bims-meprid Biomed News
on Metabolic-dependent epigenetic reprogramming in differentiation and disease
Issue of 2022‒02‒27
seven papers selected by
Alessandro Carrer
Veneto Institute of Molecular Medicine

  1. Oncogene. 2022 Feb 22.
      Glioblastomas (GBMs) preferentially generate acetyl-CoA from acetate as a fuel source to promote tumor growth. O-GlcNAcylation has been shown to be elevated by increasing O-GlcNAc transferase (OGT) in many cancers and reduced O-GlcNAcylation can block cancer growth. Here, we identify a novel mechanism whereby OGT regulates acetate-dependent acetyl-CoA and lipid production by regulating phosphorylation of acetyl-CoA synthetase 2 (ACSS2) by cyclin-dependent kinase 5 (CDK5). OGT is required and sufficient for GBM cell growth and regulates acetate conversion to acetyl-CoA and lipids. Elevating O-GlcNAcylation in GBM cells increases phosphorylation of ACSS2 on Ser-267 in a CDK5-dependent manner. Importantly, we show that ACSS2 Ser-267 phosphorylation regulates its stability by reducing polyubiquitination and degradation. ACSS2 Ser-267 is critical for OGT-mediated GBM growth as overexpression of ACSS2 Ser-267 phospho-mimetic rescues growth in vitro and in vivo. Importantly, we show that pharmacologically targeting OGT and CDK5 reduces GBM growth ex vivo. Thus, the OGT/CDK5/ACSS2 pathway may be a way to target altered metabolic dependencies in brain tumors.
  2. Discov Oncol. 2021 Nov 24. 12(1): 54
      Prevalent dysregulation of epigenetic modifications plays a pivotal role in cancer. Targeting epigenetic abnormality is a new strategy for cancer therapy. Understanding how conventional oncogenic factors cause epigenetic abnormality is of great basic and translational value. O-GlcNAcylation is a protein modification which affects physiology and pathophysiology. In mammals, O-GlcNAcylation is catalyzed by one single enzyme OGT and removed by one single enzyme OGA. O-GlcNAcylation is affected by the availability of the donor, UDP-GlcNAc, generated by the serial enzymatic reactions in the hexoamine biogenesis pathway (HBP). O-GlcNAcylation regulates a wide spectrum of substrates including many proteins involved in epigenetic modification. Like epigenetic modifications, abnormality of O-GlcNAcylation is also common in cancer. Studies have revealed substantial impact on HBP enzymes and OGT/OGA by oncogenic signals. In this review, we will first summarize how oncogenic signals regulate HBP enzymes, OGT and OGA in cancer. We will then integrate this knowledge with the up to date understanding how O-GlcNAcylation regulates epigenetic machinery. With this, we propose a signal axis from oncogenic signals through O-GlcNAcylation dysregulation to epigenetic abnormality in cancer. Further elucidation of this axis will not only advance our understanding of cancer biology but also provide new revenues towards cancer therapy.
    Keywords:  Chromatin; Epigenetics; Hexoamine biosynthesis pathway; Histone; O-GlcNAcylation; OGA; OGT
  3. Nutrients. 2022 Feb 18. pii: 851. [Epub ahead of print]14(4):
      Prostate cancer (PCa) is the most commonly diagnosed malignant neoplasm in men in the Western world. Localized low-risk PCa has an excellent prognosis thanks to effective local treatments; however, despite the incorporation of new therapeutic strategies, metastatic PCa remains incurable mainly due to disease heterogeneity and the development of resistance to therapy. The mechanisms underlying PCa progression and therapy resistance are multiple and include metabolic reprogramming, especially in relation to lipid metabolism, as well as epigenetic remodelling, both of which enable cancer cells to adapt to dynamic changes in the tumour. Interestingly, metabolism and epigenetics are interconnected. Metabolism can regulate epigenetics through the direct influence of metabolites on epigenetic processes, while epigenetics can control metabolism by directly or indirectly regulating the expression of metabolic genes. Moreover, epidemiological studies suggest an association between a high-fat diet, which can alter the availability of metabolites, and PCa progression. Here, we review the alterations of lipid metabolism and epigenetics in PCa, before focusing on the mechanisms that connect them. We also discuss the influence of diet in this scenario. This information may help to identify prognostic and predictive biomarkers as well as targetable vulnerabilities.
    Keywords:  DNA methylation; cholesterol; diet; epigenetics; fatty acid; histone modifications; lipid metabolism; predictive biomarkers; prostate cancer; therapeutic vulnerabilities
  4. Mol Biol Cell. 2022 Feb 23. mbcE20080523
      Cellular senescence is a terminal cell fate characterized by growth arrest, and a metabolically active state characterized by high glycolytic activity. Human fibroblasts were placed in a unique metabolic state using a combination of methionine restriction and rapamycin. This combination induced a metabolic reprogramming that prevented the glycolytic shift associated with senescence. Surprisingly, cells treated in this manner did not undergo senescence, but continued to divide at a slow rate even at high passage, in contrast to either rapamycin treatment or methionine restriction, both of which extended lifespan but eventually resulted in growth arrest. Transcriptome-wide analysis revealed a coordinated regulation of metabolic enzymes related to one-carbon metabolism, including three methyltransferase enzymes (KMT2D, SETD1B, and ASH1L), key enzymes for both carnitine synthesis and histone modification. These enzymes appear to be involved in both the metabolic phenotype of senescent cells and the chromatin changes required for establishing the senescence arrest. Targeting one of these enzymes, ASH1L, produced both a glycolytic shift and senescence, providing proof of concept. These findings reveal a mechanistic link between a major metabolic hallmark of senescence and nuclear events required for senescence.
  5. Dev Cell. 2022 Feb 15. pii: S1534-5807(22)00069-7. [Epub ahead of print]
      Human pluripotent stem cells (hPSCs) can self-renew indefinitely or can be induced to differentiate. We previously showed that exogenous glutamine (Gln) withdrawal biased hPSC differentiation toward ectoderm and away from mesoderm. We revealed that, although all three germ lineages are capable of de novo Gln synthesis, only ectoderm generates sufficient Gln to sustain cell viability and differentiation, and this finding clarifies lineage fate restrictions under Gln withdrawal. Furthermore, we found that Gln acts as a signaling molecule for ectoderm that supersedes lineage-specifying cytokine induction. In contrast, Gln in mesoderm and endoderm is the preferred precursor of α-ketoglutarate without a direct signaling role. Our work raises a question about whether the nutrient environment functions directly in cell differentiation during development. Interestingly, transcriptome analysis of a gastrulation-stage human embryo shows that unique Gln enzyme-encoding gene expression patterns may also distinguish germ lineages in vivo. Together, our study suggests that intracellular Gln may help coordinate differentiation of the three germ layers.
    Keywords:  auxotroph; cell fate; development; glutamine; nutrient; pluripotent stem cell; prototroph
  6. Clin Transl Med. 2022 Feb;12(2): e665
      Propionate is a gut microbial metabolite that has been reported to have controversial effects on metabolic health. Here we show that propionate is activated by acyl-CoA synthetase short-chain family member 3 (ACSS3), located on the mitochondrial inner membrane in brown adipocytes. Knockout of Acss3 gene (Acss3-/- ) in mice reduces brown adipose tissue (BAT) mass but increases white adipose tissue (WAT) mass, leading to glucose intolerance and insulin resistance that are exacerbated by high-fat diet (HFD). Intriguingly, Acss3-/- or HFD feeding significantly elevates propionate levels in BAT and serum, and propionate supplementation induces autophagy in cultured brown and white adipocytes. The elevated levels of propionate in Acss3-/- mice similarly drive adipocyte autophagy, and pharmacological inhibition of autophagy using hydroxychloroquine ameliorates obesity, hepatic steatosis and insulin resistance of the Acss3-/- mice. These results establish ACSS3 as the key enzyme for propionate metabolism and demonstrate that accumulation of propionate promotes obesity and Type 2 diabetes through triggering adipocyte autophagy.
    Keywords:  acyl-CoA synthetase; adipose tissue; brown adipocytes; hydroxychloroquine; obesity; short-chain fatty acid
  7. Biomolecules. 2022 Feb 18. pii: 325. [Epub ahead of print]12(2):
      Pantothenate kinase-associated neurodegeneration (PKAN) is a progressive neurodegenerative disease caused by mutations in the pantothenate kinase 2 (PANK2) gene and associated with iron deposition in basal ganglia. Pantothenate kinase isoforms catalyze the first step in coenzyme A (CoA) biosynthesis. Since PANK2 is the only isoform in erythrocytes, these cells are an excellent ex vivo model to study the effect of PANK2 point mutations on expression/stability and activity of the protein as well as on the downstream molecular consequences. PKAN erythrocytes containing the T528M PANK2 mutant had residual enzyme activities but variable PANK2 abundances indicating an impaired regulation of the protein. Patients with G521R/G521R, G521R/G262R, and R264N/L275fs PANK2 mutants had no residual enzyme activity and strongly reduced PANK2 abundance. G521R inactivates the catalytic activity of the enzyme, whereas G262R and the R264N point mutations impair the switch from the inactive to the active conformation of the PANK2 dimer. Metabolites in cytosolic extracts were analyzed by gas chromatography-mass spectrometry and multivariate analytic methods revealing changes in the carboxylate metabolism of erythrocytes from PKAN patients as compared to that of the carrier and healthy control. Assuming low/absent CoA levels in PKAN erythrocytes, changes are consistent with a model of altered citrate channeling where citrate is preferentially converted to α-ketoglutarate and α-hydroxyglutarate instead of being used for de novo acetyl-CoA generation. This finding hints at the importance of carboxylate metabolism in PKAN pathology with potential links to reduced cytoplasmic acetyl-CoA levels in neurons and to aberrant brain iron regulation.
    Keywords:  PANK2 mutations; acanthocytes; erythrocyte metabolome; neurodegeneration with brain iron accumulation; pantothenate kinase 2; pantothenate kinase-associated neurodegeneration