bims-meprid Biomed News
on Metabolic-dependent epigenetic reprogramming in differentiation and disease
Issue of 2021‒10‒24
three papers selected by
Alessandro Carrer
Veneto Institute of Molecular Medicine

  1. Cancers (Basel). 2021 Oct 19. pii: 5250. [Epub ahead of print]13(20):
      Metabolic reprogramming and epigenetic changes have been characterized as hallmarks of liver cancer. Independently of etiology, oncogenic pathways as well as the availability of different energetic substrates critically influence cellular metabolism, and the resulting perturbations often cause aberrant epigenetic alterations, not only in cancer cells but also in the hepatic tumor microenvironment. Metabolic intermediates serve as crucial substrates for various epigenetic modulations, from post-translational modification of histones to DNA methylation. In turn, epigenetic changes can alter the expression of metabolic genes supporting on the one hand, the increased energetic demand of cancer cells and, on the other hand, influence the activity of tumor-associated immune cell populations. In this review, we will illustrate the most recent findings about metabolic reprogramming in liver cancer. We will focus on the metabolic changes characterizing the tumor microenvironment and on how these alterations impact on epigenetic mechanisms involved in the malignant progression. Furthermore, we will report our current knowledge about the influence of cancer-specific metabolites on epigenetic reprogramming of immune cells and we will highlight how this favors a tumor-permissive immune environment. Finally, we will review the current strategies to target metabolic and epigenetic pathways and their therapeutic potential in liver cancer, alone or in combinatorial approaches.
    Keywords:  SAM; Warburg effect; acetyl-CoA; combinatorial therapy; guadecitabine; immunometabolism; liver cancer; metformin; resminostat
  2. Biomolecules. 2021 Sep 25. pii: 1406. [Epub ahead of print]11(10):
      Cellular metabolism alterations have been recognized as one of the most predominant hallmarks of colorectal cancers (CRCs). It is precisely regulated by many oncogenic signaling pathways in all kinds of regulatory levels, including transcriptional, post-transcriptional, translational and post-translational levels. Among these regulatory factors, epigenetics play an essential role in the modulation of cellular metabolism. On the one hand, epigenetics can regulate cellular metabolism via directly controlling the transcription of genes encoding metabolic enzymes of transporters. On the other hand, epigenetics can regulate major transcriptional factors and signaling pathways that control the transcription of genes encoding metabolic enzymes or transporters, or affecting the translation, activation, stabilization, or translocation of metabolic enzymes or transporters. Interestingly, epigenetics can also be controlled by cellular metabolism. Metabolites not only directly influence epigenetic processes, but also affect the activity of epigenetic enzymes. Actually, both cellular metabolism pathways and epigenetic processes are controlled by enzymes. They are highly intertwined and are essential for oncogenesis and tumor development of CRCs. Therefore, they are potential therapeutic targets for the treatment of CRCs. In recent years, both epigenetic and metabolism inhibitors are studied for clinical use to treat CRCs. In this review, we depict the interplay between epigenetics and cellular metabolism in CRCs and summarize the underlying molecular mechanisms and their potential applications for clinical therapy.
    Keywords:  cellular metabolism; colorectal cancer; epigenetics; targeted therapy; tumorigenesis
  3. Nat Metab. 2021 Oct;3(10): 1357-1371
      The multifunctional roles of metabolic enzymes allow for the integration of multiple signals to precisely transduce external stimuli into cell fate decisions. Elevation of 3-phosphoglycerate dehydrogenase (PHGDH), the rate-limiting enzyme for de novo serine biosynthesis, is broadly associated with human cancer development; although how PHGDH activity is regulated and its implication in tumorigenesis remains unclear. Here we show that glucose restriction induces the phosphorylation of PHGDH by p38 at Ser371, which promotes the translocation of PHGDH from the cytosol into the nucleus. Concurrently, AMPK phosphorylates PHGDH-Ser55, selectively increasing PHGDH oxidation of malate into oxaloacetate, thus generating NADH. In the nucleus, the altered PHGDH activity restricts NAD+ level and compartmentally repressed NAD+-dependent PARP1 activity for poly(ADP-ribosyl)ation of c-Jun, thereby leading to impaired c-Jun transcriptional activity linked to cell growth inhibition. Physiologically, nuclear PHGDH sustains tumour growth under nutrient stress, and the levels of PHGDH-Ser371 and PHGDH-Ser55 phosphorylation correlate with p38 and AMPK activity, respectively, in clinical human pancreatic cancer specimens. These findings illustrate a previously unidentified nutrient-sensing mechanism with the critical involvement of a non-canonical metabolic effect of PHGDH and underscore the functional importance of alternative PHGDH activity in tumorigenesis.