bims-metlip Biomed News
on Methods and protocols in metabolomics and lipidomics
Issue of 2024‒01‒14
eighteen papers selected by
Sofia Costa, Matterworks



  1. Anal Chem. 2024 Jan 09.
      Supercritical fluid chromatography (SFC) is a rapidly expanding technique in the analysis of nonpolar to moderately polar substances and, more recently, also in the analysis of compounds with higher polarity. Herein, we demonstrate a proof of concept for the application of a commercial SFC instrument with electrospray ionization-mass spectrometry (MS) detection as a platform for the comprehensive analysis of metabolites with the full range of polarities, from nonpolar lipids up to highly polar metabolites. The developed single-platform SFC-MS lipidomic/metabolomic method is based on two consecutive injections of lipid and polar metabolite extracts from biphase methyl tert-butyl ether extraction using a diol column and two different gradient programs of methanol-water-ammonium formate modifier. Detailed development of the method focused mainly on the pressure limits of the system, the long-term repeatability of results, and the chromatographic performance, including optimization of the flow rate program, modifier composition and gradient, and injection solvent selection. The developed method enabled fast and comprehensive analysis of lipids and polar metabolites from plasma within a 24 min cycle with two injections using a simple analytical platform based on a single instrument, column, and mobile phase. Finally, the results from SFC-MS analysis of polar metabolites were compared with widely established liquid chromatography MS analysis in metabolomics. The comparison showed different separation selectivity of metabolites using both methods and overall lower sensitivity of the SFC-MS due to the higher flow rate and worse chromatographic performance.
    DOI:  https://doi.org/10.1021/acs.analchem.3c04771
  2. Anal Bioanal Chem. 2024 Jan 12.
      Lipids are a diverse class of molecules involved in many biological functions including cell signaling or cell membrane assembly. Owing to this relevance, LC-MS/MS-based lipidomics emerged as a major field in modern analytical chemistry. Here, we thoroughly characterized the influence of MS and LC settings - of a Q Exactive HF operated in Full MS/data-dependent MS2 TOP N acquisition mode - in order to optimize the semi-quantification of polar lipids. Optimization of MS-source settings improved the signal intensity by factor 3 compared to default settings. Polar lipids were separated on an ACQUITY Premier CSH C18 reversed-phase column (100 × 2.1 mm, 1.7 µm, 130 Å) during an elution window of 28 min, leading to a sufficient number of both data points across the chromatographic peaks, as well as MS2 spectra. Analysis was carried out in positive and negative ionization mode enabling the detection of a broader spectrum of lipids and to support the structural characterization of lipids. Optimal sample preparation of biological samples was achieved by liquid-liquid extraction using MeOH/MTBE resulting in an excellent extraction recovery > 85% with an intra-day and inter-day variability < 15%. The optimized method was applied on the investigation of changes in the phospholipid pattern in plasma from human subjects supplemented with n3-PUFA (20:5 and 22:6). The strongest increase was observed for lipids bearing 20:5, while 22:4 bearing lipids were lowered. Specifically, LPC 20:5_0:0 and PC 16:0_20:5 were found to be strongest elevated, while PE 18:0_22:4 and PC 18:2_18:2 were decreased by n3-PUFA supplementation. These results were confirmed by targeted LC-MS/MS using commercially available phospholipids as standards.
    Keywords:  High-resolution mass spectrometry; Ion suppression; Phospholipids; Reversed-phase liquid chromatography; Untargeted analysis; n3-PUFA supplementation
    DOI:  https://doi.org/10.1007/s00216-023-05080-0
  3. Anal Chem. 2024 Jan 11.
      Untargeted lipidomics using liquid chromatography (LC) coupled with tandem mass spectrometry (MS) is essential for large cohort studies. Using a fast LC gradient of less than 10 min for the rapid screening of lipids decreases the annotation rate, because of the lower coverage of the MS/MS spectra caused by the narrow peak width. A systematic procedure is proposed in this study to achieve a high annotation rate in fast LC-based untargeted lipidomics by integrating data-dependent acquisition (DDA) and sequential window acquisition of all-theoretical mass spectrometry data-independent acquisition (SWATH-DIA) techniques using the updated MS-DIAL program. This strategy uses variable SWATH-DIA methods for quality control (QC) samples, which are a mixture of biological samples that were analyzed multiple times to correct the MS signal drift. In contrast, biological samples are analyzed using DDA to facilitate the structural elucidation of lipids using the pure spectrum to the maximum extent. The workflow is demonstrated using an 8.6 min LC gradient, where the QC samples are analyzed using five different SWATH-DIA methods. The use of both DDA and SWATH-DIA achieves a 1.7-fold annotation coverage from publicly available benchmark data obtained using a fast LC-DDA-MS technique and offers 95.3% lipid coverage, as compared to the benchmark data set from a 25 min LC gradient. This study demonstrates that harmonized improvements in analytical conditions and informatics tools provide a comprehensive lipidome in fast LC-based untargeted lipidomics, not only for large-scale studies but also for small-scale experiments, contributing to both clinical applications and basic biology.
    DOI:  https://doi.org/10.1021/acs.analchem.3c04400
  4. Anal Chem. 2024 Jan 08.
      The accuracy of the structural annotation of unidentified peaks obtained in metabolomic analysis using liquid chromatography/tandem mass spectrometry (LC/MS/MS) can be enhanced using retention time (RT) information as well as precursor and product ions. Unified-hydrophilic-interaction/anion-exchange liquid chromatography high-resolution tandem mass spectrometry (unified-HILIC/AEX/HRMS/MS) has been recently developed as an innovative method ideal for nontargeted polar metabolomics. However, the RT prediction for unified-HILIC/AEX has not been developed because of the complex separation mechanism characterized by the continuous transition of the separation modes from HILIC to AEX. In this study, we propose an RT prediction model of unified-HILIC/AEX/HRMS/MS, which enables the comprehensive structural annotation of polar metabolites. With training data for 203 polar metabolites, we ranked the feature importance using a random forest among 12,420 molecular descriptors (MDs) and constructed an RT prediction model with 26 selected MDs. The accuracy of the RT model was evaluated using test data for 51 polar metabolites, and 86.3% of the ΔRTs (difference between measured and predicted RTs) were within ±1.50 min, with a mean absolute error of 0.80 min, indicating high RT prediction accuracy. Nontargeted metabolomic data from the NIST SRM 1950-Metabolites in frozen human plasma were analyzed using the developed RT model and in silico MS/MS prediction, resulting in a successful structural estimation of 216 polar metabolites, in addition to the 62 identified based on standards. The proposed model can help accelerate the structural annotation of unknown hydrophilic metabolites, which is a key issue in metabolomic research.
    DOI:  https://doi.org/10.1021/acs.analchem.3c04618
  5. mSystems. 2024 Jan 11. e0035623
      IMPORTANCE: Systems biology research on host-associated microbiota focuses on two fundamental questions: which microbes are present and how do they interact with each other, their host, and the broader host environment? Metagenomics provides us with a direct answer to the first part of the question: it unveils the microbial inhabitants, e.g., on our skin, and can provide insight into their functional potential. Yet, it falls short in revealing their active role. Metabolomics shows us the chemical composition of the environment in which microbes thrive and the transformation products they produce. In particular, untargeted metabolomics has the potential to observe a diverse set of metabolites and is thus an ideal complement to metagenomics. However, this potential often remains underexplored due to the low annotation rates in MS-based metabolomics and the necessity for multiple experimental chromatographic and mass spectrometric conditions. Beyond detection, prospecting metabolites' functional role in the host/microbiome metabolome requires identifying the biological processes and entities involved in their production and biotransformations. In the present study of the human scalp, we developed a strategy to achieve comprehensive structural and functional annotation of the metabolites in the human scalp environment, thus diving one step deeper into the interpretation of "omics" data. Leveraging a collection of openly accessible software tools and integrating microbiome data as a source of functional metabolite annotations, we finally identified the specific metabolic niche of Staphylococcus epidermidis, one of the key players of the human skin microbiome.
    Keywords:  metabolite annotation; metabolomics; multi-omics integration; scalp; skin microbiome
    DOI:  https://doi.org/10.1128/msystems.00356-23
  6. Zhonghua Yu Fang Yi Xue Za Zhi. 2023 Dec 06. 57(12): 2073-2085
    Grassroots Inspection Technology Standardization Branch of China International Exchange and Promotive Association for Medical and Health Care
      Liquid chromatography-tandem mass spectrometry (LC-MS/MS) combines the advantages of high separation ability of chromatography and high selectivity, specificity and sensitivity of mass spectrometry, making it one of the most vibrant new technologies in the field of clinical testing. However, the analytical performance is often limited by the characteristics of the sample to be measured. Due to the limited anti-contamination capability of the mass spectrometer, biological samples need to be properly pre-processed to effectively improve the detection performance and achieve accurate detection. The main function of pre-treatment is to selectively separate the target analyte from the biological matrix to reduce interference from other matrix components. At the same time, the target analytes can be concentrated and enriched to improve the analytical sensitivity. At present, there are many kinds of clinical sample pre-treatment methods, and several methods are time-consuming and cumbersome, which brings difficulties to laboratory personnel in method selection, development and standardized operation. Therefore, the purpose of this consensus is to provide guidance for the establishment of laboratory methods and facilitate the standardized development of clinical mass spectrometry measurement.
    DOI:  https://doi.org/10.3760/cma.j.cn112150-20230906-00160
  7. J Mass Spectrom Adv Clin Lab. 2024 Jan;31 8-16
      Objective: To develop and validate an assay for the analysis of bedaquiline and its M2 metabolite in human breast milk.Methods: The analytes were extracted using solid phase extraction following protein precipitation. Quantification was performed with liquid chromatography coupled with tandem mass spectrometry. Chromatographic separation was achieved using gradient chromatography on a Poroshell 120 SB-C18 analytical column at 40 °C, with a flow rate of 350 µL/minute and a total run time of eight minutes. An AB Sciex 3000 mass spectrometer with electrospray ionization in the positive mode was used for detection, employing multiple reaction monitoring scan mode. Bedaquiline-d6 and M2-d3-13C were used as internal standards.
    Results: Calibrations curves for bedaquiline and M2 exhibited quadratic (weighted 1/x concentration) regressions over the respective concentration ranges of 0.0780 to 5.00 µg/mL and 0.0312 to 2.00 µg/mL. Inter- and intra-day validation accuracies ranged between 96.7 % and 103.5 % for bedaquiline, and 104.2 % to 106.5 % for M2, with a coefficient of variation below 9.2 % for both compounds.
    Conclusion: The developed assay demonstrated selectivity and robustness, enabling differentiation between bedaquiline and M2 within the context of endogenous compounds from six separate lots of breast milk samples. Successful application was observed in the analysis of breast milk samples sourced from patients treated for multidrug-resistant tuberculosis within a clinical study setting.
    Keywords:  Bedaquiline; Breast milk; Drug resistance; LC-MS/MS; Tuberculosis
    DOI:  https://doi.org/10.1016/j.jmsacl.2023.12.001
  8. Se Pu. 2024 Jan 08. 42(1): 38-51
      The methods of detecting numerous prohibited components are not included in the Technical Specifications for Cosmetic Safety (2015 Edition). Recently, owing to its high speed, sensitivity, and anti-interference properties, ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) became the preferred method of detecting banned substances in cosmetics. In this study, a UPLC-MS/MS method was developed for use in determining 87 prohibited ingredients in cosmetics, including 33 sex hormones, 20 anti-infective drugs, 15 antihistamines, 7 coumarins, 4 sedative-hypnotic drugs, 4 antipyretic and analgesic drugs, 2 allergenic fragrances, and 2 drugs with vasoconstriction effects. The main factors affecting the response, recovery, and sensitivity of the method, such as the type of extraction solvent, extraction time, ratio of the mobile phases, and MS conditions, were optimized during sample pretreatment and instrumental analysis. Accordingly, approximately 0.2 g of the toner or cream sample was dispersed in 2 mL acetonitrile in a 10 mL colorimetric tube. After diluting to 10 mL with 50% acetonitrile aqueous solution, the sample was ultrasonically extracted for 20 min and centrifuged, and the mixture was then filtered through a 0.22 μm membrane. Approximately 0.2 g of the oil sample was dispersed in 2 mL n-hexane in a 15 mL polypropylene centrifuge tube and extracted twice with 3 mL 70% acetonitrile aqueous solution. The extracts were transferred into a 10 mL colorimetric tube and diluted to 10 mL with 50% acetonitrile aqueous solution, and the mixture was then filtered through a 0.22 μm membrane. The samples were separated using a CORTECS C18 column (150 mm×2.1 mm, 2.7 μm), employing a gradient elution program with acetonitrile and 0.1% formic acid aqueous solution as the mobile phases. The flow rate, column temperature, and injection volume were respectively set at 0.3 mL/min, 40 ℃, and 2 μL. The 87 compounds were monitored in multiple reaction monitoring (MRM) mode with electrospray ionization (ESI) under positive and negative conditions. Matrix-matched external standard calibration was used for quantification, and the analysis was completed within 33 min. The prohibited compounds exhibited good linear relationships, with r values of >0.99, and the limits of detection (LODs) and quantification (LOQs) for the 87 compounds were 0.07-0.38 and 0.21-1.15 μg/g, respectively. Three types of cosmetic matrices were selected to verify the recovery and precision of the method at LOQ, 2 LOQ, and 10 LOQ levels. The average recoveries of the 87 prohibited compounds were in the range of 81.7%-115.4%, and the relative standard deviations (RSDs, n=6) were 0.4%-9.9%. The reliability of the developed method was demonstrated by applying it to 349 commercial cosmetics obtained from the market, and 8 positive samples were identified. The positive components included trimethoprim, terbinafine, naphazoline, 7-methoxycoumarin, and 7-methylcoumarin. The established method displays the advantages of simple operation and rapidness and a high sensitivity and good recovery. And, this method provides technical support for rapid risk screening and the revision of national standards for cosmetics.
    Keywords:  cosmetics; prohibited ingredients; ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS)
    DOI:  https://doi.org/10.3724/SP.J.1123.2023.04012
  9. J Chromatogr B Analyt Technol Biomed Life Sci. 2024 Jan 06. pii: S1570-0232(23)00390-2. [Epub ahead of print]1233 123980
      Irinotecan (CPT-11), an antineoplastic drug, is used for the treatment of colorectal and pancreatic cancer due to its topoisomerase I inhibitory activity. CPT-11 is a prodrug which is converted to its active metabolite SN-38 by carboxylesterases. SN-38 is further metabolized to its inactive metabolite SN-38 glucuronide. When evaluating the pharmacokinetic properties of CPT-11 and its metabolites, it is important to accurately assess the concentrations in both plasma as well as tumor tissues. Therefore, the aim of the current study was to develop and validate a robust and sensitive ultra-high performance liquid chromatography-tandem mass spectrometry method to quantify the concentration of CPT-11 and its metabolites (SN-38 and SN-38 glucuronide) in human plasma and peritoneal tumor tissue. The sample preparation of plasma and tumor tissue consisted of protein precipitation and enzymatic digestion/liquid-liquid extraction, respectively. Chromatographic separation was achieved with an Acquity UPLC BEH C18 column combined with a VanGuard pre-column. The mobile phases consisted of water +0.1 % formic acid (mobile phase A) and acetonitrile +0.1 % formic acid (mobile phase B). Mass analysis was performed using a Xevo TQS tandem mass spectrometer in the positive electrospray ionization mode. Method validation was successfully performed by assessing linearity, precision and accuracy, lower limit of quantification, carry over, selectivity, matrix effect and stability according to the following guidelines: "Committee for Medicinal Products for Human use, Guideline on Bioanalytical Method Validation". A cross-validation of the developed method was performed in a pilot pharmacokinetic study, demonstrating the usefulness of the current method to quantify CPT-11 and its metabolites in the different matrices.
    Keywords:  Carboxylesterase; Irinotecan (CPT-11); SN-38; SN-38 glucuronide; UPLC-MS/MS
    DOI:  https://doi.org/10.1016/j.jchromb.2023.123980
  10. HardwareX. 2023 Dec;16 e00490
      Atmospheric Solids Analysis Probe (ASAP) mass spectrometry is a versatile technique allowing direct sampling of solid and liquid samples, but its adoption is limited due to the high cost of commercial ASAP systems. To address this, we present OpenASAP, an open-source ASAP system for mass spectrometers that can be fabricated for $20 or less using 3D-printing. Our design is readily adaptable to instruments from different manufacturers and can be produced with a variety of additive manufacturing techniques on consumer-grade 3D-printers. The probe allows for rapid sampling of solid and liquid samples without sample preparation, making it useful for high throughput screening, investigating spatial localization and function of analytes in biological samples, and incorporating mass spectrometry in instructional settings. We demonstrate its effectiveness by obtaining mass spectra of three natural product standards at levels as low as 10 ng/ml in liquid samples, and detecting these metabolites in microbial cultures that are difficult to analyze due to complex sample matrices or analyte properties. Furthermore, we demonstrate direct sampling of thin layer chromatography (TLC) spots of these cultures.
    Keywords:  Ambient ionization; Atmospheric Solids Analysis Probe; Mass Spectrometry
    DOI:  https://doi.org/10.1016/j.ohx.2023.e00490
  11. Methods. 2024 Jan 05. pii: S1046-2023(23)00218-9. [Epub ahead of print]
      Many of the health-associated impacts of the microbiome are mediated by its chemical activity, producing and modifying small molecules (metabolites). Thus, microbiome metabolite quantification has a central role in efforts to elucidate and measure microbiome function. In this review, we cover general considerations when designing experiments to quantify microbiome metabolites, including sample preparation, data acquisition and data processing, since these are critical to downstream data quality. We then discuss data analysis and experimental steps to demonstrate that a given metabolite feature is of microbial origin. We further discuss techniques used to quantify common microbial metabolites, including short-chain fatty acids (SCFA), secondary bile acids (BAs), tryptophan derivatives, N-acyl amides and trimethylamine N-oxide (TMAO). Lastly, we conclude with challenges and future directions for the field.
    Keywords:  Bile acids; Data processing; Instrumental methods; Mass spectrometry; Microbiome metabolite quantification; Short-chain fatty acids
    DOI:  https://doi.org/10.1016/j.ymeth.2023.12.007
  12. J Pharm Biomed Anal. 2024 Jan 04. pii: S0731-7085(24)00002-5. [Epub ahead of print]240 115962
      DO-2 is a highly selective MNNG HOS transforming (MET) inhibitor. This deuterated drug is thought to diminish the formation of the Aldehyde Oxidase 1 inactive metabolite M3. For various reasons, quantification of DO-2 and its metabolites M3 and DO-5 is highly relevant. In this study, we present an ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method to quantify DO-2, M3 and DO-5. Rolipram served as the internal standard. Aliquots of 25 µL were mixed with 100 µL internal standard consisting of 10 ng/mL rolipram in acetonitrile. Separation of the analytes was achieved on an Acquity UPLC ® HSS T3 column, utilizing gradient elution with water/formic acid and acetonitrile/formic acid at a flow-rate of 0.400 mL/min. Calibration curves were linear in the range of 1.00 - 1000 ng/mL for DO-2 and DO-5, and 2.00 - 2000 ng/mL for M3 in human plasma. The within-run and between-run precisions of DO-2, DO-5 and M3, also at the level of the LLQ, were within 12.1%, while the accuracy ranged from 89.5 to 108.7%. All values for accuracy, within-run and between-run precisions met the criteria set by the Food and Drug Administration. The method was effectively employed in the analysis of samples obtained from a clinical trial.
    Keywords:  C-Met Receptor Tyrosine Kinase (MET); DO-2; Human plasma; Pharmacokinetics; Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS)
    DOI:  https://doi.org/10.1016/j.jpba.2024.115962
  13. Res Sq. 2023 Dec 23. pii: rs.3.rs-3788683. [Epub ahead of print]
      Lipids play many important physiological roles in mammalian reproduction, being essential for the acquisition of oocyte competence and post-fertilization embryonic development. Lipid profiling in samples of minute size, such as oocytes, is challenging but has been achieved by mass spectrometry technologies such as multiple reaction monitoring (MRM) profiling. With the goals of further simplifying sample workflow and investigating the influence of pre-analytical conditions, we have evaluated how different extraction methods and transportation of lipid extracts in vacuum and at room temperature impacted the lipid profile of bovine oocytes. Using a comprehensive method, 316 MRMs associated with lipids of 10 different classes were screened in oocyte lipid extracts prepared by 2 extraction methods (one-step methanol addition or Bligh and Dyer) and transporting them in dry ice or at room temperature inside vacuum packages. No changes in the multivariate analysis (PCA) were noticeable due to transportation temperature, while lipid profiles were more affected by the lipid extraction protocol. Sample extraction using pure methanol favored the detection of phospholipids uniformly, while Bligh and Dyer favored the detection of neutral intracellular lipids. Triacylglycerol lipids and free fatty acids yielded decreased abundances when samples were transported at room temperature. We conclude that if samples are submitted to the same lipid extraction protocol and same transportation batch at room temperature coupled with vacuum conditions it is possible to analyze lipid extracts of bovine oocytes and still obtain informative lipid profiling results.
    DOI:  https://doi.org/10.21203/rs.3.rs-3788683/v1
  14. Anal Chem. 2024 Jan 09.
      Ion mobility mass spectrometry (IM-MS) is a rapid, gas-phase separation technology that can resolve ions on the basis of their size-to-charge and mass-to-charge ratios. Since each class of biomolecule has a unique relationship between size and mass, IM-MS spectra of complex biological samples are organized into trendlines that each contain one type of biomolecule (i.e., lipid, peptide, metabolite). These trendlines can aid in the identification of unknown ions by providing a general classification, while more specific identifications require the conversion of IM arrival times to collision cross section (CCS) values to minimize instrument-to-instrument variability. However, the process of converting IM arrival times to CCS values varies between the different IM devices. Arrival times from traveling wave ion mobility (TWIM) devices must undergo a calibration process to obtain CCS values, which can impart biases if the calibrants are not structurally similar to the analytes. For multiomic mixtures, several different types of calibrants must be used to obtain the most accurate CCS values from TWIM platforms. Here we describe the development of a multiomic CCS calibration tool, MOCCal, to automate the assignment of unknown features to the power law calibration that provides the most accurate CCS value. MOCCal calibrates every experimental arrival time with up to three class-specific calibration curves and uses the difference (in Å2) between the calibrated TWCCSN2 value and DTCCSN2 vs m/z regression lines to determine the best calibration curve. Using real and simulated multiomic samples, we demonstrate that MOCCal provides accurately calibrated TWCCSN2 values for small molecules, lipids, and peptides.
    DOI:  https://doi.org/10.1021/acs.analchem.3c04290
  15. bioRxiv. 2023 Dec 20. pii: 2023.12.19.572450. [Epub ahead of print]
      High-throughput metabolomics data provide a detailed molecular window into biological processes. We consider the problem of assessing how the association of metabolite levels with individual (sample) characteristics such as sex or treatment may depend on metabolite characteristics such as pathway. Typically this is one in a two-step process: In the first step we assess the association of each metabolite with individual characteristics. In the second step an enrichment analysis is performed by metabolite characteristics among significant associations. We combine the two steps using a bilinear model based on the matrix linear model (MLM) framework we have previously developed for high-throughput genetic screens. Our framework can estimate relationships in metabolites sharing known characteristics, whether categorical (such as type of lipid or pathway) or numerical (such as number of double bonds in triglycerides). We demonstrate how MLM offers flexibility and interpretability by applying our method to three metabolomic studies. We show that our approach can separate the contribution of the overlapping triglycerides characteristics, such as the number of double bonds and the number of carbon atoms. The proposed method have been implemented in the open-source Julia package, MatrixLM . Data analysis scripts with example data analyses are also available.
    DOI:  https://doi.org/10.1101/2023.12.19.572450
  16. Animals (Basel). 2023 Dec 23. pii: 62. [Epub ahead of print]14(1):
      Several studies have shown the importance of vitamin D3 supplementation in small animals. In dogs, a low vitamin D3 status is associated not only with bone metabolism but also with different kinds of disorders, such as congestive heart failure, gastrointestinal diseases, chronic kidney diseases, and some types of cancer. However, it is crucial to maintain balance and monitor the introduction of this essential nutrient through the diet because over-supplementation can result in toxicity. Due to the clinical importance of assessing the vitamin D3 status in small animal patients, a quick, simple, and highly performing analytical method for its measurement is needed. In this study, we describe the development of a novel liquid chromatography-tandem mass spectrometry method for 25-hydroxyvitamin D3 quantification in canine serum. The approach was successfully validated following current European guidelines, proving excellent linearity (R2 always ≥0.996), accuracy (always within ±13%) and precision (always <10%). The application of the validated approach to samples collected from 40 healthy dogs made possible the definition of a reliable reference interval for 25-hydroxyvitamin D3, the main biomarker of vitamin D3. In addition, variations below 5% in the results obtained quantifying the same samples using a water-based calibration curve demonstrated that a surrogate matrix may be used without affecting data accuracy. Thanks to its simplicity, the proposed technique represents a useful tool for supporting clinical routine and investigating correlations between serum concentrations of this metabolite and multiple diseases. Additionally, it could enable the monitoring of supplementation in small animal patients in veterinary clinical practice.
    Keywords:  assay; calcidiol; calcitriol; dogs; reference interval
    DOI:  https://doi.org/10.3390/ani14010062
  17. Anal Chem. 2024 Jan 10.
      Herein, we used a Bayesian multilevel model of chromatographic retention to compare five reversed-phase high-performance liquid chromatography stationary phases: XBridge Shield RP18, XTerra MS C18, XBridge Phenyl, XBridge C8, and Xterra MS C8. For this, we used a large data set of retention times collected using chromatographic techniques coupled with mass spectrometry. The experiments were conducted in gradient mode for an initial mixture of 300 small analytes for a wide range of pH values in methanol and acetonitrile at two temperatures and for three gradient durations. Our analysis was based on a mechanistic model derived from the principles and fundamentals of liquid chromatography and utilized previously reported chromatographic parameters. The data and model were used to characterize the between-column differences in the chromatographic parameters of the neutral, acidic, and basic analytes. The analysis provides an interpretable summary of stationary-phase properties that can be used in decision-making, i.e., finding the best chromatographic conditions using limited experimental data. The proposed approach is an interesting alternative to the existing approaches used to compare chromatographic stationary phases.
    DOI:  https://doi.org/10.1021/acs.analchem.3c04697
  18. Anal Chem. 2024 Jan 08.
      Lipid nanoparticle-encapsulated mRNA (LNP-mRNA) holds great promise as a novel modality for treating a broad range of diseases. The ability to quantify mRNA accurately in therapeutic products helps to ensure consistency and safety. Here, we consider a central aspect of accuracy, measurement traceability, which establishes trueness in quantity. In this study, LNP-mRNA is measured in situ using a novel liquid chromatography-mass spectrometry (LC-MS) approach with traceable quantification. Previous works established that oligonucleotide quantification is possible through the accounting of an oligomer's fundamental nucleobases, with traceability established through common nucleobase calibrators. This sample preparation does not require mRNA extraction, detergents, or enzymes and can be achieved through direct acid hydrolysis of an LNP-mRNA product prior to an isotope dilution strategy. This results in an accurate quantitative analysis of mRNA, independent of time or place. Acid hydrolysis LC-MS is demonstrated to be amenable to measuring mRNA as both an active substance or a formulated mRNA drug product.
    DOI:  https://doi.org/10.1021/acs.analchem.3c04406