bims-mibica Biomed News
on Mitochondrial bioenergetics in cancer
Issue of 2021‒01‒24
fifty-three papers selected by
Kelsey Fisher-Wellman
East Carolina University


  1. J Biol Chem. 2020 Dec 13. pii: S0021-9258(20)00163-5. [Epub ahead of print]296 100169
    Cvetko F, Caldwell ST, Higgins M, Suzuki T, Yamamoto M, Prag HA, Hartley RC, Dinkova-Kostova AT, Murphy MP.
      The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) regulates the expression of genes involved in antioxidant defenses to modulate fundamental cellular processes such as mitochondrial function and GSH metabolism. Previous reports proposed that mitochondrial reactive oxygen species production and disruption of the GSH pool activate the Nrf2 pathway, suggesting that Nrf2 senses mitochondrial redox signals and/or oxidative damage and signals to the nucleus to respond appropriately. However, until now, it has not been possible to disentangle the overlapping effects of mitochondrial superoxide/hydrogen peroxide production as a redox signal from changes to mitochondrial thiol homeostasis on Nrf2. Recently, we developed mitochondria-targeted reagents that can independently induce mitochondrial superoxide and hydrogen peroxide production mitoParaquat (MitoPQ) or selectively disrupt mitochondrial thiol homeostasis MitoChlorodinitrobenzoic acid (MitoCDNB). Using these reagents, here we have determined how enhanced generation of mitochondrial superoxide and hydrogen peroxide or disruption of mitochondrial thiol homeostasis affects activation of the Nrf2 system in cells, which was assessed by the Nrf2 protein level, nuclear translocation, and expression of its target genes. We found that selective disruption of the mitochondrial GSH pool and inhibition of its thioredoxin system by MitoCDNB led to Nrf2 activation, whereas using MitoPQ to enhance the production of mitochondrial superoxide and hydrogen peroxide alone did not. We further showed that Nrf2 activation by MitoCDNB requires cysteine sensors of Kelch-like ECH-associated protein 1 (Keap1). These findings provide important information on how disruption to mitochondrial redox homeostasis is sensed in the cytoplasm and signaled to the nucleus.
    Keywords:  MitoCDNB; MitoPQ; Nrf2; energy metabolism; reactive oxygen species (ROS); redox signaling; thiol oxidation
    DOI:  https://doi.org/10.1074/jbc.RA120.016551
  2. Cancer Metab. 2021 Jan 19. 9(1): 3
    Schmidt CA, McLaughlin KL, Boykov IN, Mojalagbe R, Ranganathan A, Buddo KA, Lin CT, Fisher-Wellman KH, Neufer PD.
      BACKGROUND: Hepatocellular carcinoma (HCC) is the most prevalent form of liver malignancy and carries poor prognoses due to late presentation of symptoms. Treatment of late-stage HCC relies heavily on chemotherapeutics, many of which target cellular energy metabolism. A key platform for testing candidate chemotherapeutic compounds is the intrahepatic orthotopic xenograft (IOX) model in rodents. Translational efficacy from the IOX model to clinical use is limited (in part) by variation in the metabolic phenotypes of the tumor-derived cells that can be induced by selective adaptation to subculture conditions.METHODS: In this study, a detailed multilevel systems approach combining microscopy, respirometry, potentiometry, and extracellular flux analysis (EFA) was utilized to examine metabolic adaptations that occur under aglycemic growth media conditions in HCC-derived (HEPG2) cells. We hypothesized that aglycemic growth would result in adaptive "aerobic poise" characterized by enhanced capacity for oxidative phosphorylation over a range of physiological energetic demand states.
    RESULTS: Aglycemic growth did not invoke adaptive changes in mitochondrial content, network complexity, or intrinsic functional capacity/efficiency. In intact cells, aglycemic growth markedly enhanced fermentative glycolytic substrate-level phosphorylation during glucose refeeding and enhanced responsiveness of both fermentation and oxidative phosphorylation to stimulated energy demand. Additionally, aglycemic growth induced sensitivity of HEPG2 cells to the provitamin menadione at a 25-fold lower dose compared to control cells.
    CONCLUSIONS: These findings indicate that growth media conditions have substantial effects on the energy metabolism of subcultured tumor-derived cells, which may have significant implications for chemotherapeutic sensitivity during incorporation in IOX testing panels. Additionally, the metabolic phenotyping approach used in this study provides a practical workflow that can be incorporated with IOX screening practices to aid in deciphering the metabolic underpinnings of chemotherapeutic drug sensitivity.
    Keywords:  Cancer; Confocal microscopy; Galactose; Glycolysis; HEPG2; Mitochondria; Oroboros; Oxidative phosphorylation; Seahorse xf24
    DOI:  https://doi.org/10.1186/s40170-021-00241-0
  3. FASEB J. 2021 Feb;35(2): e21284
    Truman JP, Ruiz CF, Trayssac M, Mao C, Hannun YA, Obeid LM.
      It has been well-established that cancer cells often display altered metabolic profiles, and recent work has concentrated on how cancer cells adapt to serine removal. Serine can be either taken exogenously or synthesized from glucose, and its regulation forms an important mechanism for nutrient integration. One of the several important metabolic roles for serine is in the generation of bioactive sphingolipids since it is the main substrate for serine palmitoyltransferase, the initial and rate-limiting enzyme in the synthesis of sphingolipids. Previously, serine deprivation has been connected to the action of the tumor suppressor p53, and we have previously published on a role for p53 regulating sphingosine kinase 1 (SK1), an enzyme that phosphorylates sphingosine to form sphingosine-1-phosphate (S1P). SK1 is a key enzyme in sphingolipid synthesis that functions in pro-survival and tumor-promoting pathways and whose expression is also often elevated in cancers. Here we show that SK1 was degraded during serine starvation in a time and dose-dependent manner, which led to sphingosine accumulation. This was independent of effects on p53 but required the action of the proteasome. Furthermore, we show that overexpression of SK1, to compensate for SK1 loss, was detrimental to cell growth under conditions of serine starvation, demonstrating that the suppression of SK1 under these conditions is adaptive. Mitochondrial oxygen consumption decreased in response to SK1 degradation, and this was accompanied by an increase in intracellular reactive oxygen species (ROS). Suppression of ROS with N-acteylcysteine resulted in suppression of the metabolic adaptations and in decreased cell growth under serine deprivation. The effects of SK1 suppression on ROS were mimicked by D-erythro-sphingosine, whereas S1P was ineffective, suggesting that the effects of loss of SK1 were due to the accumulation of its substrate sphingosine. This study reveals a new mechanism for regulating SK1 levels and a link of SK1 to serine starvation as well as mitochondrial function.
    Keywords:  serine; sphingolipids; sphingosine; sphingosine kinase 1
    DOI:  https://doi.org/10.1096/fj.202001814RR
  4. Sci Rep. 2021 Jan 18. 11(1): 1662
    Janssen JJE, Lagerwaard B, Bunschoten A, Savelkoul HFJ, van Neerven RJJ, Keijer J, de Boer VCJ.
      Analyzing metabolism of peripheral blood mononuclear cells (PBMCs) provides key opportunities to study the pathophysiology of several diseases, such as type 2 diabetes, obesity and cancer. Extracellular flux (XF) assays provide dynamic metabolic analysis of living cells that can capture ex vivo cellular metabolic responses to biological stressors. To obtain reliable data from PBMCs from individuals, novel methods are needed that allow for standardization and take into account the non-adherent and highly dynamic nature of PBMCs. We developed a novel method for extracellular flux analysis of PBMCs, where we combined brightfield imaging with metabolic flux analysis and data integration in R. Multiple buffy coat donors were used to demonstrate assay linearity with low levels of variation. Our method allowed for accurate and precise estimation of XF assay parameters by reducing the standard score and standard score interquartile range of PBMC basal oxygen consumption rate and glycolytic rate. We applied our method to freshly isolated PBMCs from sixteen healthy subjects and demonstrated that our method reduced the coefficient of variation in group mean basal oxygen consumption rate and basal glycolytic rate, thereby decreasing the variation between PBMC donors. Our novel brightfield image procedure is a robust, sensitive and practical normalization method to reliably measure, compare and extrapolate XF assay data using PBMCs, thereby increasing the relevance for PBMCs as marker tissue in future clinical and biological studies, and enabling the use of primary blood cells instead of immortalized cell lines for immunometabolic experiments.
    DOI:  https://doi.org/10.1038/s41598-021-81217-4
  5. J Inherit Metab Dis. 2020 Dec 15.
    Fox BC, Slade L, Torregrossa R, Pacitti D, Szabo C, Etheridge T, Whiteman M.
      Primary mitochondrial diseases (PMD) are inherited diseases that cause dysfunctional mitochondrial oxidative phosphorylation, leading to diverse multisystem diseases and substantially impaired quality of life. PMD treatment currently comprises symptom management, with an unmet need for therapies targeting the causative mitochondrial defects. Molecules which selective target mitochondria have been proposed as potential treatment options in PMD but have met with limited success. We have previously shown in animal models that mitochondrial dysfunction caused by the disease process could be prevented and/or reversed by selective targeting of the "gasotransmitter" hydrogen sulfide (H2 S) to mitochondria using a novel compound, AP39. Therefore, in this study we investigated whether AP39 could also restore mitochondrial function in PMD models where mitochondrial dysfunction was the cause of the disease pathology using C. elegans. We characterised several PMD mutant C. elegans strains for reduced survival, movement and impaired cellular bioenergetics and treated each with AP39. In animals with widespread electron transport chain deficiency (gfm-1[ok3372]), AP39 (100 nM) restored ATP levels, but had no effect on survival or movement. However, in a complex I mutant (nuo-4[ok2533]), a Leigh syndrome orthologue, AP39 significantly reversed the decline in ATP levels, preserved mitochondrial membrane potential and increased movement and survival. For the first time, this study provides proof-of-principle evidence suggesting that selective targeting of mitochondria with H2 S could represent a novel drug discovery approach to delay, prevent and possibly reverse mitochondrial decline in PMD and related disorders.
    Keywords:  ATP; Leigh syndrome; bioenergetics; complex I; disulfide; electron transport chain; metabolic disease; mitochondrial dysfunction; persulfide
    DOI:  https://doi.org/10.1002/jimd.12345
  6. Nat Commun. 2021 Jan 22. 12(1): 521
    Rasul F, Zheng F, Dong F, He J, Liu L, Liu W, Cheema JY, Wei W, Fu C.
      The endoplasmic reticulum-mitochondria encounter structure (ERMES) complex creates contact sites between the endoplasmic reticulum and mitochondria, playing crucial roles in interorganelle communication, mitochondrial fission, mtDNA inheritance, lipid transfer, and autophagy. The mechanism regulating the number of ERMES foci within the cell remains unclear. Here, we demonstrate that the mitochondrial membrane protein Emr1 contributes to regulating the number of ERMES foci. We show that the absence of Emr1 significantly decreases the number of ERMES foci. Moreover, we find that Emr1 interacts with the ERMES core component Mdm12 and colocalizes with Mdm12 on mitochondria. Similar to ERMES mutant cells, cells lacking Emr1 display defective mitochondrial morphology and impaired mitochondrial segregation, which can be rescued by an artificial tether capable of linking the endoplasmic reticulum and mitochondria. We further demonstrate that the cytoplasmic region of Emr1 is required for regulating the number of ERMES foci. This work thus reveals a crucial regulatory protein necessary for ERMES functions and provides mechanistic insights into understanding the dynamic regulation of endoplasmic reticulum-mitochondria communication.
    DOI:  https://doi.org/10.1038/s41467-020-20866-x
  7. Cell Syst. 2021 Jan 20. pii: S2405-4712(20)30502-0. [Epub ahead of print]12(1): 68-81.e11
    Lewis JE, Forshaw TE, Boothman DA, Furdui CM, Kemp ML.
      Redox cofactor production is integral toward antioxidant generation, clearance of reactive oxygen species, and overall tumor response to ionizing radiation treatment. To identify systems-level alterations in redox metabolism that confer resistance to radiation therapy, we developed a bioinformatics pipeline for integrating multi-omics data into personalized genome-scale flux balance analysis models of 716 radiation-sensitive and 199 radiation-resistant tumors. These models collectively predicted that radiation-resistant tumors reroute metabolic flux to increase mitochondrial NADPH stores and reactive oxygen species (ROS) scavenging. Simulated genome-wide knockout screens agreed with experimental siRNA gene knockdowns in matched radiation-sensitive and radiation-resistant cancer cell lines, revealing gene targets involved in mitochondrial NADPH production, central carbon metabolism, and folate metabolism that allow for selective inhibition of glutathione production and H2O2 clearance in radiation-resistant cancers. This systems approach represents a significant advancement in developing quantitative genome-scale models of redox metabolism and identifying personalized metabolic targets for improving radiation sensitivity in individual cancer patients.
    Keywords:  NADPH; The Cancer Genome Atlas; flux balance analysis; genome-scale; glutathione; hydrogen peroxide; personalized models; radiation resistance; reactive oxygen species; redox metabolism
    DOI:  https://doi.org/10.1016/j.cels.2020.12.001
  8. Cell Rep. 2021 Jan 19. pii: S2211-1247(20)31649-1. [Epub ahead of print]34(3): 108660
    Romani M, Sorrentino V, Oh CM, Li H, de Lima TI, Zhang H, Shong M, Auwerx J.
      Aging is characterized by loss of proteostasis and mitochondrial homeostasis. Here, we provide bioinformatic evidence of dysregulation of mitochondrial and proteostasis pathways in muscle aging and diseases. Moreover, we show accumulation of amyloid-like deposits and mitochondrial dysfunction during natural aging in the body wall muscle of C. elegans, in human primary myotubes, and in mouse skeletal muscle, partially phenocopying inclusion body myositis (IBM). Importantly, NAD+ homeostasis is critical to control age-associated muscle amyloidosis. Treatment of either aged N2 worms, a nematode model of amyloid-beta muscle proteotoxicity, human aged myotubes, or old mice with the NAD+ boosters nicotinamide riboside (NR) and olaparib (AZD) increases mitochondrial function and muscle homeostasis while attenuating amyloid accumulation. Hence, our data reveal that age-related amyloidosis is a contributing factor to mitochondrial dysfunction and that both are features of the aging muscle that can be ameliorated by NAD+ metabolism-enhancing approaches, warranting further clinical studies.
    Keywords:  NAD(+); aging; amyloid-beta; amyloidosis; inclusion body myositis; mitochondria; nicotinamide riboside; olaparib; proteostasis; skeletal muscle
    DOI:  https://doi.org/10.1016/j.celrep.2020.108660
  9. J Biol Chem. 2020 Dec 18. pii: S0021-9258(17)50642-0. [Epub ahead of print]295(51): 17588-17601
    Prole DL, Chinnery PF, Jones NS.
      Mitochondrial DNA (mtDNA) encodes proteins and RNAs that support the functions of mitochondria and thereby numerous physiological processes. Mutations of mtDNA can cause mitochondrial diseases and are implicated in aging. The mtDNA within cells is organized into nucleoids within the mitochondrial matrix, but how mtDNA nucleoids are formed and regulated within cells remains incompletely resolved. Visualization of mtDNA within cells is a powerful means by which mechanistic insight can be gained. Manipulation of the amount and sequence of mtDNA within cells is important experimentally and for developing therapeutic interventions to treat mitochondrial disease. This review details recent developments and opportunities for improvements in the experimental tools and techniques that can be used to visualize, quantify, and manipulate the properties of mtDNA within cells.
    Keywords:  aging; gene editing; microscopy; mitochondria; mitochondrial DNA (mtDNA); mitochondrial disease; mitophagy
    DOI:  https://doi.org/10.1074/jbc.REV120.015101
  10. J Biol Chem. 2020 Dec 18. pii: S0021-9258(17)50632-8. [Epub ahead of print]295(51): 17441-17459
    Kunz HE, Dorschner JM, Berent TE, Meyer T, Wang X, Jatoi A, Kumar R, Lanza IR.
      Cancer cachexia is characterized by reductions in peripheral lean muscle mass. Prior studies have primarily focused on increased protein breakdown as the driver of cancer-associated muscle wasting. Therapeutic interventions targeting catabolic pathways have, however, largely failed to preserve muscle mass in cachexia, suggesting that other mechanisms might be involved. In pursuit of novel pathways, we used untargeted metabolomics to search for metabolite signatures that may be linked with muscle atrophy. We injected 7-week-old C57/BL6 mice with LLC1 tumor cells or vehicle. After 21 days, tumor-bearing mice exhibited reduced body and muscle mass and impaired grip strength compared with controls, which was accompanied by lower synthesis rates of mixed muscle protein and the myofibrillar and sarcoplasmic muscle fractions. Reductions in protein synthesis were accompanied by mitochondrial enlargement and reduced coupling efficiency in tumor-bearing mice. To generate mechanistic insights into impaired protein synthesis, we performed untargeted metabolomic analyses of plasma and muscle and found increased concentrations of two methylarginines, asymmetric dimethylarginine (ADMA) and NG-monomethyl-l-arginine, in tumor-bearing mice compared with control mice. Compared with healthy controls, human cancer patients were also found to have higher levels of ADMA in the skeletal muscle. Treatment of C2C12 myotubes with ADMA impaired protein synthesis and reduced mitochondrial protein quality. These results suggest that increased levels of ADMA and mitochondrial changes may contribute to impaired muscle protein synthesis in cancer cachexia and could point to novel therapeutic targets by which to mitigate cancer cachexia.
    Keywords:  ADMA; cachexia; cancer; l-NMMA; metabolomics; methylarginines; mitochondria; protein synthesis; protein turnover; skeletal muscle
    DOI:  https://doi.org/10.1074/jbc.RA120.014884
  11. J Biol Chem. 2020 Dec 25. pii: S0021-9258(17)50699-7. [Epub ahead of print]295(52): 18284-18300
    Shao W, Hwang J, Liu C, Mukhopadhyay D, Zhao S, Shen MC, Selen ES, Wolfgang MJ, Farber SA, Espenshade PJ.
      Oxygen regulates hypoxia-inducible factor (HIF) transcription factors to control cell metabolism, erythrogenesis, and angiogenesis. Whereas much has been elucidated about how oxygen regulates HIF, whether lipids affect HIF activity is un-known. Here, using cultured cells and two animal models, we demonstrate that lipoprotein-derived fatty acids are an independent regulator of HIF. Decreasing extracellular lipid supply inhibited HIF prolyl hydroxylation, leading to accumulation of the HIFα subunit of these heterodimeric transcription factors comparable with hypoxia with activation of downstream target genes. The addition of fatty acids to culture medium suppressed this signal, which required an intact mitochondrial respiratory chain. Mechanistically, fatty acids and oxygen are distinct signals integrated to control HIF activity. Finally, we observed lipid signaling to HIF and changes in target gene expression in developing zebrafish and adult mice, and this pathway operates in cancer cells from a range of tissues. This study identifies fatty acids as a physiological modulator of HIF, defining a mechanism for lipoprotein regulation that functions in parallel to oxygen.
    Keywords:  fatty acid; hypoxia-inducible factor (HIF); lipoprotein; low-density lipoprotein; low-density lipoprotein (LDL); lysosomal acid lipase; mitochondria
    DOI:  https://doi.org/10.1074/jbc.RA120.015238
  12. J Biol Chem. 2021 Jan 19. pii: S0021-9258(21)00078-8. [Epub ahead of print] 100309
    Herrmann GK, Russell WK, Garg NJ, Yin YW.
      Mitochondral DNA is located in organelle that house essential metablic reactions and contain high reactive oxygen species. Therefore, mitochondrial DNA suffers more oxidative damage than its nuclear counterpart. Formation of a repair enzyme complex is beneficial to DNA repair. Recent studies have shown that mitochondrial DNA polymerase (Pol γ) and poly(ADP-ribose) polymerase 1 (PARP1) were found in the same complex along with other mitochondrial DNA repair enzymes and mitochondrial PARP1 level is correlated with mtDNA integrity. However, the molecular basis for the functional connection between Pol γ and PARP1 has not yet been elucidated because cellular functions of PARP1 in DNA repair are intertwined with metabolism via NAD+ (nicotinamide adenosine dinucleotide), the substrate of PARP1 and a metabolic cofactor. To dissect the direct effect of PARP1 on mtDNA from the secondary perturbation of metabolism, we report here biochemical studies that recapitulated Pol γ PARylation observed in cells and showed that PARP1 regulates Pol γ activity during DNA repair in a metabolic cofactor NAD+ (nicotinamide adenosine dinucleotide)-dependent manner. In the absence of NAD+, PARP1 completely inhibits Pol γ, while increasing NAD+ levels to a physiological concentration that enables Pol γ to resume maximum repair activity. Because cellular NAD+ levels are linked to metabolism and to ATP production via oxidative phosphorylation, our results suggest that mtDNA damage repair is coupled to cellular metabolic state and the integrity of the respiratory chain.
    Keywords:  ADP-ribosylation; DNA polymerase; DNA repair; DNA synthesis; post-translational modification (PTM); protein-DNA interaction; protein-protein interaction; western blot
    DOI:  https://doi.org/10.1016/j.jbc.2021.100309
  13. Eur J Pharmacol. 2021 Jan 14. pii: S0014-2999(21)00019-4. [Epub ahead of print]895 173866
    Zhang J, Yan L, Wei P, Zhou R, Hua C, Xiao M, Tu Y, Gu Z, Wei T.
      Metastatic breast cancer is a significant contributor to mortality among women, but its complex regulation represents a barrier to precision targeting. In the present study, a graphene-based nanocomposite which probes and selectively inhibits cancer cell motility is described. By controllable coupling of prenylated chalcone xanthohumol, an efficient inhibitor of mitochondrial electron transport chain complex I, with PEGylated graphene oxide nanosheet, a PEG-GO@XN nanocomposite with good stability and biocompatibility is synthesized. PEG-GO@XN is capable of inhibiting mitochondrial oxidative phosphorylation selectively in MDA-MB-231 and MDA-MB-436 metastatic breast cancer cells. PEG-GO@XN reduces the production of ATP, impairs the formation of F-actin cytoskeleton in the lamellipodia, and blocks the migration and invasion of breast cancer cells in vitro, without interfering the proliferation and metabolism of non-cancerous cells. More importantly, PEG-GO@XN suppresses the metastasis of MDA-MB-231 cells to lung in nude mice. PEG-GO@XN abolishes the TGF-β1-induced down-regulation of E-cadherin and up-regulation of N-cadherin, vimentin, Snail and Twist, thus causes the maintenance of "epithelial-like" rather than the "mesenchymal-like" features, and decreases the motility potential of breast cancer cells. Taken together, this research unveils the enormous potential of PEG-GO@XN to suppress metastatic breast cancer by selective targeting oxidative phosphorylation and epithelial-mesenchymal transition of cancer cells and thereby providing insights on metastatic cancer treatment.
    Keywords:  Breast cancer metastasis; Energy metabolism; Epithelial-mesenchymal transition; Graphene oxide; Mitochondria; Xanthohumol
    DOI:  https://doi.org/10.1016/j.ejphar.2021.173866
  14. Nat Commun. 2021 01 20. 12(1): 479
    Shpilka T, Du Y, Yang Q, Melber A, Uma Naresh N, Lavelle J, Kim S, Liu P, Weidberg H, Li R, Yu J, Zhu LJ, Strittmatter L, Haynes CM.
      As organisms develop, individual cells generate mitochondria to fulfill physiological requirements. However, it remains unknown how mitochondrial network expansion is scaled to cell growth. The mitochondrial unfolded protein response (UPRmt) is a signaling pathway mediated by the transcription factor ATFS-1 which harbors a mitochondrial targeting sequence (MTS). Here, using the model organism Caenorhabditis elegans we demonstrate that ATFS-1 mediates an adaptable mitochondrial network expansion program that is active throughout normal development. Mitochondrial network expansion requires the relatively inefficient MTS in ATFS-1, which allows the transcription factor to be responsive to parameters that impact protein import capacity of the mitochondrial network. Increasing the strength of the ATFS-1 MTS impairs UPRmt activity by increasing accumulation within mitochondria. Manipulations of TORC1 activity increase or decrease ATFS-1 activity in a manner that correlates with protein synthesis. Lastly, expression of mitochondrial-targeted GFP is sufficient to expand the muscle cell mitochondrial network in an ATFS-1-dependent manner. We propose that mitochondrial network expansion during development is an emergent property of the synthesis of highly expressed mitochondrial proteins that exclude ATFS-1 from mitochondrial import, causing UPRmt activation.
    DOI:  https://doi.org/10.1038/s41467-020-20784-y
  15. Curr Cancer Drug Targets. 2021 Jan 20.
    Fedotcheva TA, Fedotcheva NI.
      AIM: The study of action of iron, DOX, and their complex on the mitochondrial permeability transition pore (MPTP) opening and the detection of possible protectors of MPTP in the conditions close to mitochondria-dependent ferroptosis.BACKGROUND: The toxicity of doxorubicin (DOX) is mainly associated with the free iron accumulation and mitochondrial dysfunction. DOX can provoke ferroptosis, iron-dependent cell death driven by the membrane damage. The mitochondrial permeability transition pore (MPTP) is considered as a common pathway leading to the development of apoptosis, necrosis, and, possibly, ferroptosis. The influence of DOX on the Ca2+ -induced opening of MPTP in the presence of iron has not yet been studied.
    OBJECTIVE: The study was conducted on isolated liver and heart mitochondria. MPTP and succinate-ubiquinone oxidoreductase were studied as targets of DOX in mitochondria-dependent ferroptosis.
    METHODS: The study was conducted on isolated mitochondria of the liver and heart. Changes of threshold calcium concentrations required for MPTP opening were measured by a Ca2+ selective electrode, mitochondrial membrane potential was registered by tetraphenylphosphonium (TPP+)-selective electrode, and mitochondrial swelling was recorded as a decrease in absorbance at 540 nm. The activity of succinate dehydrogenase (SDH) was determined by the reduction of the electron acceptor DCPIP.
    CONCLUSION: MPTP and the respiratory complex II are identified as the main targets of the iron-dependent action of DOX on the isolated mitochondria. All MPTP protectors tested abolished or weakened the effect of iron and a complex of iron with DOX on Ca2+ -induced MPTP opening, acting in different stages of MPTP activation. These data open new approaches to the modulation of the toxic influence of DOX on mitochondria with the aim to reduce their dysfunction.
    Keywords:  Doxorubicin; alkalization; butylhydroxytoluene; deferoxamine; iron; mitochondrial permeability transition pore
    DOI:  https://doi.org/10.2174/1568009621999210120192558
  16. Nat Metab. 2021 Jan;3(1): 33-42
    Perry EA, Bennett CF, Luo C, Balsa E, Jedrychowski M, O'Malley KE, Latorre-Muro P, Ladley RP, Reda K, Wright PM, Gygi SP, Myers AG, Puigserver P.
      Mitochondrial diseases (MDs) are a heterogeneous group of disorders resulting from mutations in nuclear or mitochondrial DNA genes encoding mitochondrial proteins1,2. MDs cause pathologies with severe tissue damage and ultimately death3,4. There are no cures for MDs and current treatments are only palliative5-7. Here we show that tetracyclines improve fitness of cultured MD cells and ameliorate disease in a mouse model of Leigh syndrome. To identify small molecules that prevent cellular damage and death under nutrient stress conditions, we conduct a chemical high-throughput screen with cells carrying human MD mutations and discover a series of antibiotics that maintain survival of various MD cells. We subsequently show that a sub-library of tetracycline analogues, including doxycycline, rescues cell death and inflammatory signatures in mutant cells through partial and selective inhibition of mitochondrial translation, resulting in an ATF4-independent mitohormetic response. Doxycycline treatment strongly promotes fitness and survival of Ndufs4-/- mice, a preclinical Leigh syndrome mouse model8. A proteomic analysis of brain tissue reveals that doxycycline treatment largely prevents neuronal death and the accumulation of neuroimmune and inflammatory proteins in Ndufs4-/- mice, indicating a potential causal role for these proteins in the brain pathology. Our findings suggest that tetracyclines deserve further evaluation as potential drugs for the treatment of MDs.
    DOI:  https://doi.org/10.1038/s42255-020-00334-y
  17. PLoS One. 2021 ;16(1): e0245348
    Klepinina L, Klepinin A, Truu L, Chekulayev V, Vija H, Kuus K, Teino I, Pook M, Maimets T, Kaambre T.
      The ability of butyrate to promote differentiation of cancer cells has important implication for colorectal cancer (CRC) prevention and therapy. In this study, we examined the effect of sodium butyrate (NaBT) on the energy metabolism of colon adenocarcinoma Caco-2 cells coupled with their differentiation. NaBT increased the activity of alkaline phosphatase indicating differentiation of Caco-2 cells. Changes in the expression of pluripotency-associated markers OCT4, NANOG and SOX2 were characterized during the induced differentiation at mRNA level along with the measures that allowed distinguishing the expression of different transcript variants. The functional activity of mitochondria was studied by high-resolution respirometry. Glycolytic pathway and phosphotransfer network were analyzed using enzymatical assays. The treatment of Caco-2 cells with NaBT increased production of ATP by oxidative phosphorylation, enhanced mitochondrial spare respiratory capacity and caused rearrangement of the cellular phosphotransfer networks. The flexibility of phosphotransfer networks depended on the availability of glutamine, but not glucose in the cell growth medium. These changes were accompanied by suppressed cell proliferation and altered gene expression of the main pluripotency-associated transcription factors. This study supports the view that modulating cell metabolism through NaBT can be an effective strategy for treating CRC. Our data indicate a close relationship between the phosphotransfer performance and metabolic plasticity of CRC, which is associated with the cell differentiation state.
    DOI:  https://doi.org/10.1371/journal.pone.0245348
  18. J Biol Chem. 2020 Dec 25. pii: S0021-9258(17)50708-5. [Epub ahead of print]295(52): 18406-18425
    Basu U, Bostwick AM, Das K, Dittenhafer-Reed KE, Patel SS.
      Mitochondria are specialized compartments that produce requisite ATP to fuel cellular functions and serve as centers of metabolite processing, cellular signaling, and apoptosis. To accomplish these roles, mitochondria rely on the genetic information in their small genome (mitochondrial DNA) and the nucleus. A growing appreciation for mitochondria's role in a myriad of human diseases, including inherited genetic disorders, degenerative diseases, inflammation, and cancer, has fueled the study of biochemical mechanisms that control mitochondrial function. The mitochondrial transcriptional machinery is different from nuclear machinery. The in vitro re-constituted transcriptional complexes of Saccharomyces cerevisiae (yeast) and humans, aided with high-resolution structures and biochemical characterizations, have provided a deeper understanding of the mechanism and regulation of mitochondrial DNA transcription. In this review, we will discuss recent advances in the structure and mechanism of mitochondrial transcription initiation. We will follow up with recent discoveries and formative findings regarding the regulatory events that control mitochondrial DNA transcription, focusing on those involved in cross-talk between the mitochondria and nucleus.
    Keywords:  DNA transcription; RNA polymerase; enzyme mechanism; enzyme structure; human mitochondrial RNA polymerase; mitochondria; mitochondrial DNA (mtDNA); mitochondrial DNA transcription; mitochondrial gene regulation; structure-function; transcription; transcription initiation factors; transcription regulation; yeast mitochondrial RNA polymerase
    DOI:  https://doi.org/10.1074/jbc.REV120.011202
  19. Proc Natl Acad Sci U S A. 2021 Jan 26. pii: e2022120118. [Epub ahead of print]118(4):
    Condon KJ, Orozco JM, Adelmann CH, Spinelli JB, van der Helm PW, Roberts JM, Kunchok T, Sabatini DM.
      In mammalian cells, nutrients and growth factors signal through an array of upstream proteins to regulate the mTORC1 growth control pathway. Because the full complement of these proteins has not been systematically identified, we developed a FACS-based CRISPR-Cas9 genetic screening strategy to pinpoint genes that regulate mTORC1 activity. Along with almost all known positive components of the mTORC1 pathway, we identified many genes that impact mTORC1 activity, including DCAF7, CSNK2B, SRSF2, IRS4, CCDC43, and HSD17B10 Using the genome-wide screening data, we generated a focused sublibrary containing single guide RNAs (sgRNAs) targeting hundreds of genes and carried out epistasis screens in cells lacking nutrient- and stress-responsive mTORC1 modulators, including GATOR1, AMPK, GCN2, and ATF4. From these data, we pinpointed mitochondrial function as a particularly important input into mTORC1 signaling. While it is well appreciated that mitochondria signal to mTORC1, the mechanisms are not completely clear. We find that the kinases AMPK and HRI signal, with varying kinetics, mitochondrial distress to mTORC1, and that HRI acts through the ATF4-dependent up-regulation of both Sestrin2 and Redd1. Loss of both AMPK and HRI is sufficient to render mTORC1 signaling largely resistant to mitochondrial dysfunction induced by the ATP synthase inhibitor oligomycin as well as the electron transport chain inhibitors piericidin and antimycin. Taken together, our data reveal a catalog of genes that impact the mTORC1 pathway and clarify the multifaceted ways in which mTORC1 senses mitochondrial dysfunction.
    Keywords:  CRISPR-Cas9 screen; mTORC1; mitochondria
    DOI:  https://doi.org/10.1073/pnas.2022120118
  20. Nat Metab. 2021 Jan;3(1): 107-117
    Connell NJ, Doligkeit D, Andriessen C, Kornips-Moonen E, Bruls YMH, Schrauwen-Hinderling VB, van de Weijer T, van Marken-Lichtenbelt WD, Havekes B, Kazak L, Spiegelman BM, Hoeks J, Schrauwen P.
      Creatine availability in adipose tissue has been shown to have profound effects on thermogenesis and energy balance in mice. However, whether dietary creatine supplementation affects brown adipose tissue (BAT) activation in humans is unclear. In the present study, we report the results of a double-blind, randomized, placebo-controlled, cross-over trial (NCT04086381) in which 14 young, healthy, vegetarian adults, who are characterized by low creatine levels, received 20 g of creatine monohydrate per day or placebo. Participants were eligible if they met the following criteria: male or female, white, aged 18-30 years, consuming a vegetarian diet (≥6 months) and body mass index 20-25 kg m-2. BAT activation after acute cold exposure was determined by calculating standard uptake values (SUVs) acquired by [18F]fluorodeoxyglucose positron emission tomography-magnetic resonance imaging. BAT volume (-31.32 (19.32) SUV (95% confidence interval (CI) -73.06, 10.42; P = 0.129)), SUVmean (-0.34 (0.29) SUV (95% CI -0.97, 0.28; P = 0.254)) and SUVmax (-2.49 (2.64) SUV (95% CI -8.20, 3.21; P = 0.362)) following acute cold exposure were similar between placebo and creatine supplementation. No side effects of creatine supplementation were reported; one participant experienced bowel complaints during placebo, which resolved without intervention. Our data show that creatine monohydrate supplementation in young, healthy, lean, vegetarian adults does not enhance BAT activation after acute cold exposure.
    DOI:  https://doi.org/10.1038/s42255-020-00332-0
  21. J Biol Chem. 2020 Dec 04. pii: S0021-9258(17)50489-5. [Epub ahead of print]295(49): 16743-16753
    Liu Q, Yang X, Long G, Hu Y, Gu Z, Boisclair YR, Long Q.
      Mitochondrial dysfunction is associated with a variety of human diseases including neurodegeneration, diabetes, nonalcohol fatty liver disease (NAFLD), and cancer, but its underlying causes are incompletely understood. Using the human hepatic cell line HepG2 as a model, we show here that endoplasmic reticulum-associated degradation (ERAD), an ER protein quality control process, is critically required for mitochondrial function in mammalian cells. Pharmacological inhibition or genetic ablation of key proteins involved in ERAD increased cell death under both basal conditions and in response to proinflammatory cytokines, a situation frequently found in NAFLD. Decreased viability of ERAD-deficient HepG2 cells was traced to impaired mitochondrial functions including reduced ATP production, enhanced reactive oxygen species (ROS) accumulation, and increased mitochondrial outer membrane permeability. Transcriptome profiling revealed widespread down-regulation of genes underpinning mitochondrial functions, and up-regulation of genes associated with tumor growth and aggression. These results highlight a critical role for ERAD in maintaining mitochondrial functional and structural integrity and raise the possibility of improving cellular and organismal mitochondrial function via enhancing cellular ERAD capacity.
    Keywords:  ERAD; ROS; SEL1L; calcium; cell death; cytochrome c; endoplasmic reticulum; endoplasmic reticulum stress (ER stress); endoplasmic reticulum-associated protein degradation (ERAD); hepatocyte death; liver; mitochondria; mitochondrial disease; mitochondrial permeability transition (MPT)
    DOI:  https://doi.org/10.1074/jbc.RA120.013987
  22. J Biol Chem. 2020 Dec 25. pii: S0021-9258(17)50684-5. [Epub ahead of print]295(52): 18091-18104
    Corum DG, Jenkins DP, Heslop JA, Tallent LM, Beeson GC, Barth JL, Schnellmann RG, Muise-Helmericks RC.
      Akt3 regulates mitochondrial content in endothelial cells through the inhibition of PGC-1α nuclear localization and is also required for angiogenesis. However, whether there is a direct link between mitochondrial function and angiogenesis is unknown. Here we show that Akt3 depletion in primary endothelial cells results in decreased uncoupled oxygen consumption, increased fission, decreased membrane potential, and increased expression of the mitochondria-specific protein chaperones, HSP60 and HSP10, suggesting that Akt3 is required for mitochondrial homeostasis. Direct inhibition of mitochondrial homeostasis by the model oxidant paraquat results in decreased angiogenesis, showing a direct link between angiogenesis and mitochondrial function. Next, in exploring functional links to PGC-1α, the master regulator of mitochondrial biogenesis, we searched for compounds that induce this process. We found that, sildenafil, a phosphodiesterase 5 inhibitor, induced mitochondrial biogenesis as measured by increased uncoupled oxygen consumption, mitochondrial DNA content, and voltage-dependent anion channel protein expression. Sildenafil rescued the effects on mitochondria by Akt3 depletion or pharmacological inhibition and promoted angiogenesis, further supporting that mitochondrial homeostasis is required for angiogenesis. Sildenafil also induces the expression of PGC-1 family member PRC and can compensate for PGC-1α activity during mitochondrial stress by an Akt3-independent mechanism. The induction of PRC by sildenafil depends upon cAMP and the transcription factor CREB. Thus, PRC can functionally substitute during Akt3 depletion for absent PGC-1α activity to restore mitochondrial homeostasis and promote angiogenesis. These findings show that mitochondrial homeostasis as controlled by the PGC family of transcriptional activators is required for angiogenic responses.
    Keywords:  Akt PKB; Akt3; Akt3/PKBγ; PGC-1α; PPARGC1A; PRC; angiogenesis; endothelial cells; mitochondria; peroxisome proliferator–activated receptor γ coactivator-1 α; phosphodiesterases
    DOI:  https://doi.org/10.1074/jbc.RA120.013716
  23. Acta Neuropathol Commun. 2021 Jan 19. 9(1): 16
    Tanaka K, Sasayama T, Nagashima H, Irino Y, Takahashi M, Izumi Y, Uno T, Satoh N, Kitta A, Kyotani K, Fujita Y, Hashiguchi M, Nakai T, Kohta M, Uozumi Y, Shinohara M, Hosoda K, Bamba T, Kohmura E.
      Cancer cells optimize nutrient utilization to supply energetic and biosynthetic pathways. This metabolic process also includes redox maintenance and epigenetic regulation through nucleic acid and protein methylation, which enhance tumorigenicity and clinical resistance. However, less is known about how cancer cells exhibit metabolic flexibility to sustain cell growth and survival from nutrient starvation. Here, we find that serine and glycine levels were higher in low-nutrient regions of tumors in glioblastoma multiforme (GBM) patients than they were in other regions. Metabolic and functional studies in GBM cells demonstrated that serine availability and one-carbon metabolism support glioma cell survival following glutamine deprivation. Serine synthesis was mediated through autophagy rather than glycolysis. Gene expression analysis identified upregulation of methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) to regulate one-carbon metabolism. In clinical samples, MTHFD2 expression was highest in the nutrient-poor areas around "pseudopalisading necrosis." Genetic suppression of MTHFD2 and autophagy inhibition caused tumor cell death and growth inhibition of glioma cells upon glutamine deprivation. These results highlight a critical role for serine-dependent one-carbon metabolism in surviving glutamine starvation and suggest new therapeutic targets for glioma cells adapting to a low-nutrient microenvironment.
    Keywords:  Glioblastoma multiforme; Glutamine starvation; One-carbon metabolism; Serine synthesis
    DOI:  https://doi.org/10.1186/s40478-020-01114-1
  24. Nat Commun. 2021 01 20. 12(1): 470
    Reynolds JC, Lai RW, Woodhead JST, Joly JH, Mitchell CJ, Cameron-Smith D, Lu R, Cohen P, Graham NA, Benayoun BA, Merry TL, Lee C.
      Healthy aging can be promoted by enhanced metabolic fitness and physical capacity. Mitochondria are chief metabolic organelles with strong implications in aging that also coordinate broad physiological functions, in part, using peptides that are encoded within their independent genome. However, mitochondrial-encoded factors that actively regulate aging are unknown. Here, we report that mitochondrial-encoded MOTS-c can significantly enhance physical performance in young (2 mo.), middle-age (12 mo.), and old (22 mo.) mice. MOTS-c can regulate (i) nuclear genes, including those related to metabolism and proteostasis, (ii) skeletal muscle metabolism, and (iii) myoblast adaptation to metabolic stress. We provide evidence that late-life (23.5 mo.) initiated intermittent MOTS-c treatment (3x/week) can increase physical capacity and healthspan in mice. In humans, exercise induces endogenous MOTS-c expression in skeletal muscle and in circulation. Our data indicate that aging is regulated by genes encoded in both of our co-evolved mitochondrial and nuclear genomes.
    DOI:  https://doi.org/10.1038/s41467-020-20790-0
  25. J Biol Chem. 2020 Nov 27. pii: S0021-9258(20)00094-0. [Epub ahead of print]296 100104
    Chen G, Zhou G, Lotvola A, Granneman JG, Wang J.
      ABHD5 is an essential coactivator of ATGL, the rate-limiting triglyceride (TG) lipase in many cell types. Importantly, ABHD5 also functions as a tumor suppressor, and ABHD5 mRNA expression levels correlate with patient survival for several cancers. Nevertheless, the mechanisms involved in ABHD5-dependent tumor suppression are not known. We found that overexpression of ABHD5 induces cell cycle arrest at the G1 phase and causes growth retardation in a panel of prostate cancer cells. Transcriptomic profiling and biochemical analysis revealed that genetic or pharmacological activation of lipolysis by ABHD5 potently inhibits mTORC1 signaling, leading to a significant downregulation of protein synthesis. Mechanistically, we found that ABHD5 elevates intracellular AMP content, which activates AMPK, leading to inhibition of mTORC1. Interestingly, ABHD5-dependent suppression of mTORC1 was abrogated by pharmacological inhibition of DGAT1 or DGAT2, isoenzymes that re-esterify fatty acids in a process that consumes ATP. Collectively, this study maps out a novel molecular pathway crucial for limiting cancer cell proliferation, in which ABHD5-mediated lipolysis creates an energy-consuming futile cycle between TG hydrolysis and resynthesis, leading to inhibition of mTORC1 and cancer cell growth arrest.
    Keywords:  AMP-activated protein kinase (AMPK); cancer metabolism; lipolysis; mTOR; αβ hydrolase domain containing 5 (ABHD5)
    DOI:  https://doi.org/10.1074/jbc.RA120.014682
  26. Cell Rep. 2021 Jan 19. pii: S2211-1247(20)31620-X. [Epub ahead of print]34(3): 108631
    Li S, Kuang M, Chen L, Li Y, Liu S, Du H, Cao L, You F.
      Mitochondria not only serve as a platform for innate immune signaling transduction but also enhance immune responses by releasing mitochondrial DNA and RNA into the cytoplasm. However, whether mitochondrial matrix proteins could be liberated and involved in immune responses remains enigmatic. Here, we identify the mitochondrial protein ERA G-protein-like 1 (ERAL1) as a mitochondrial antiviral signaling protein (MAVS)-interacting protein by using proximity-based labeling technology. ERAL1 deficiency markedly reduces the downstream antiviral signaling triggered by RNA viruses. Moreover, ERAL1-deficient mice are more susceptible to lethality following RNA virus infection than wild-type mice. After virus infection, ERAL1 is released from mitochondria through the BAX/BAK pore. The cytosolic ERAL1 facilitates lysine 63 (K63)-linked ubiquitination of retinoicacid inducible gene-1 (RIG-I)/melanoma differentiation-associated gene 5 (MDA5) and promotes downstream MAVS polymerization, thus positively regulating antiviral responses.
    Keywords:  ERAL1; MAVS; RIG-1/MDA5; TRIM25; innate immunity; mitochondria
    DOI:  https://doi.org/10.1016/j.celrep.2020.108631
  27. Nat Microbiol. 2021 Jan 18.
    Li T, Kong L, Li X, Wu S, Attri KS, Li Y, Gong W, Zhao B, Li L, Herring LE, Asara JM, Xu L, Luo X, Lei YL, Ma Q, Seveau S, Gunn JS, Cheng X, Singh PK, Green DR, Wang H, Wen H.
      Mitochondria are believed to have originated ~2.5 billion years ago. As well as energy generation in cells, mitochondria have a role in defence against bacterial pathogens. Despite profound changes in mitochondrial morphology and functions following bacterial challenge, whether intracellular bacteria can hijack mitochondria to promote their survival remains elusive. We report that Listeria monocytogenes-an intracellular bacterial pathogen-suppresses LC3-associated phagocytosis (LAP) by modulation of mitochondrial Ca2+ (mtCa2+) signalling in order to survive inside cells. Invasion of macrophages by L. monocytogenes induced mtCa2+ uptake through the mtCa2+ uniporter (MCU), which in turn increased acetyl-coenzyme A (acetyl-CoA) production by pyruvate dehydrogenase. Acetylation of the LAP effector Rubicon with acetyl-CoA decreased LAP formation. Genetic ablation of MCU attenuated intracellular bacterial growth due to increased LAP formation. Our data show that modulation of mtCa2+ signalling can increase bacterial survival inside cells, and highlight the importance of mitochondrial metabolism in host-microbial interactions.
    DOI:  https://doi.org/10.1038/s41564-020-00843-2
  28. Oncogene. 2021 Jan 21.
    Abril YLN, Fernandez IR, Hong JY, Chiang YL, Kutateladze DA, Zhao Q, Yang M, Hu J, Sadhukhan S, Li B, He B, Remick B, Bai JJ, Mullmann J, Wang F, Maymi V, Dhawan R, Auwerx J, Southard T, Cerione RA, Lin H, Weiss RS.
      SIRT5 is a member of the sirtuin family of NAD+-dependent protein lysine deacylases implicated in a variety of physiological processes. SIRT5 removes negatively charged malonyl, succinyl, and glutaryl groups from lysine residues and thereby regulates multiple enzymes involved in cellular metabolism and other biological processes. SIRT5 is overexpressed in human breast cancers and other malignancies, but little is known about the therapeutic potential of SIRT5 inhibition for treating cancer. Here we report that genetic SIRT5 disruption in breast cancer cell lines and mouse models caused increased succinylation of IDH2 and other metabolic enzymes, increased oxidative stress, and impaired transformation and tumorigenesis. We, therefore, developed potent, selective, and cell-permeable small-molecule SIRT5 inhibitors. SIRT5 inhibition suppressed the transformed properties of cultured breast cancer cells and significantly reduced mammary tumor growth in vivo, in both genetically engineered and xenotransplant mouse models. Considering that Sirt5 knockout mice are generally normal, with only mild phenotypes observed, these data establish SIRT5 as a promising target for treating breast cancer. The new SIRT5 inhibitors provide useful probes for future investigations of SIRT5 and an avenue for targeting SIRT5 as a therapeutic strategy.
    DOI:  https://doi.org/10.1038/s41388-020-01637-w
  29. Nature. 2020 Dec 09.
    Agudo-Canalejo J, Schultz SW, Chino H, Migliano SM, Saito C, Koyama-Honda I, Stenmark H, Brech A, May AI, Mizushima N, Knorr RL.
      Compartmentalization of cellular material in droplet-like structures is a hallmark of liquid-liquid phase separation1,2, but the mechanisms of droplet removal are poorly understood. Evidence suggests that droplets can be degraded by autophagy3,4, a highly conserved degradation system in which membrane sheets bend to isolate portions of the cytoplasm within double-membrane autophagosomes5-7. Here we examine how autophagosomes sequester droplets that contain the protein p62 (also known as SQSTM1) in living cells, and demonstrate that double-membrane, autophagosome-like vesicles form at the surface of protein-free droplets in vitro through partial wetting. A minimal physical model shows that droplet surface tension supports the formation of membrane sheets. The model also predicts that bending sheets either divide droplets for piecemeal sequestration or sequester entire droplets. We find that autophagosomal sequestration is robust to variations in the droplet-sheet adhesion strength. However, the two sides of partially wetted sheets are exposed to different environments, which can determine the bending direction of autophagosomal sheets. Our discovery of this interplay between the material properties of droplets and membrane sheets enables us to elucidate the mechanisms that underpin droplet autophagy, or 'fluidophagy'. Furthermore, we uncover a switching mechanism that allows droplets to act as liquid assembly platforms for cytosol-degrading autophagosomes8 or as specific autophagy substrates9-11. We propose that droplet-mediated autophagy represents a previously undescribed class of processes that are driven by elastocapillarity, highlighting the importance of wetting in cytosolic organization.
    DOI:  https://doi.org/10.1038/s41586-020-2992-3
  30. Cancer Metab. 2021 Jan 22. 9(1): 6
    Becherini P, Caffa I, Piacente F, Damonte P, Vellone VG, Passalacqua M, Benzi A, Bonfiglio T, Reverberi D, Khalifa A, Ghanem M, Guijarro A, Tagliafico L, Sucameli M, Persia A, Monacelli F, Cea M, Bruzzone S, Ravera S, Nencioni A.
      BACKGROUND: Sirtuin 6 (SIRT6) is a NAD+-dependent deacetylase with key roles in cell metabolism. High SIRT6 expression is associated with adverse prognosis in breast cancer (BC) patients. However, the mechanisms through which SIRT6 exerts its pro-oncogenic effects in BC remain unclear. Here, we sought to define the role of SIRT6 in BC cell metabolism and in mouse polyoma middle T antigen (PyMT)-driven mammary tumors.METHODS: We evaluated the effect of a heterozygous deletion of Sirt6 on tumor latency and survival of mouse mammary tumor virus (MMTV)-PyMT mice. The effect of SIRT6 silencing on human BC cell growth was assessed in MDA-MB-231 xenografts. We also analyzed the effect of Sirt6 heterozygous deletion, of SIRT6 silencing, and of the overexpression of either wild-type (WT) or catalytically inactive (H133Y) SIRT6 on BC cell pyruvate dehydrogenase (PDH) expression and activity and oxidative phosphorylation (OXPHOS), including respiratory complex activity, ATP/AMP ratio, AMPK activation, and intracellular calcium concentration.
    RESULTS: The heterozygous Sirt6 deletion extended tumor latency and mouse survival in the MMTV-PyMT mouse BC model, while SIRT6 silencing slowed the growth of MDA-MB-231 BC cell xenografts. WT, but not catalytically inactive, SIRT6 enhanced PDH expression and activity, OXPHOS, and ATP/AMP ratio in MDA-MB-231 and MCF7 BC cells. Opposite effects were obtained by SIRT6 silencing, which also blunted the expression of genes encoding for respiratory chain proteins, such as UQCRFS1, COX5B, NDUFB8, and UQCRC2, and increased AMPK activation in BC cells. In addition, SIRT6 overexpression increased, while SIRT6 silencing reduced, intracellular calcium concentration in MDA-MB-231 cells. Consistent with these findings, the heterozygous Sirt6 deletion reduced the expression of OXPHOS-related genes, the activity of respiratory complexes, and the ATP/AMP ratio in tumors isolated from MMTV-PyMT mice.
    CONCLUSIONS: Via its enzymatic activity, SIRT6 enhances PDH expression and activity, OXPHOS, ATP/AMP ratio, and intracellular calcium concentration, while reducing AMPK activation, in BC cells. Thus, overall, SIRT6 inhibition appears as a viable strategy for preventing or treating BC.
    Keywords:  Breast cancer; Cancer metabolism; Mammary tumorigenesis; Oxidative phosphorylation; SIRT6
    DOI:  https://doi.org/10.1186/s40170-021-00240-1
  31. J Clin Invest. 2021 Jan 19. pii: 138267. [Epub ahead of print]
    Stenton SL, Sheremet NL, Catarino CB, Andreeva N, Assouline Z, Barboni P, Barel O, Berutti R, Bychkov IO, Caporali L, Capristo M, Carbonelli M, Cascavilla ML, Charbel Issa P, Freisinger P, Gerber S, Ghezzi D, Graf E, Heidler J, Hempel M, Heon E, Itkis YS, Javasky E, Kaplan J, Kopajtich R, Kornblum C, Kovacs-Nagy R, Krylova T, Kunz WS, La Morgia C, Lamperti C, Ludwig C, Malacarne PF, Maresca A, Mayr JA, Meisterknecht J, Nevinitsyna T, Palombo F, Pode-Shakked B, Shmelkova MS, Strom TM, Tagliavini F, Tzadok M, van der Ven AT, Vignal-Clermont C, Wagner M, Zakharova E, Zhorzholadze N, Rozet JM, Carelli V, Tsygankova P, Klopstock T, Wittig I, Prokisch H.
      Leber's hereditary optic neuropathy (LHON) is the most frequent mitochondrial disease and was the first to be genetically defined by a point mutation in the mitochondrial DNA (mtDNA). A molecular diagnosis is reached in up to 95%, the vast majority of which are accounted for by three mutations within mitochondrial complex I (CI) subunit encoding genes in the mtDNA (mtLHON). Here, we resolve the enigma of LHON in the absence of pathogenic mtDNA mutations. We describe biallelic mutations in a nuclear encoded gene, DNAJC30, in 33 unsolved patients from 29 families and establish an autosomal recessive mode of inheritance for LHON (arLHON), which to date has been a prime example of a maternally inherited disorder. Remarkably, all hallmarks of mtLHON are recapitulated, including incomplete penetrance, male predominance, and significant idebenone responsivity. Moreover, by tracking protein turnover in patient-derived cell lines and a DNAJC30-knock-out cellular model, we measure reduced turnover of specific CI N-module subunits and a resultant impairment of CI function. This demonstrates DNAJC30 is to be a chaperone protein needed for the efficient exchange of CI subunits exposed to reactive oxygen species and integral to a mitochondrial CI repair mechanism, thereby providing the first example of a disease resulting from impaired exchange of assembled respiratory chain subunits.
    Keywords:  Genetic diseases; Genetics; Neuroscience
    DOI:  https://doi.org/10.1172/JCI138267
  32. Mol Biol Cell. 2021 Jan 21. mbcE20060390
    Jackson TD, Hock DH, Fujihara KM, Palmer CS, Frazier AE, Low YC, Kang Y, Ang CS, Clemons NJ, Thorburn DR, Stroud DA, Stojanovski D.
      Acylglycerol Kinase (AGK) is a mitochondrial lipid kinase that contributes to protein biogenesis as a subunit of the TIM22 complex at the inner mitochondrial membrane. Mutations in AGK cause Sengers syndrome, an autosomal recessive condition characterized by congenital cataracts, hypertrophic cardiomyopathy, skeletal myopathy and lactic acidosis. We mapped the proteomic changes in Sengers patient fibroblasts and AGKKO cell lines to understand the effects of AGK dysfunction on mitochondria. This uncovered downregulation of a number of proteins at the inner mitochondrial membrane, including many SLC25 carrier family proteins, which are predicted substrates of the complex. We also observed downregulation of SFXN proteins, which contain five transmembrane domains, and show that they represent a novel class of TIM22 complex substrate. Perturbed biogenesis of SFXN proteins in cells lacking AGK reduces the proliferative capabilities of these cells in the absence of exogenous serine, suggesting that dysregulation of one carbon metabolism is a molecular feature in the biology of Sengers syndrome.
    DOI:  https://doi.org/10.1091/mbc.E20-06-0390
  33. Drug Discov Today. 2021 Jan 15. pii: S1359-6446(21)00034-9. [Epub ahead of print]
    Luo B, Ma Y, Zhou Y, Zhang N, Luo Y.
      Human caseinolytic protease P (HsClpP), an ATP-dependent unfolding peptidase protein in the mitochondrial matrix, controls protein quality, regulates mitochondrial metabolism, and maintains the integrity and enzyme activity of the mitochondrial respiratory chain (RC). Studies show that abnormalities in HsClpP lead to mitochondrial dysfunction and various human diseases. In this review, we provide a comprehensive overview of the structure and biological function of HsClpP, and the involvement of its dysexpression or mutation in mitochondria for a panel of important human diseases. We also summarize the structural types and binding modes of known HsClpP modulators. Finally, we discuss the challenges and future directions of HsClpP targeting as promising approach for the treatment of human diseases of mitochondrial origin.
    DOI:  https://doi.org/10.1016/j.drudis.2021.01.007
  34. J Clin Invest. 2021 Jan 19. pii: 145158. [Epub ahead of print]131(2):
    Gucek M, Sack MN.
      Advancing proteomic and metabolomic technologies that integrate curated omic databases have crossed a threshold to enable their clinical utility. In this issue of the JCI, Sharma et al. exploit emerging technologies to evaluate whether biomarkers identified in the mitochondrial encephalomyopathy lactic acidosis and stroke-like episodes (MELAS) syndrome could refine disease characterization, uncover pathways to monitor therapeutic efficacy, and/or delineate disease-modifying targets. The authors analyzed blood and urine samples from patients with this genetic mitochondrial disease and elucidated proteins and metabolites related to NADH-reductive stress. These circulating biomarkers have intriguing clinical potential that implicate disease pathophysiology and may prove important biomarkers for the future management of MELAS.
    DOI:  https://doi.org/10.1172/JCI145158
  35. Cancer Metab. 2021 Jan 22. 9(1): 5
    Almouhanna F, Blagojevic B, Can S, Ghanem A, Wölfl S.
      BACKGROUND: Aerobic glycolysis, discovered by Otto Warburg, is a hallmark of cancer metabolism even though not yet fully understood. The low activity of the cancerous pyruvate kinase isozyme (M2) is thought to play an important role by facilitating the conversion of glycolytic intermediates to other anabolic pathways to support tumors' high proliferation rate.METHODS: Five breast cancer cell lines representing different molecular subtypes were used in this study where real time measurements of cellular bioenergetics and immunoblotting analysis of energy- and nutrient-sensing pathways were employed to investigate the potential effects of PKM2 allosteric activator (DASA-58) in glucose rewiring.
    RESULTS: In this study, we show that DASA-58 can induce pyruvate kinase activity in breast cancer cells without affecting the overall cell survival. The drug is also able to reduce TXNIP levels (an intracellular glucose sensor) probably through depletion of upstream glycolytic metabolites and independent of AMPK and ER signaling. AMPK shows an induction in phosphorylation (T172) in response to treatment an effect that can be potentiated by combining DASA-58 with other metabolic inhibitors.
    CONCLUSIONS: Altogether, the multifaceted metabolic reprogramming induced by DASA-58 in breast cancer cells increases their susceptibility to other therapeutics suggesting the suitability of the intracellular glucose sensor TXNIP as a marker of PK activity.
    Keywords:  AMPK; Breast cancer; Cancer metabolism; Glycolysis; Pyruvate kinase M2; TXNIP
    DOI:  https://doi.org/10.1186/s40170-021-00239-8
  36. Signal Transduct Target Ther. 2021 Jan 20. 6(1): 25
    Zheng D, Liu W, Xie W, Huang G, Jiang Q, Yang Y, Huang J, Xing Z, Yuan M, Wei M, Li Y, Yin J, Shen J, Shi Z.
      Osteosarcoma (OS) is the most common primary malignant bone tumor in children and adolescents. Although activator of HSP90 ATPase activity 1 (AHA1) is reported to be a potential oncogene, its role in osteosarcoma progression remains largely unclear. Since metabolism reprogramming is involved in tumorigenesis and cancer metastasis, the relationship between AHA1 and cancer metabolism is unknown. In this study, we found that AHA1 is significantly overexpressed in osteosarcoma and related to the prognosis of osteosarcoma patients. AHA1 promotes the growth and metastasis of osteosarcoma both in vitro and in vivo. Mechanistically, AHA1 upregulates the metabolic activity to meet cellular bioenergetic needs in osteosarcoma. Notably, we identified that isocitrate dehydrogenase 1 (IDH1) is a novel client protein of Hsp90-AHA1. Furthermore, the IDH1 protein level was positively correlated with AHA1 in osteosarcoma. And IDH1 overexpression could partially reverse the effect of AHA1 knockdown on cell growth and migration of osteosarcoma. Moreover, high IDH1 level was also associated with poor prognosis of osteosarcoma patients. This study demonstrates that AHA1 positively regulates IDH1 and metabolic activity to promote osteosarcoma growth and metastasis, which provides novel prognostic biomarkers and promising therapeutic targets for osteosarcoma patients.
    DOI:  https://doi.org/10.1038/s41392-020-00387-1
  37. Nature. 2021 Jan 20.
    Minhas PS, Latif-Hernandez A, McReynolds MR, Durairaj AS, Wang Q, Rubin A, Joshi AU, He JQ, Gauba E, Liu L, Wang C, Linde M, Sugiura Y, Moon PK, Majeti R, Suematsu M, Mochly-Rosen D, Weissman IL, Longo FM, Rabinowitz JD, Andreasson KI.
      Ageing is characterized by the development of persistent pro-inflammatory responses that contribute to atherosclerosis, metabolic syndrome, cancer and frailty1-3. The ageing brain is also vulnerable to inflammation, as demonstrated by the high prevalence of age-associated cognitive decline and Alzheimer's disease4-6. Systemically, circulating pro-inflammatory factors can promote cognitive decline7,8, and in the brain, microglia lose the ability to clear misfolded proteins that are associated with neurodegeneration9,10. However, the underlying mechanisms that initiate and sustain maladaptive inflammation with ageing are not well defined. Here we show that in ageing mice myeloid cell bioenergetics are suppressed in response to increased signalling by the lipid messenger prostaglandin E2 (PGE2), a major modulator of inflammation11. In ageing macrophages and microglia, PGE2 signalling through its EP2 receptor promotes the sequestration of glucose into glycogen, reducing glucose flux and mitochondrial respiration. This energy-deficient state, which drives maladaptive pro-inflammatory responses, is further augmented by a dependence of aged myeloid cells on glucose as a principal fuel source. In aged mice, inhibition of myeloid EP2 signalling rejuvenates cellular bioenergetics, systemic and brain inflammatory states, hippocampal synaptic plasticity and spatial memory. Moreover, blockade of peripheral myeloid EP2 signalling is sufficient to restore cognition in aged mice. Our study suggests that cognitive ageing is not a static or irrevocable condition but can be reversed by reprogramming myeloid glucose metabolism to restore youthful immune functions.
    DOI:  https://doi.org/10.1038/s41586-020-03160-0
  38. J Clin Invest. 2021 01 19. pii: 136055. [Epub ahead of print]131(2):
    Sharma R, Reinstadler B, Engelstad K, Skinner OS, Stackowitz E, Haller RG, Clish CB, Pierce K, Walker MA, Fryer R, Oglesbee D, Mao X, Shungu DC, Khatri A, Hirano M, De Vivo DC, Mootha VK.
      Mitochondrial disorders represent a large collection of rare syndromes that are difficult to manage both because we do not fully understand biochemical pathogenesis and because we currently lack facile markers of severity. The m.3243A>G variant is the most common heteroplasmic mitochondrial DNA mutation and underlies a spectrum of diseases, notably mitochondrial encephalomyopathy lactic acidosis and stroke-like episodes (MELAS). To identify robust circulating markers of m.3243A>G disease, we first performed discovery proteomics, targeted metabolomics, and untargeted metabolomics on plasma from a deeply phenotyped cohort (102 patients, 32 controls). In a validation phase, we measured concentrations of prioritized metabolites in an independent cohort using distinct methods. We validated 20 analytes (1 protein, 19 metabolites) that distinguish patients with MELAS from controls. The collection includes classic (lactate, alanine) and more recently identified (GDF-15, α-hydroxybutyrate) mitochondrial markers. By mining untargeted mass-spectra we uncovered 3 less well-studied metabolite families: N-lactoyl-amino acids, β-hydroxy acylcarnitines, and β-hydroxy fatty acids. Many of these 20 analytes correlate strongly with established measures of severity, including Karnofsky status, and mechanistically, nearly all markers are attributable to an elevated NADH/NAD+ ratio, or NADH-reductive stress. Our work defines a panel of organelle function tests related to NADH-reductive stress that should enable classification and monitoring of mitochondrial disease.
    Keywords:  Genetics; Intermediary metabolism; Metabolism; Mitochondria; Monogenic diseases; RET; HS6ST1; sE-selectin; integrated stress response; creatine; pyruvate; 2-hydroxybutyrate; alpha-hydroxybutyrate; lactoyl-amino acids; hydroxy-fatty acids; hydroxy-acylcarnitines
    DOI:  https://doi.org/10.1172/JCI136055
  39. FEBS Open Bio. 2021 Jan 16.
    Meng L, Chen D, Meng G, Lu L, Han C.
      Sunitinib (Sun), a tyrosine kinase inhibitor of vascular endothelial growth factor receptor (VEGFR), is the standard first-line treatment against advanced clear cell renal cell carcinoma (ccRCC), but resistance to therapy is inevitable. Reactive oxygen species (ROS) production is associated with sensitivity to chemotherapy, but the underlying mechanisms are not completely understood. Here, we investigated the mechanisms contributing to Sun resistance using the RCC cell lines ACHN and 786-O. We report that Sun-resistant (Sun-R) cells exhibited reduced apoptosis, increased cell viability, increased ROS production, and disrupted mitochondrial function. Furthermore, chronic Sun treatment resulted in an upregulation of Sirt5/isocitrate dehydrogenase 2 (IDH2) expression levels. Knockdown of Sirt5/IDH2 impaired mitochondrial function and partially attenuated Sun resistance. Finally, upregulation of Sirt5 enhanced the expression of IDH2 via modulation of succinylation at K413 and promoting protein stability. In conclusion, dysregulation of Sirt5/IDH2 partially contributes to Sun resistance in RCC cells by affecting anti-oxidant capacity.
    Keywords:  Clear cell renal cell carcinoma; Desuccinylation; Isocitrate dehydrogenase 2; Sirt5; Sunitinib
    DOI:  https://doi.org/10.1002/2211-5463.13090
  40. Cell Death Dis. 2021 Jan 19. 12(1): 100
    Facchinello N, Laquatra C, Locatello L, Beffagna G, Brañas Casas R, Fornetto C, Dinarello A, Martorano L, Vettori A, Risato G, Celeghin R, Meneghetti G, Santoro MM, Delahodde A, Vanzi F, Rasola A, Dalla Valle L, Rasotto MB, Lodi T, Baruffini E, Argenton F, Tiso N.
      The DNA polymerase gamma (Polg) is a nuclear-encoded enzyme involved in DNA replication in animal mitochondria. In humans, mutations in the POLG gene underlie a set of mitochondrial diseases characterized by mitochondrial DNA (mtDNA) depletion or deletion and multiorgan defects, named POLG disorders, for which an effective therapy is still needed. By applying antisense strategies, ENU- and CRISPR/Cas9-based mutagenesis, we have generated embryonic, larval-lethal and adult-viable zebrafish Polg models. Morphological and functional characterizations detected a set of phenotypes remarkably associated to POLG disorders, including cardiac, skeletal muscle, hepatic and gonadal defects, as well as mitochondrial dysfunctions and, notably, a perturbed mitochondria-to-nucleus retrograde signaling (CREB and Hypoxia pathways). Next, taking advantage of preliminary evidence on the candidate molecule Clofilium tosylate (CLO), we tested CLO toxicity and then its efficacy in our zebrafish lines. Interestingly, at well tolerated doses, the CLO drug could successfully rescue mtDNA and Complex I respiratory activity to normal levels, even in mutant phenotypes worsened by treatment with Ethidium Bromide. In addition, the CLO drug could efficiently restore cardio-skeletal parameters and mitochondrial mass back to normal values. Altogether, these evidences point to zebrafish as a valuable vertebrate organism to faithfully phenocopy multiple defects detected in POLG patients. Moreover, this model represents an excellent platform to screen, at the whole-animal level, candidate molecules with therapeutic effects in POLG disorders.
    DOI:  https://doi.org/10.1038/s41419-020-03359-z
  41. Cell Death Differ. 2021 Jan 19.
    Liu J, Wen T, Dong K, He X, Zhou H, Shen J, Fu Z, Hu G, Ma W, Li J, Wang W, Wang L, Akerberg BN, Xu J, Osman I, Zheng Z, Wang W, Du Q, Pu WT, Xiang M, Chen W, Su H, Zhang W, Zhou J.
      The Hippo signaling effector, TEAD1 plays an essential role in cardiovascular development. However, a role for TEAD1 in postmitotic cardiomyocytes (CMs) remains incompletely understood. Herein we reported that TEAD1 is required for postmitotic CM survival. We found that adult mice with ubiquitous or CM-specific loss of Tead1 present with a rapid lethality due to an acute-onset dilated cardiomyopathy. Surprisingly, deletion of Tead1 activated the necroptotic pathway and induced massive cardiomyocyte necroptosis, but not apoptosis. In contrast to apoptosis, necroptosis is a pro-inflammatory form of cell death and consistent with this, dramatically higher levels of markers of activated macrophages and pro-inflammatory cytokines were observed in the hearts of Tead1 knockout mice. Blocking necroptosis by administration of necrostatin-1 rescued Tead1 deletion-induced heart failure. Mechanistically, genome-wide transcriptome and ChIP-seq analysis revealed that in adult hearts, Tead1 directly activates a large set of nuclear DNA-encoded mitochondrial genes required for assembly of the electron transfer complex and the production of ATP. Loss of Tead1 expression in adult CMs increased mitochondrial reactive oxygen species, disrupted the structure of mitochondria, reduced complex I-IV driven oxygen consumption and ATP levels, resulting in the activation of necroptosis. This study identifies an unexpected paradigm in which TEAD1 is essential for postmitotic CM survival by maintaining the expression of nuclear DNA-encoded mitochondrial genes required for ATP synthesis.
    DOI:  https://doi.org/10.1038/s41418-020-00732-5
  42. Cancer Res. 2021 Jan 22. pii: canres.3477.2020. [Epub ahead of print]
    Ghoochani A, Hsu EC, Aslan M, Rice MA, Nguyen HM, Brooks JD, Corey E, Paulmurugan R, Stoyanova T.
      Ferroptosis is a type of programmed cell death induced by the accumulation of lipid peroxidation and lipid reactive oxygen species (ROS) in cells. It has been recently demonstrated that cancer cells are vulnerable to ferroptosis inducers (FIN). However, the therapeutic potential of ferroptosis inducers in prostate cancer in pre-clinical settings has not been explored. In this study, we demonstrate that mediators of ferroptosis SLC7A11, SLC3A2 and GPX4 are expressed in treatment-resistant prostate cancer. We further demonstrate that treatment-resistant prostate cancer cells are sensitive to two ferroptosis inducers, erastin and RSL3. Treatment with erastin and RSL3 led to a significant decrease in prostate cancer cell growth and migration in vitro and significantly delayed the tumor growth of treatment-resistant prostate cancer in vivo, with no measurable side effects. Combination of erastin or RSL3 with standard-of-care second-generation anti-androgens for advanced prostate cancer halted prostate cancer cell growth and migration in vitro and tumor growth in vivo. These results demonstrate the potential of erastin or RSL3 independently and in combination with standard-of-care second-generation anti-androgens as novel therapeutic strategies for advanced prostate cancer.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-20-3477
  43. J Clin Invest. 2021 Jan 19. pii: 140695. [Epub ahead of print]
    Miguel V, Tituaña J, Herrero JI, Herrero L, Serra D, Cuevas-Delgado P, Barbas C, Rodriguez-Puyol D, Marquez-Exposito L, Ruiz-Ortega M, Castillo C, Sheng X, Susztak K, Ruiz-Canela M, Salas-Salvado J, Martinez-Gonzalez MA, Ortega S, Ramos-Ruiz R, Lamas S.
      Chronic kidney disease (CKD) remains a major epidemiological, clinical and biomedical challenge. During CKD, renal tubular epithelial cells (TECs) suffer a persistent inflammatory and profibrotic response. Fatty acid oxidation (FAO), the main source of energy for TECs, is reduced in kidney fibrosis and contributes to its pathogenesis. To determine if FAO gain-of-function (FAO-GOF) could protect from fibrosis, we generated a conditional transgenic mouse model with overexpression of the fatty acid shuttling enzyme carnitine palmitoyl-transferase 1 A (CPT1A) in TECs. Cpt1a knock-in mice subjected to three different models of renal fibrosis (unilateral ureteral obstruction, folic acid nephropathy-FAN and adenine induced nephrotoxicity) exhibited decreased expression of fibrotic markers, a blunted pro-inflammatory response and reduced epithelial cell damage and macrophage influx. Protection from fibrosis was also observed when Cpt1a overexpression was induced after FAN. FAO-GOF restituted oxidative metabolism and mitochondrial number and enhanced bioenergetics increasing palmitate oxidation and ATP levels, changes also recapitulated in TECs exposed to profibrotic stimuli. Studies in patients evidenced decreased CPT1 levels and increased accumulation of short and middle chain acyl-carnitines, reflecting impaired FAO in human CKD. We propose that strategies based on FAO-GOF may constitute powerful alternatives to combat fibrosis inherent to CKD.
    Keywords:  Chronic kidney disease; Fatty acid oxidation; Fibrosis; Nephrology
    DOI:  https://doi.org/10.1172/JCI140695
  44. Science. 2021 01 22. 371(6527): 405-410
    Xu K, Yin N, Peng M, Stamatiades EG, Shyu A, Li P, Zhang X, Do MH, Wang Z, Capistrano KJ, Chou C, Levine AG, Rudensky AY, Li MO.
      Infection triggers expansion and effector differentiation of T cells specific for microbial antigens in association with metabolic reprograming. We found that the glycolytic enzyme lactate dehydrogenase A (LDHA) is induced in CD8+ T effector cells through phosphoinositide 3-kinase (PI3K) signaling. In turn, ablation of LDHA inhibits PI3K-dependent phosphorylation of Akt and its transcription factor target Foxo1, causing defective antimicrobial immunity. LDHA deficiency cripples cellular redox control and diminishes adenosine triphosphate (ATP) production in effector T cells, resulting in attenuated PI3K signaling. Thus, nutrient metabolism and growth factor signaling are highly integrated processes, with glycolytic ATP serving as a rheostat to gauge PI3K-Akt-Foxo1 signaling in the control of T cell immunity. Such a bioenergetic mechanism for the regulation of signaling may explain the Warburg effect.
    DOI:  https://doi.org/10.1126/science.abb2683
  45. FEBS J. 2021 Jan 17.
    Pamplona R, Jové M, Mota-Martorell N, Barja G.
      Complex I, a component of the electron transport chain, plays a central functional role in cell bioenergetics and the biology of free radicals. The structural and functional N-module of complex I is one of the main sites of the generation of free radicals. The NDUFV2 subunit/N1a cluster is a component of this module. Furthermore, the rate of free radical production is linked to animal longevity. In this review, we explore the hypothesis that NDUFV2 is the only conserved core subunit designed with a regulatory function to ensure correct electron transfer and free radical production, that low gene expression and protein abundance of the NDUFV2 subunit is an evolutionary adaptation needed to achieve a longevity phenotype, and that these features are determinants of the lower free radical generation at mitochondrial level and slower rate of aging of long-lived animals.
    Keywords:  N1a cluster; NDUFV2 subunit; animal longevity; complex I; mitochondria; reactive oxygen species; superoxide radical
    DOI:  https://doi.org/10.1111/febs.15714
  46. Nat Commun. 2021 01 20. 12(1): 490
    Chew GL, Bleakley M, Bradley RK, Malik HS, Henikoff S, Molaro A, Sarthy J.
      Short H2A (sH2A) histone variants are primarily expressed in the testes of placental mammals. Their incorporation into chromatin is associated with nucleosome destabilization and modulation of alternate splicing. Here, we show that sH2As innately possess features similar to recurrent oncohistone mutations associated with nucleosome instability. Through analyses of existing cancer genomics datasets, we find aberrant sH2A upregulation in a broad array of cancers, which manifest splicing patterns consistent with global nucleosome destabilization. We posit that short H2As are a class of "ready-made" oncohistones, whose inappropriate expression contributes to chromatin dysfunction in cancer.
    DOI:  https://doi.org/10.1038/s41467-020-20707-x
  47. Cancer Cell. 2021 Jan 20. pii: S1535-6108(21)00048-9. [Epub ahead of print]
    Irmisch A, Bonilla X, Chevrier S, Lehmann KV, Singer F, Toussaint NC, Esposito C, Mena J, Milani ES, Casanova R, Stekhoven DJ, Wegmann R, Jacob F, Sobottka B, Goetze S, Kuipers J, Sarabia Del Castillo J, Prummer M, Tuncel MA, Menzel U, Jacobs A, Engler S, Sivapatham S, Frei AL, Gut G, Ficek J, Miglino N, , Aebersold R, Bacac M, Beerenwinkel N, Beisel C, Bodenmiller B, Dummer R, Heinzelmann-Schwarz V, Koelzer VH, Manz MG, Moch H, Pelkmans L, Snijder B, Theocharides APA, Tolnay M, Wicki A, Wollscheid B, Rätsch G, Levesque MP.
      The application and integration of molecular profiling technologies create novel opportunities for personalized medicine. Here, we introduce the Tumor Profiler Study, an observational trial combining a prospective diagnostic approach to assess the relevance of in-depth tumor profiling to support clinical decision-making with an exploratory approach to improve the biological understanding of the disease.
    DOI:  https://doi.org/10.1016/j.ccell.2021.01.004
  48. Nat Rev Cancer. 2021 Jan 18.
    Bergers G, Fendt SM.
      Metastasis formation is the major cause of death in most patients with cancer. Despite extensive research, targeting metastatic seeding and colonization is still an unresolved challenge. Only recently, attention has been drawn to the fact that metastasizing cancer cells selectively and dynamically adapt their metabolism at every step during the metastatic cascade. Moreover, many metastases display different metabolic traits compared with the tumours from which they originate, enabling survival and growth in the new environment. Consequently, the stage-dependent metabolic traits may provide therapeutic windows for preventing or reducing metastasis, and targeting the new metabolic traits arising in established metastases may allow their eradication.
    DOI:  https://doi.org/10.1038/s41568-020-00320-2
  49. J Hematol Oncol. 2021 Jan 20. 14(1): 19
    Ding Y, Chen X, Liu C, Ge W, Wang Q, Hao X, Wang M, Chen Y, Zhang Q.
      BACKGROUND: TNBC is the most aggressive breast cancer with higher recurrence and mortality rate than other types of breast cancer. There is an urgent need for identification of therapeutic agents with unique mode of action for overcoming current challenges in TNBC treatment.METHODS: Different inhibitors were used to study the cell death manner of DMOCPTL. RNA silencing was used to evaluate the functions of GPX4 in ferroptosis and apoptosis of TNBC cells and functions of EGR1 in apoptosis. Immunohistochemical assay of tissue microarray were used for investigating correlation of GPX4 and EGR1 with TNBC. Computer-aided docking and small molecule probe were used for study the binding of DMOCPTL with GPX4.
    RESULTS: DMOCPTL, a derivative of natural product parthenolide, exhibited about 15-fold improvement comparing to that of the parent compound PTL for TNBC cells. The cell death manner assay showed that the anti-TNBC effect of DMOCPTL mainly by inducing ferroptosis and apoptosis through ubiquitination of GPX4. The probe of DMOCPTL assay indicated that DMOCPTL induced GPX4 ubiquitination by directly binding to GPX4 protein. To the best of our knowledge, this is the first report of inducing ferroptosis through ubiquitination of GPX4. Moreover, the mechanism of GPX4 regulation of apoptosis is still obscure. Here, we firstly reveal that GPX4 regulated mitochondria-mediated apoptosis through regulation of EGR1 in TNBC cells. Compound 13, the prodrug of DMOCPTL, effectively inhibited the growth of breast tumor and prolonged the lifespan of mice in vivo, and no obvious toxicity was observed.
    CONCLUSIONS: These findings firstly revealed novel manner to induce ferroptosis through ubiquitination of GPX4 and provided mechanism for GPX4 inducing mitochondria-mediated apoptosis through up-regulation of EGR1 in TNBC cells. Moreover, compound 13 deserves further studies as a lead compound with novel mode of action for ultimate discovery of effective anti-TNBC drug.
    Keywords:  EGR1; Ferroptosis; GPX4; Triple negative breast cancer; Ubiquitination
    DOI:  https://doi.org/10.1186/s13045-020-01016-8
  50. Med Sci Monit. 2021 Jan 20. 27 e928327
    Zhu Z, Liu Y, Wu D, Wang H.
      BACKGROUND The association between mitochondrial DNA (mtDNA) copy number and head and neck squamous cell carcinoma (HNSCC) risk remains unclear. Therefore, we aimed to evaluate the relationship between mtDNA copy number and HNSCC risk. MATERIAL AND METHODS We searched PubMed, Web of Science, and EMBASE until August 2020. Studies that assessed the association between mtDNA copy number and HNSCC as the outcome of interest were included. We performed a 2-class and dose-response meta-analysis to assess the association between cancer risk and mtDNA. RESULTS Eight articles (2 cohort studies and 6 case-control studies) with a total of 3913 patients were included in our meta-analysis. The overall results showed that mean mtDNA copy number level from 9 studies was 0.71 higher in patients with cancer than in non-cancer controls (the standardized mean differences (SMD) 0.71, 95% CI: 0.28-1.15, P<0.001). However, when 4 studies were pooled by dichotomizing mtDNA copy number at the median value into high- and low-content groups, no significant association between mtDNA content and overall cancer risk was found (odds ratio (OR)=0.87, 95% CI: 0.52-1.44, P=0.584). Furthermore, we observed a non-linear association from 3 studies between increased mtDNA copy number levels (P for nonlinearity <0.001). CONCLUSIONS The elevated mtDNA copy number could predict the risk of HNSCC as a biomarker. Moreover, there was non-linear relationship of risk between HNSCC and mtDNA copy number.
    DOI:  https://doi.org/10.12659/MSM.928327
  51. Sci Rep. 2021 Jan 21. 11(1): 1931
    Niemann B, Li L, Simm A, Molenda N, Kockskämper J, Boening A, Rohrbach S.
      Increased activation of sympathetic nervous system contributes to congestive heart failure (CHF) progression, and inhibition of sympathetic overactivation by beta-blockers is successful in CHF patients. Similarly, caloric restriction (CR) reduces sympathetic activity but mediates additional effects. Here, we compared the cardiac effects of CR (- 40% kcal, 3 months) with beta-blocker therapy (BB), diuretic medication (DF) or control diet in 18-months-old Wistar rats. We continuously recorded blood pressure, heart rate, body temperature and activity with telemetric devices and analysed cardiac function, activated signalling cascades and markers of apoptosis and mitochondrial biogenesis. During our study, left ventricular (LV) systolic function improved markedly (CR), mildly (BB) or even deteriorated (DF; control). Diastolic function was preserved by CR and BB but impaired by DF. CR reduced blood pressure identical to DF and BB and heart rate identical to BB. Plasma noradrenaline was decreased by CR and BB but increased by DF. Only CR reduced LV oxidative damage and apoptosis, induced AMPK and Akt phosphorylation and increased mitochondrial biogenesis. Thus, additive to the reduction of sympathetic activity, CR achieves protective effects on mitochondria and improves LV function and ROS damage in aged hearts. CR mechanisms may provide additional therapeutic targets compared to traditional CHF therapy.
    DOI:  https://doi.org/10.1038/s41598-021-81438-7
  52. Cell Metab. 2021 Jan 18. pii: S1550-4131(20)30728-2. [Epub ahead of print]
    TeSlaa T, Bartman CR, Jankowski CSR, Zhang Z, Xu X, Xing X, Wang L, Lu W, Hui S, Rabinowitz JD.
      Glycolysis plays a central role in organismal metabolism, but its quantitative inputs across mammalian tissues remain unclear. Here we use 13C-tracing in mice to quantify glycolytic intermediate sources: circulating glucose, intra-tissue glycogen, and circulating gluconeogenic precursors. Circulating glucose is the main source of circulating lactate, the primary end product of tissue glycolysis. Yet circulating glucose highly labels glycolytic intermediates in only a few tissues: blood, spleen, diaphragm, and soleus muscle. Most glycolytic intermediates in the bulk of body tissue, including liver and quadriceps muscle, come instead from glycogen. Gluconeogenesis contributes less but also broadly to glycolytic intermediates, and its flux persists with physiologic feeding (but not hyperinsulinemic clamp). Instead of suppressing gluconeogenesis, feeding activates oxidation of circulating glucose and lactate to maintain glucose homeostasis. Thus, the bulk of the body slowly breaks down internally stored glycogen while select tissues rapidly catabolize circulating glucose to lactate for oxidation throughout the body.
    Keywords:  compartmentalized metabolism; glucose homeostasis; glycogen; glycolysis; glycolytic intermediates; glycolytic specialist; isotope tracing; metabolic heterogeneity; red muscle
    DOI:  https://doi.org/10.1016/j.cmet.2020.12.020
  53. Onco Targets Ther. 2021 ;14 379-392
    Mao H, Sheng J, Jia J, Wang C, Zhang S, Li H, He F.
      Background: Solute carrier family 6 member 14 (SLC6A14) is a high-capacity amino acid transporter in mammalian cells. It has gained increasing attention for its potential involvement in the progression and metabolic reprogramming of various malignant tumors. However, the role of SLC6A14 in colorectal cancer (CRC) remains unclear.Methods: Real-time polymerase chain reaction (qRT-PCR), immunoblotting and immunohistochemistry were carried out to detect the expression level of SLC6A14 in human CRC tissues and CRC-derived cell lines. HCT-116 and Caco-2 cell lines were selected to conduct in vitro functional studies. Cell Counting Kit-8 (CCK-8), colony formation, flow cytometry, cell migration and invasion assays were performed to investigate the role of SLC6A14 in CRC cells. Besides, azoxymethane/dextran sulfate sodium salt (AOM/DSS)-induced CRC and tumor xenograft models were constructed to explore the effects of SLC6A14 blockade or overexpression during tumor progression in vivo.
    Results: SLC6A14 was substantially increased in human CRC samples and higher levels of SLC6A14 was correlated with advanced tumor stage, lymph node metastasis and dismal survival of CRC patients. SLC6A14 markedly promoted cell growth, inhibited cell apoptosis, and exacerbated migration and invasion of CRC cells in vitro. Mechanistically, SLC6A14 aggravated these malignant phenotypes through activating JAK2/STAT3 signaling pathway, and inhibiting JAK2/STAT3 signaling with specific inhibitors could reverse SLC6A14-mediated tumorigenic effects. Besides, two different animal studies verified the tumor-promoting effect of SLC6A14 in CRC.
    Conclusion: Our data illustrated the crucial function of SLC6A14 during CRC progression, suggesting SLC6A14/JAK2/STAT3 axis may serve as novel therapeutic targets for patients with CRC.
    Keywords:  CRC; SLC6A14; STAT3; colorectal cancer; migration; proliferation
    DOI:  https://doi.org/10.2147/OTT.S288709