β-oxidation and mitochondrial transport. These and other observations led us to hypothesise the dysregulation of pathways providing the mitochondria with oxidisable substrates. In our current study, we aimed to revisit this hypothesis by applying a combination of whole-cell transcriptomics, proteomics and energy stress signaling activity measures using subsets of up to 34 ME/CFS and 31 healthy control lymphoblast cell lines from our growing library. While levels of glycolytic enzymes were unchanged in accordance with our previous observations of unaltered glycolytic rates, the whole-cell proteomes of ME/CFS lymphoblasts contained elevated levels of enzymes involved in the TCA cycle (p = 1.03 × 10-4), the pentose phosphate pathway (p = 0.034, G6PD p = 5.5 × 10-4), mitochondrial fatty acid β-oxidation (p = 9.2 × 10-3), and degradation of amino acids including glutamine/glutamate (GLS p = 0.034, GLUD1 p = 0.048, GOT2 p = 0.026), branched-chain amino acids (BCKDHA p = 0.028, BCKDHB p = 0.031) and essential amino acids (FAH p = 0.036, GCDH p = 0.006). The activity of the major cellular energy stress sensor, AMPK, was elevated but the increase did not reach statistical significance. The results suggest that ME/CFS metabolism is dysregulated such that alternatives to glycolysis are more heavily utilised than in controls to provide the mitochondria with oxidisable substrates.
    Keywords:  ME/CFS; Myalgic Encephalomyelitis; TCA cycle; amino acid catabolism; beta-oxidation; glycolysis; metabolism; mitochondria; proteomics; transcriptomics
    DOI:  https://doi.org/10.3390/ijms22042046
  30. Mitochondrion. 2021 Feb 24. pii: S1567-7249(21)00014-3. [Epub ahead of print]
      Type 2 Diabetes mellitus (T2DM) has become a major public health issue associated with a high risk of late-onset Alzheimer's disease (LOAD). Mitochondrial dysfunction is one of the molecular events that occur in the LOAD pathophysiology. The present study was planned to investigate the molecular alterations induced by hyperglycemia in the mitochondria of diabetic mice and further explore the possible ameliorative role of the mitochondria-targeted small peptide, SS31 in diabetic mice. For this purpose, we used a polygenic mouse model of type 2 diabetes, TALLYHO/JngJ (TH), and nondiabetic, SWR/J mice strains. The diabetic status in TH mice was confirmed by carrying out at 8 weeks of age. The 24 weeks old experimental animals were segregated into three groups: Nondiabetic controls (SWR/J mice), diabetic (TH mice) and, SS31 treated diabetic TH mice. mRNA and protein expression levels of mitochondrial proteins were investigated in all the study groups in the liver tissues using qPCR and immunoblot analysis. Also, the mitochondrial functions including H2O2 production, ATP generation, and lipid peroxidation were assessed in all the groups. Mitochondrial dysfunction was observed in TH mice as evident by significantly elevated H2O2 production, lipid peroxidation, and reduced ATP production. The mRNA expression and Western blot analysis of mitochondrial dynamics (Drp1 and Fis1 - fission; Mfn1, Mfn2, and Opa1 -fusion), and biogenesis (PGC-1α, Nrf1, Nrf2, and TFAM) genes were significantly altered in diabetic TH mice. Furthermore, SS31 treatment helps in a significant reduction the mitochondrial abnormalities and restore mitochondrial functions in diabetic TH mice.
    Keywords:  ATP; Biogenesis; Liver tissue; Mitochondrial dynamics; Oxidative stress; Type 2 diabetes
    DOI:  https://doi.org/10.1016/j.mito.2021.02.007
  31. Cancers (Basel). 2021 Feb 26. pii: 978. [Epub ahead of print]13(5):
      MACC1 is a prognostic and predictive metastasis biomarker for more than 20 solid cancer entities. However, its role in cancer metabolism is not sufficiently explored. Here, we report on how MACC1 impacts the use of glucose, glutamine, lactate, pyruvate and fatty acids and show the comprehensive analysis of MACC1-driven metabolic networks. We analyzed concentration-dependent changes in nutrient use, nutrient depletion, metabolic tracing employing 13C-labeled substrates, and in vivo studies. We found that MACC1 permits numerous effects on cancer metabolism. Most of those effects increased nutrient uptake. Furthermore, MACC1 alters metabolic pathways by affecting metabolite production or turnover from metabolic substrates. MACC1 supports use of glucose, glutamine and pyruvate via their increased depletion or altered distribution within metabolic pathways. In summary, we demonstrate that MACC1 is an important regulator of metabolism in cancer cells.
    Keywords:  MACC1; cancer metabolism; colorectal cancer; metabolic networks; metabolic profiling
    DOI:  https://doi.org/10.3390/cancers13050978
  32. Antioxidants (Basel). 2021 Feb 20. pii: 317. [Epub ahead of print]10(2):
      Inducers of ferroptosis such as the glutathione depleting agent Erastin and the GPX4 inhibitor Rsl-3 are being actively explored as potential therapeutics in various cancers, but the factors that determine their sensitivity are poorly understood. Here, we show that expression levels of both subunits of the cystine/glutamate antiporter xCT determine the expression of GPX4 in breast cancer, and that upregulation of the xCT/selenocysteine biosynthesis/GPX4 production axis paradoxically renders the cancer cells more sensitive to certain types of ferroptotic stimuli. We find that GPX4 is strongly upregulated in a subset of breast cancer tissues compared to matched normal samples, and that this is tightly correlated with the increased expression of the xCT subunits SLC7A11 and SLC3A2. Erastin depletes levels of the antioxidant selenoproteins GPX4 and GPX1 in breast cancer cells by inhibiting xCT-dependent extracellular reduction which is required for selenium uptake and selenocysteine biosynthesis. Unexpectedly, while breast cancer cells are resistant compared to nontransformed cells against oxidative stress inducing drugs, at the same time they are hypersensitive to lipid peroxidation and ferroptosis induced by Erastin or Rsl-3, indicating that they are 'addicted' to the xCT/GPX4 axis. Our findings provide a strategic basis for targeting the anti-ferroptotic machinery of breast cancer cells depending on their xCT status, which can be further explored.
    Keywords:  Erastin; GPX4; Rsl-3; breast cancer; ferroptosis; lipid peroxidation; selenium
    DOI:  https://doi.org/10.3390/antiox10020317
  33. Cancers (Basel). 2021 Feb 26. pii: 982. [Epub ahead of print]13(5):
      Natural products have numerous bioactivities and are expected to be a resource for potent drugs. However, their direct targets in cells often remain unclear. We found that rabdosianone I, which is a bitter diterpene from an oriental herb for longevity, Isodon japonicus Hara, markedly inhibited the growth of human colorectal cancer cells by downregulating the expression of thymidylate synthase (TS). Next, using rabdosianone I-immobilized nano-magnetic beads, we identified two mitochondrial inner membrane proteins, adenine nucleotide translocase 2 (ANT2) and prohibitin 2 (PHB2), as direct targets of rabdosianone I. Consistent with the action of rabdosianone I, the depletion of ANT2 or PHB2 reduced TS expression in a different manner. The knockdown of ANT2 or PHB2 promoted proteasomal degradation of TS protein, whereas that of not ANT2 but PHB2 reduced TS mRNA levels. Thus, our study reveals the ANT2- and PHB2-mediated pleiotropic regulation of TS expression and demonstrates the possibility of rabdosianone I as a lead compound of TS suppressor.
    Keywords:  adenine nucleotide translocase 2; chemical biology; natural products; prohibitin 2; rabdosianone I; thymidylate synthase
    DOI:  https://doi.org/10.3390/cancers13050982
  34. Antioxidants (Basel). 2021 Feb 25. pii: 346. [Epub ahead of print]10(3):
      Prx V mRNA contains two in-frame AUG codons, producing a long (L-Prx V) and short form of Prx V (S-Prx V), and mouse L-Prx V is expressed as a precursor protein containing a 49-amino acid N-terminal mitochondria targeting sequence. Here, we show that the N-terminal 41-residue sequence of L-Prx V is cleaved by mitochondrial processing peptidase (MPP) in the mitochondrial matrix to produce an intermediate Prx V (I-Prx V) with a destabilizing phenylalanine at its N-terminus, and further, that the next 8-residue sequence is cleaved by mitochondrial intermediate peptidase (MIP) to convert I-Prx V to a stabilized mature form that is identical to S-Prx V. Further, we show that when mitochondrial H2O2 levels are increased in HeLa cells using rotenone, in several mouse tissues by deleting Prx III, and in the adrenal gland by deleting Srx or by exposing mice to immobilized stress, I-Prx V accumulates transiently and mature S-Prx V levels decrease in mitochondria over time. These findings support the view that MIP is inhibited by H2O2, resulting in the accumulation and subsequent degradation of I-Prx V, identifying a role for redox mediated regulation of Prx V proteolytic maturation and expression in mitochondria.
    Keywords:  hydrogen peroxide; mitochondria targeting sequence; mitochondrial intermediate peptidase; peroxiredoxin V
    DOI:  https://doi.org/10.3390/antiox10030346
  35. Pharmaceuticals (Basel). 2021 Feb 26. pii: 191. [Epub ahead of print]14(3):
      Hypopharyngeal squamous cell carcinoma (HSCC) is usually diagnosed at an advanced stage, leading to a poor prognosis. Even after improvement of surgical techniques, chemotherapy, and radiation technology, the survival rate of HSCC remains poor. Metformin, which is commonly used for type 2 diabetes mellitus (DM), has been suggested to reduce the risk of various cancer types. However, only a few clinical studies mentioned the relationship between metformin use and HSCC. Hence, the aim of this study was to elucidate the specific effect and mechanism of action of metformin in hypopharyngeal cancer. We first assessed whether metformin use has an effect on hypopharyngeal cancer patients with DM by conducting a retrospective cohort study. Our results showed that DM hypopharyngeal cancer patients who used metformin exhibited significantly better overall survival rates than that without metformin treatment. The cell-based analysis further indicated that metformin treatment regulated p38/JNK pathway to reduce Cyclin D1 and Bcl-2 expressions. In addition, metformin activated the pathways of AMPKα and MEK/ERK to phosphorylate p27(Thr198) and reduce mTOR phosphorylation in cells. These actions direct cells toward G1 cell cycle arrest, apoptosis, and autophagy. Our results, through combining a clinical cohort analysis with an in vitro study, demonstrate that metformin can be used for drug repositioning in the treatment of DM patients with hypopharyngeal cancer.
    Keywords:  anticancer; autophagy; drug repositioning; hypopharyngeal squamous cell carcinoma; metformin; mortality
    DOI:  https://doi.org/10.3390/ph14030191
  36. Pharmaceutics. 2021 Feb 12. pii: 254. [Epub ahead of print]13(2):
      Recently, it was proposed that the thiophene ring is capable of promoting mitochondrial accumulation when linked to fluorescent markers. As a noncharged group, thiophene presents several advantages from a synthetic point of view, making it easier to incorporate such a side moiety into different molecules. Herein, we confirm the general applicability of the thiophene group as a mitochondrial carrier for drugs and fluorescent markers based on a new concept of nonprotonable, noncharged transporter. We implemented this concept in a medicinal chemistry application by developing an antitumor, metabolic chimeric drug based on the pyruvate dehydrogenase kinase (PDHK) inhibitor dichloroacetate (DCA). The promising features of the thiophene moiety as a noncharged carrier for targeting mitochondria may represent a starting point for the design of new metabolism-targeting drugs.
    Keywords:  antitumor agents; fluorescence lifetime imaging; medicinal chemistry; metabolic drug; mitochondrial carrier
    DOI:  https://doi.org/10.3390/pharmaceutics13020254
  37. PLoS One. 2021 ;16(3): e0247567
      Despite the increasing demand of cellular therapies for dogs, little is known on the differences between adult and fetal adnexa canine mesenchymal stem cells (MSCs), and data on their metabolic features are lacking. The present study aimed at comparing the characteristics of canine adipose tissue (AT) and umbilical cord matrix (UC) MSCs. Moreover, for the first time in the dog, the cellular bioenergetics were investigated by evaluating the two main metabolic pathways (oxidative phosphorylation and glycolysis) of ATP production. Frozen-thawed samples were used for this study. No differences in mean cell proliferation were found (P>0.05). However, while AT-MSCs showed a progressive increase in doubling time over passages, UC-MSCs showed an initial post freezing-thawing latency. No differences in migration, spheroid formation ability, and differentiation potential were found (P>0.05). RT-PCR analysis confirmed the expression of CD90 and CD44, the lack of CD14 and weak expression of CD34, mostly by AT-MSCs. DLA-DRA1 and DLA-DQA1 were weakly expressed only at passage 0 by UC-MSCs, while they were expressed at different passages for AT-MSCs. There was no difference (P>0.05) in total ATP production between cell cultures, but the ratio between the "mitochondrial ATP Production Rate" and the "glycolytic ATP Production Rate" was higher (P<0.05) in AT- than in UC-MSCs. However, in both MSCs types the mitochondrial respiration was the main pathway of ATP production. Mitochondrial respiration and ATP turnover in UC-MSCs were higher (P<0.05) than in AT-MSCs, but both had a 100% coupling efficiency. These features and the possibility of increasing the oxygen consumption by a spare respiratory capacity of four (AT-MSCSs) and two (UC-MSCs) order of magnitude greater than basal respiration, can be taken as indicative of the cell propensity to differentiate. The findings may efficiently contribute to select the most appropriate MSCs, culture and experimental conditions for transplantation experiments in mesenchymal stem cell therapy for companion animals.
    DOI:  https://doi.org/10.1371/journal.pone.0247567
  38. Nat Commun. 2021 03 02. 12(1): 1394
      N6-methyladenosine (m6A) is a reversible mRNA modification that has been shown to play important roles in various biological processes. However, the roles of m6A modification in macrophages are still unknown. Here, we discover that ablation of Mettl3 in myeloid cells promotes tumour growth and metastasis in vivo. In contrast to wild-type mice, Mettl3-deficient mice show increased M1/M2-like tumour-associated macrophage and regulatory T cell infiltration into tumours. m6A sequencing reveals that loss of METTL3 impairs the YTHDF1-mediated translation of SPRED2, which enhances the activation of NF-kB and STAT3 through the ERK pathway, leading to increased tumour growth and metastasis. Furthermore, the therapeutic efficacy of PD-1 checkpoint blockade is attenuated in Mettl3-deficient mice, identifying METTL3 as a potential therapeutic target for tumour immunotherapy.
    DOI:  https://doi.org/10.1038/s41467-021-21514-8
  39. J Biol Chem. 2021 Mar 01. pii: S0021-9258(21)00259-3. [Epub ahead of print] 100485
      Copper is essential for the activity and stability of cytochrome c oxidase (CcO), the terminal enzyme of the mitochondrial respiratory chain. Loss-of-function mutations in genes required for copper transport to CcO result in fatal human disorders. Despite the fundamental importance of copper in mitochondrial and organismal physiology, systematic identification of genes that regulate mitochondrial copper homeostasis is lacking. To discover these genes, we performed a genome-wide screen using a library of DNA-barcoded yeast deletion mutants grown in copper-supplemented media. Our screen recovered a number of genes known to be involved in cellular copper homeostasis as well as genes previously not linked to mitochondrial copper biology. These newly identified genes include the subunits of the adaptor protein 3 complex (AP-3) and components of the cellular pH-sensing pathway Rim20 and Rim21, both of which are known to affect vacuolar function. We find that AP-3 and Rim mutants exhibit decreased vacuolar acidity, which in turn perturbs mitochondrial copper homeostasis and CcO function. CcO activity of these mutants could be rescued by either restoring vacuolar pH or by supplementing growth media with additional copper. Consistent with these genetic data, pharmacological inhibition of the vacuolar proton pump leads to decreased mitochondrial copper content and a concomitant decrease in CcO abundance and activity. Taken together, our study uncovered novel genetic regulators of mitochondrial copper homeostasis and provided a mechanism by which vacuolar pH impacts mitochondrial respiration through copper homeostasis.
    Keywords:  AP-3; Copper; Rim20; Rim21; cytochrome c oxidase; mitochondria; pH; vacuole
    DOI:  https://doi.org/10.1016/j.jbc.2021.100485
  40. Cell Metab. 2021 Feb 23. pii: S1550-4131(21)00061-9. [Epub ahead of print]
      Forward genetic screens across hundreds of cancer cell lines have started to define the genetic dependencies of proliferating human cells and how these vary by genotype and lineage. Most screens, however, have been carried out in culture media that poorly reflect metabolite availability in human blood. Here, we performed CRISPR-based screens in traditional versus human plasma-like medium (HPLM). Sets of conditionally essential genes in human cancer cell lines span several cellular processes and vary with both natural cell-intrinsic diversity and the combination of basal and serum components that comprise typical media. Notably, we traced the causes for each of three conditional CRISPR phenotypes to the availability of metabolites uniquely defined in HPLM versus conventional media. Our findings reveal the profound impact of medium composition on gene essentiality in human cells, and also suggest general strategies for using genetic screens in HPLM to uncover new cancer vulnerabilities and gene-nutrient interactions.
    Keywords:  CRISPR; HPLM; conditional gene essentiality; gene-nutrient interaction; genetic screen; physiologic medium
    DOI:  https://doi.org/10.1016/j.cmet.2021.02.005
  41. Cancers (Basel). 2021 Feb 17. pii: 843. [Epub ahead of print]13(4):
      Multiple myeloma and its precursor plasma cell dyscrasias affect 3% of the elderly population in the US. Proteasome inhibitors are an essential part of several standard drug combinations used to treat this incurable cancer. These drugs interfere with the main pathway of protein degradation and lead to the accumulation of damaged proteins inside cells. Despite promising initial responses, multiple myeloma cells eventually become drug resistant in most patients. The biology behind relapsed/refractory multiple myeloma is complex and poorly understood. Several studies provide evidence that in addition to the proteasome, mitochondrial proteases can also contribute to protein quality control outside of mitochondria. We therefore hypothesized that mitochondrial proteases might counterbalance protein degradation in cancer cells treated with proteasome inhibitors. Using clinical and experimental data, we found that overexpression of the mitochondrial matrix protease LonP1 (Lon Peptidase 1) reduces the efficacy of proteasome inhibitors. Some proteasome inhibitors partially crossinhibit LonP1. However, we show that the resistance effect of LonP1 also occurs when using drugs that do not block this protease, suggesting that LonP1 can compensate for loss of proteasome activity. These results indicate that targeting both the proteasome and mitochondrial proteases such as LonP1 could be beneficial for treatment of multiple myeloma.
    Keywords:  bortezomib; carfilzomib; drug resistance; mitoprotease; multiple myeloma; ubiquitin-proteasome system
    DOI:  https://doi.org/10.3390/cancers13040843
  42. Cell Metab. 2021 Mar 02. pii: S1550-4131(21)00066-8. [Epub ahead of print]33(3): 470-472
      When T cells are exposed to continuous antigen stimulation, they become exhausted. Here, we preview findings from Scharping et al. (2021), who have illuminated the molecular mechanism by which the persistent antigen stimulation and severe hypoxic conditions in the intratumoral environment drive T cell exhaustion, losing their cytotoxic function and anticancer effects.
    DOI:  https://doi.org/10.1016/j.cmet.2021.02.010
  43. Int J Mol Sci. 2021 Feb 11. pii: 1805. [Epub ahead of print]22(4):
      The conventional two-dimensional (2D) culture is available as an in vitro experimental model. However, the culture system reportedly does not recapitulate the in vivo cancer microenvironment. We recently developed a tissueoid cell culture system using Cellbed, which resembles the loose connective tissue in living organisms. The present study performed 2D and three-dimensional (3D) culture using prostate and bladder cancer cell lines and a comprehensive metabolome analysis. Compared to 3D, the 2D culture had significantly lower levels of most metabolites. The 3D culture system did not impair mitochondrial function in the cancer cells and produce energy through the mitochondria simultaneously with aerobic glycolysis. Conversely, ATP production, biomass (nucleotides, amino acids, lipids and NADPH) synthesis and redox balance maintenance were conducted in 3D culture. In contrast, in 2D culture, biomass production was delayed due to the suppression of metabolic activity. The 3D metabolome analysis using the tissueoid cell culture system capable of in vivo cancer cell culture yielded results consistent with previously reported cancer metabolism theories. This system is expected to be an essential experimental tool in a wide range of cancer research fields, especially in preclinical stages while transitioning from in vitro to in vivo.
    Keywords:  cancer metabolism; prostate cancer; three-dimensional; tissueoid cell culture system; urinary bladder cancer
    DOI:  https://doi.org/10.3390/ijms22041805
  44. Proc Natl Acad Sci U S A. 2021 Mar 09. pii: e2026507118. [Epub ahead of print]118(10):
      Ki-67 is a nuclear protein that is expressed in all proliferating vertebrate cells. Here, we demonstrate that, although Ki-67 is not required for cell proliferation, its genetic ablation inhibits each step of tumor initiation, growth, and metastasis. Mice lacking Ki-67 are resistant to chemical or genetic induction of intestinal tumorigenesis. In established cancer cells, Ki-67 knockout causes global transcriptome remodeling that alters the epithelial-mesenchymal balance and suppresses stem cell characteristics. When grafted into mice, tumor growth is slowed, and metastasis is abrogated, despite normal cell proliferation rates. Yet, Ki-67 loss also down-regulates major histocompatibility complex class I antigen presentation and, in the 4T1 syngeneic model of mammary carcinoma, leads to an immune-suppressive environment that prevents the early phase of tumor regression. Finally, genes involved in xenobiotic metabolism are down-regulated, and cells are sensitized to various drug classes. Our results suggest that Ki-67 enables transcriptional programs required for cellular adaptation to the environment. This facilitates multiple steps of carcinogenesis and drug resistance, yet may render cancer cells more susceptible to antitumor immune responses.
    Keywords:  Ki-67; cancer; genetically modified mice; transcription
    DOI:  https://doi.org/10.1073/pnas.2026507118
  45. Mol Cell Proteomics. 2021 Feb 25. pii: S1535-9476(21)00038-4. [Epub ahead of print] 100065
      Drosophila melanogaster has been a workhorse of genetics and cell biology for more than a century. However, proteomic-based methods have been limited due to the complexity and dynamic range of the fly proteome and the lack of efficient labelling methods. Here, we advanced a chemically defined food source into direct stable-isotope labelling of amino acids in flies (SILAF). It allows for the rapid and cost-efficient generation of a large number of larvae or flies, with full incorporation of lysine-[13C6] after six labelling days. SILAF followed by fractionation and enrichment gave proteomic insights at a depth of 7,196 proteins and 8,451 phosphorylation sites, which substantiated metabolic regulation on enzymatic level. We applied SILAF to quantify the mitochondrial phosphoproteome of an early-stage leucine-rich PPR motif-containing protein (LRPPRC)-knockdown fly model of mitochondrial disease that almost exclusively affects protein levels of the oxidative phosphorylation (OXPHOS) system. While the mitochondrial compartment was hypo-phosphorylated, two conserved phospho-sites on OXPHOS subunits NDUFB10 and NDUFA4 were significantly upregulated upon impaired OXPHOS function. The ease and versatility of the method actuates the fruit fly as an appealing model in proteomic and post-translational modification studies and it enlarges potential metabolic applications based on heavy amino acid diets.
    DOI:  https://doi.org/10.1016/j.mcpro.2021.100065
  46. Cancers (Basel). 2021 Feb 28. pii: 1003. [Epub ahead of print]13(5):
      Dihydroorotate Dehydrogenase (DHODH) is a key enzyme of the de novo pyrimidine biosynthesis, whose inhibition can induce differentiation and apoptosis in acute myeloid leukemia (AML). DHODH inhibitors had shown promising in vitro and in vivo activity on solid tumors, but their effectiveness was not confirmed in clinical trials, probably because cancer cells exploited the pyrimidine salvage pathway to survive. Here, we investigated the antileukemic activity of MEDS433, the DHODH inhibitor developed by our group, against AML. Learning from previous failures, we mimicked human conditions (performing experiments in the presence of physiological uridine plasma levels) and looked for synergic combinations to boost apoptosis, including classical antileukemic drugs and dipyridamole, a blocker of the pyrimidine salvage pathway. MEDS433 induced apoptosis in multiple AML cell lines, not only as a consequence of differentiation, but also directly. Its combination with antileukemic agents further increased the apoptotic rate, but when experiments were performed in the presence of physiological uridine concentrations, results were less impressive. Conversely, the combination of MEDS433 with dipyridamole induced metabolic lethality and differentiation in all AML cell lines; this extraordinary synergism was confirmed on AML primary cells with different genetic backgrounds and was unaffected by physiological uridine concentrations, predicting in human activity.
    Keywords:  DHODH; acute myeloid leukemia; apoptosis; cancer metabolism; differentiation; dipyridamole; pyrimidine depletion
    DOI:  https://doi.org/10.3390/cancers13051003
  47. Aging (Albany NY). 2021 Feb 26. 13
      Glycolysis markers including glucose transporter 1 (GLUT1), monocarboxylate transporter 4 (MCT4), hexokinase 2 (HK2), pyruvate kinase M2 (PKM2) and glucose transporter 4 (GLUT4) play vital roles in head and neck squamous cell carcinoma (HNSCC). However, their prognostic value in HNSCC is still controversial. In this meta-analysis, we searched the PubMed, Web of Science and Cochrane Library databases and included thirty-seven studies (3272 patients) that met the inclusion criteria. Higher expression levels of the glycolysis markers in tumor tissues correlated with poorer overall survival (OS; P < 0.001), disease-free survival (DFS; P = 0.03) and recurrence-free survival (RFS; P < 0.001) of HNSCC patients. Subgroup and sensitivity analyses demonstrated that higher expression levels of GLUT1 (P < 0.001), MCT4 (P = 0.002), HK2 (P = 0.002) and PKM2 (P < 0.001) correlated with poorer OS among HNSCC patients. Higher expression of MCT4 (P < 0.001) and PKM2 (P = 0.008) predicted poorer DFS among HNSCC patients. However, GLUT4 expression levels did not associate with clinical outcomes in HNSCC patients. These results demonstrate that glycolysis markers, such as GLUT1, MCT4, HK2 and PKM2, are potential prognostic predictors and therapeutic targets in HNSCC.
    Keywords:  HNSCC; glycolysis marker; meta-analysis; prognosis
    DOI:  https://doi.org/10.18632/aging.202583
  48. iScience. 2021 Feb 19. 24(2): 102119
      Remodeling of mitochondrial ultrastructure is a process that is critical for organelle physiology and apoptosis. Although the key players in this process-mitochondrial contact site and cristae junction organizing system (MICOS) and Optic Atrophy 1 (OPA1)-have been characterized, the mechanisms behind its regulation remain incompletely defined. Here, we found that in addition to its role in mitochondrial division, metallopeptidase OMA1 is required for the maintenance of intermembrane connectivity through dynamic association with MICOS. This association is independent of OPA1, mediated via the MICOS subunit MIC60, and is important for stability of MICOS and the intermembrane contacts. The OMA1-MICOS relay is required for optimal bioenergetic output and apoptosis. Loss of OMA1 affects these activities; remarkably it can be alleviated by MICOS-emulating intermembrane bridge. Thus, OMA1-dependent ultrastructure support is required for mitochondrial architecture and bioenergetics under basal and stress conditions, suggesting a previously unrecognized role for OMA1 in mitochondrial physiology.
    Keywords:  Cell Biology; Molecular Biology; Organizational Aspects of Cell Biology
    DOI:  https://doi.org/10.1016/j.isci.2021.102119