bims-mepmim Biomed News
on Metabolites in pathological microenvironments and immunometabolism
Issue of 2023‒12‒31
fifteen papers selected by
Erika Mariana Palmieri, NIH/NCI Laboratory of Cancer ImmunoMetabolism



  1. J Biol Chem. 2023 Dec;pii: S0021-9258(23)02435-3. [Epub ahead of print]299(12): 105407
      Cell proliferation requires metabolic reprogramming to accommodate biosynthesis of new cell components, and similar alterations occur in cancer cells. However, the mechanisms linking the cell cycle machinery to metabolism are not well defined. Cyclin D1, along with its main partner cyclin-dependent kinase 4 (Cdk4), is a pivotal cell cycle regulator and driver oncogene that is overexpressed in many cancers. Here, we examine hepatocyte proliferation to define novel effects of cyclin D1 on biosynthetic metabolism. Metabolomic studies reveal that cyclin D1 broadly promotes biosynthetic pathways including glycolysis, the pentose phosphate pathway, and the purine and pyrimidine nucleotide synthesis in hepatocytes. Proteomic analyses demonstrate that overexpressed cyclin D1 binds to numerous metabolic enzymes including those involved in glycolysis and pyrimidine synthesis. In the glycolysis pathway, cyclin D1 activates aldolase and GAPDH, and these proteins are phosphorylated by cyclin D1/Cdk4 in vitro. De novo pyrimidine synthesis is particularly dependent on cyclin D1. Cyclin D1/Cdk4 phosphorylates the initial enzyme of this pathway, carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD), and metabolomic analysis indicates that cyclin D1 depletion markedly reduces the activity of this enzyme. Pharmacologic inhibition of Cdk4 along with the downstream pyrimidine synthesis enzyme dihydroorotate dehydrogenase synergistically inhibits proliferation and survival of hepatocellular carcinoma cells. These studies demonstrate that cyclin D1 promotes a broad network of biosynthetic pathways in hepatocytes, and this model may provide insights into potential metabolic vulnerabilities in cancer cells.
    Keywords:  BAY 2402234; aldolase; anaerobic glycolysis; cell cycle; cyclin D1; glyceraldehyde-3-phosphate dehydrogenase (GAPDH); liver regeneration; palbociclib; pentose phosphate pathway (PPP); purine; pyrimidine
    DOI:  https://doi.org/10.1016/j.jbc.2023.105407
  2. Leukemia. 2023 Dec 26.
      Resistance to apoptosis in acute myeloid leukemia (AML) cells causes refractory or relapsed disease, associated with dismal clinical outcomes. Ferroptosis, a mode of non-apoptotic cell death triggered by iron-dependent lipid peroxidation, has been investigated as potential therapeutic modality against therapy-resistant cancers, but our knowledge of its role in AML is limited. We investigated ferroptosis in AML cells and identified its mitochondrial regulation as a therapeutic vulnerability. GPX4 knockdown induced ferroptosis in AML cells, accompanied with characteristic mitochondrial lipid peroxidation, exerting anti-AML effects in vitro and in vivo. Electron transport chains (ETC) are primary sources of coenzyme Q10 (CoQ) recycling for its function of anti-lipid peroxidation in mitochondria. We found that the mitochondria-specific CoQ potently inhibited GPX4 inhibition-mediated ferroptosis, suggesting that mitochondrial lipid redox regulates ferroptosis in AML cells. Consistently, Rho0 cells, which lack functional ETC, were more sensitive to GPX4 inhibition-mediated mitochondrial lipid peroxidation and ferroptosis than control cells. Furthermore, degradation of ETC through hyperactivation of a mitochondrial protease, caseinolytic protease P (ClpP), synergistically enhanced the anti-AML effects of GPX4 inhibition. Collectively, our findings indicate that in AML cells, GPX4 inhibition induces ferroptosis, which is regulated by mitochondrial lipid redox and ETC.
    DOI:  https://doi.org/10.1038/s41375-023-02117-2
  3. Mol Cell. 2023 Dec 21. pii: S1097-2765(23)01014-6. [Epub ahead of print]
      Mitophagy mediated by BNIP3 and NIX critically regulates mitochondrial mass. Cellular BNIP3 and NIX levels are tightly controlled by SCFFBXL4-mediated ubiquitination to prevent excessive mitochondrial loss and lethal disease. Here, we report that knockout of PPTC7, a mitochondrial matrix protein, hyperactivates BNIP3-/NIX-mediated mitophagy and causes perinatal lethality that is rescued by NIX knockout in mice. Biochemically, the PPTC7 precursor is trapped by BNIP3 and NIX to the mitochondrial outer membrane, where PPTC7 scaffolds assembly of a substrate-PPTC7-SCFFBXL4 holocomplex to degrade BNIP3 and NIX, forming a homeostatic regulatory loop. PPTC7 possesses an unusually weak mitochondrial targeting sequence to facilitate its outer membrane retention and mitophagy control. Starvation upregulates PPPTC7 expression in mouse liver to repress mitophagy, which critically maintains hepatic mitochondrial mass, bioenergetics, and gluconeogenesis. Collectively, PPTC7 functions as a mitophagy sensor that integrates homeostatic and physiological signals to dynamically control BNIP3 and NIX degradation, thereby maintaining mitochondrial mass and cellular homeostasis.
    Keywords:  Cullin; FBXL4; PPTC7; metabolism; mitochondrial mass; mitophagy receptors BNIP3 and NIX; ubiquitin
    DOI:  https://doi.org/10.1016/j.molcel.2023.11.038
  4. iScience. 2023 Dec 15. 26(12): 108566
      In pancreatic ductal adenocarcinomas (PDAC), the KRASG12D-NRF2 axis controls cellular functions such as redox homeostasis and metabolism. Disruption of this axis through suppression of NRF2 leads to profound reprogramming of metabolism. Unbiased transcriptome and metabolome analyses showed that PDAC cells with disrupted KRASG12D-NRF2 signaling (NRF2-/- cells) shift from aerobic glycolysis to metabolic pathways fed by amino acids. Metabolome, RNA-seq and qRT-PCR analyses revealed a blockade of the urea cycle, making NRF2-/- cells dependent on exogenous arginine for survival. Arginine is channeled into anabolic pathways, including the synthesis of phosphocreatine, which generates an energy buffer essential for cell growth. A similar switch was observed in tumor clones that had survived FOLFIRINOX therapy or blockade of KRAS signaling. Inhibition of the creatine pathway with cyclocreatine reduced both ATP and invasion rate in 3D spheroids from NRF2-deficient PDAC cells. Our study provides basis for the rational development of combination therapies for pancreatic cancer.
    Keywords:  Cancer; Cell biology; Molecular biology
    DOI:  https://doi.org/10.1016/j.isci.2023.108566
  5. J Neurosci. 2023 Dec 28. pii: JN-RM-1851-22. [Epub ahead of print]
      The hypothalamic paraventricular nucleus (PVN) is strongly inhibited by γ-aminobutyric acid (GABA) from the surrounding peri-nuclear zone (PNZ). Because glutamate mediates fast excitatory transmission and is substrate for GABA synthesis, we tested its capacity to dynamically strengthen GABA inhibition. In PVN slices from male mice, bath glutamate applied during ionotropic glutamate receptor blockade, increased PNZ-evoked inhibitory postsynaptic currents (eIPSCs) without affecting GABA-A receptor agonist currents or single channel conductance, implicating a presynaptic mechanism(s). Consistent with this interpretation, bath glutamate failed to strengthen IPSCs during pharmacological saturation of GABA-A receptors. Presynaptic analyses revealed that glutamate did not affect paired-pulse ratio, peak eIPSC variability, GABA vesicle recycling speed or readily releasable pool (RRP) size. Notably, glutamate-GABA strengthening (GGS) was unaffected by metabotropic glutamate receptor blockade and graded external Ca2+ when normalized to baseline amplitude. GGS was prevented by pan- but not glial-specific inhibition of glutamate uptake and by inhibition of glutamic acid decarboxylase (GAD), indicating reliance on glutamate uptake by neuronal excitatory amino acid transporter 3 (EAAT3) and enzymatic conversion of glutamate to GABA. EAAT3 immunoreactivity was strongly localization to presumptive PVN GABA terminals. High bath K+ also induced GGS, which was prevented by glutamate vesicle depletion, indicating that synaptic glutamate release strengthens PVN GABA inhibition. GGS suppressed PVN cell firing, indicating its functional significance. In sum, PVN GGS buffers neuronal excitation by apparent "over-filling" of vesicles with GABA synthesized from synaptically released glutamate. We posit that GGS protects against sustained PVN excitation and excitotoxicity whilst potentially aiding stress adaptation and habituation.Significance Statement Here we found that PVN GABA inhibition, which dominates glutamatergic excitation in the unstressed state, is rapidly strengthened by increased synaptic glutamate release. This negative-feedback homeostatic response reflects an apparent quantal mechanism with pharmacological inhibition studies implicating neuronal glutamate uptake by EAAT3 and de novo enzymatic synthesis of GABA, culminating in apparent GABA vesicle "over-filling". This glutamate-GABA strengthening response restrains PVN neuronal discharge responses with potential to mitigate behavioral, endocrine, and autonomic responses to glutamatergic excitation during stress.
    DOI:  https://doi.org/10.1523/JNEUROSCI.1851-22.2023
  6. Cell Rep Med. 2023 Dec 21. pii: S2666-3791(23)00565-7. [Epub ahead of print] 101348
      The discovery of exercise-regulated circulatory factors has fueled interest in organ crosstalk, especially between skeletal muscle and adipose tissue, and the role in mediating beneficial effects of exercise. We studied the adipose tissue transcriptome in men and women with normal glucose tolerance or type 2 diabetes following an acute exercise bout, revealing substantial exercise- and time-dependent changes, with sustained increase in inflammatory genes in type 2 diabetes. We identify oncostatin-M as one of the most upregulated adipose-tissue-secreted factors post-exercise. In cultured human adipocytes, oncostatin-M enhances MAPK signaling and regulates lipolysis. Oncostatin-M expression arises predominantly from adipose tissue immune cell fractions, while the corresponding receptors are expressed in adipocytes. Oncostatin-M expression increases in cultured human Thp1 macrophages following exercise-like stimuli. Our results suggest that immune cells, via secreted factors such as oncostatin-M, mediate a crosstalk between skeletal muscle and adipose tissue during exercise to regulate adipocyte metabolism and adaptation.
    Keywords:  adipose tissue; crosstalk; exercise; human; immune cells; inflammation; oncostatin-M; skeletal muscle; type 2 diabetes
    DOI:  https://doi.org/10.1016/j.xcrm.2023.101348
  7. Cell Chem Biol. 2023 Dec 21. pii: S2451-9456(23)00432-4. [Epub ahead of print]
      Mycobacterial bioenergetics is a validated target space for antitubercular drug development. Here, we identify BB2-50F, a 6-substituted 5-(N,N-hexamethylene)amiloride derivative as a potent, multi-targeting bioenergetic inhibitor of Mycobacterium tuberculosis. We show that BB2-50F rapidly sterilizes both replicating and non-replicating cultures of M. tuberculosis and synergizes with several tuberculosis drugs. Target identification experiments, supported by docking studies, showed that BB2-50F targets the membrane-embedded c-ring of the F1Fo-ATP synthase and the catalytic subunit (substrate-binding site) of succinate dehydrogenase. Biochemical assays and metabolomic profiling showed that BB2-50F inhibits succinate oxidation, decreases the activity of the tricarboxylic acid (TCA) cycle, and results in succinate secretion from M. tuberculosis. Moreover, we show that the lethality of BB2-50F under aerobic conditions involves the accumulation of reactive oxygen species. Overall, this study identifies BB2-50F as an effective inhibitor of M. tuberculosis and highlights that targeting multiple components of the mycobacterial respiratory chain can produce fast-acting antimicrobials.
    Keywords:  F(1)F(o)-ATP synthase; Mycobacterium tuberculosis; SDH; amiloride; bioenergetics; inhibitors; metabolism; succinate dehydrogenase,
    DOI:  https://doi.org/10.1016/j.chembiol.2023.12.002
  8. Cell Rep. 2023 Dec 26. pii: S2211-1247(23)01628-5. [Epub ahead of print]43(1): 113616
      Macrophages populate the embryo early in gestation, but their role in development is not well defined. In particular, specification and function of macrophages in intestinal development remain little explored. To study this event in the human developmental context, we derived and combined human intestinal organoid and macrophages from pluripotent stem cells. Macrophages migrate into the organoid, proliferate, and occupy the emerging microanatomical niches of epithelial crypts and ganglia. They also acquire a transcriptomic profile similar to that of fetal intestinal macrophages and display tissue macrophage behaviors, such as recruitment to tissue injury. Using this model, we show that macrophages reduce glycolysis in mesenchymal cells and limit tissue growth without affecting tissue architecture, in contrast to the pro-growth effect of enteric neurons. In short, we engineered an intestinal tissue model populated with macrophages, and we suggest that resident macrophages contribute to the regulation of metabolism and growth of the developing intestine.
    Keywords:  CP: Stem cell research; CSF1; OSM; enteric neuron; glycolysis; intestinal development; intestinal organoid; intestine; macrophage; metabolism; organ growth; pluripotent stem cell
    DOI:  https://doi.org/10.1016/j.celrep.2023.113616
  9. Sci Rep. 2023 Dec 27. 13(1): 23032
      Cancer cells that migrate from tumors into surrounding tissues are responsible for cancer dissemination through the body. Microfluidic devices have been instrumental in discovering unexpected features of cancer cell migration, including the migration in self-generated gradients and the contributions of cell-cell contact during collective migration. Here, we design microfluidic channels with five successive bifurcations to characterize the directionality of cancer cell migration with high precision. We uncover an unexpected role for glutamine in epithelial cancer cell orientation, which could be replaced by alfa-keto glutarate but not glucose.
    DOI:  https://doi.org/10.1038/s41598-023-49866-9
  10. Free Radic Biol Med. 2023 Dec 21. pii: S0891-5849(23)01180-2. [Epub ahead of print]
      Macrophages count on two O2-consuming enzymes to form reactive radical species: NAPDH oxidase 2 (Nox2) and nitric oxide synthase 2 (inducible isoform, iNOS) that produce superoxide radical (O2•-) and nitric oxide (•NO), respectively. If formed simultaneously, the diffusion-controlled reaction of O2•- and •NO yields peroxynitrite, a potent cytotoxic oxidant. In human tissues and cells, the oxygen partial pressure (pO2) normally ranges within 2-14 %, with a typical average pO2 value for most tissues ca. 5 %. Given that O2 is a substrate for both Nox2 and iNOS, its tissue and cellular concentration can affect O2•- and •NO production. Also, O2 is a modulator of the macrophage adaptative response and may influence iNOS expression in a hypoxia inducible factor 1-α (HIF1α-)-dependent manner. However, most of the reported experiments in cellula, analyzing the formation and effects of O2•- and •NO during macrophage activation and cytotoxicity towards pathogens, have been performed in cells exposed to atmospheric air supplemented with 5 % CO2; under these conditions, most cells are exposed to supraphysiologic oxygen tensions (ca. 20 % O2) which are far from the physiological pO2. Here, the role of O2 as substrate in the oxidative response of J774A.1 macrophages was explored upon exposure to different pO2 and O2•- and •NO formation rates were measured, obtaining a KM of 26 and 42 μM O2 for Nox2 and iNOS, respectively. Consequently, peroxynitrite formation was influenced by pO2, reaching a maximum at ≥ 10 % O2, but even at levels as low as 2 % O2, a substantial formation rate of this oxidant was detected. Indeed, the cytotoxic capacity of immunostimulated macrophages against the intracellular parasite T. cruzi was significant, even at low pO2 values, confirming the role of peroxynitrite as a potent oxidizing cytotoxin within a wide range of physiological oxygen tensions.
    Keywords:  nitric oxide; oxidative killing; oxygen; peroxynitrite; superoxide
    DOI:  https://doi.org/10.1016/j.freeradbiomed.2023.12.024
  11. iScience. 2024 Jan 19. 27(1): 108614
      Hepatic steatosis, which is triggered by dysregulation of lipid metabolism and redox equilibrium in the liver, is regarded as a risk factor in the non-alcoholic fatty liver disease (NAFLD). However, pharmacologic engagement of this process is difficult. We identified the small molecule NSC48160 as an effective agent against nonalcoholic steatohepatitis (NASH). We found that NSC48160 significantly lowered hepatic lipid levels in vitro and in vivo by activating the AMPKα-dependent pathway. AMPKα regulated its downstream pathway involved in lipogenesis (SREBP-1c/FASN pathway) and fatty acid oxidation (PPARα pathway). Metabonomics analysis combined with RNA-sequencing profiling revealed that NSC48160-induced lipogenesis is modulated by lipid metabolism. Moreover, NSC48160 dramatically reduces reactive oxygen species (ROS) production, restores the levels of the membrane potential and NAD+/NADH ratio, and improves mitochondrial respiration. These findings suggest that NSC48160 is a promising hit compound in the pursuit of a pharmacological approach in the treatment of NASH.
    Keywords:  Biochemistry; Metabolomics; Pharmacology; Physiology; Structural biology
    DOI:  https://doi.org/10.1016/j.isci.2023.108614
  12. Cell Rep. 2023 Dec 27. pii: S2211-1247(23)01603-0. [Epub ahead of print]43(1): 113591
      While fecal microbiota transplantation (FMT) shows promise in treating human diseases, oral capsule FMT is more accepted and accessible to patients. However, microbe selection in the upper gastrointestinal tract (UGIT) through oral administration remains unclear. Here, we demonstrate that short-term oral fecal gavage (OFG) alleviates acetaminophen-induced acute liver injury (AILI) in mice, regardless of the divergent effects of commensal gut microbes. Pasteurized fecal gavage yields similar therapeutic effects. OFG enriches gut Lachnospiraceae and butyrate compared to donor feces. Butyrate mitigates AILI-induced ferroptosis via AMPK-ULK1-p62 signaling to simultaneously induce mitophagy and Nrf2 antioxidant responses. Combined N-acetylcysteine and butyrate administration significantly improves AILI mouse survival rates. These observations indicate the significance of the UGIT in modulating the implanted fecal microbes through oral administration and its potential biological and clinical impacts. Our findings also highlight a possible strategy for applying microbial metabolites to treat acute liver injury.
    Keywords:  CP: Cell biology; CP: Microbiology; DILI; FMT; Nrf2; acetaminophen; acute liver failure; drug-induced liver injury; fecal microbiota transplantation; ferroptosis; gut-liver axis; short-chain fatty acids
    DOI:  https://doi.org/10.1016/j.celrep.2023.113591
  13. Redox Biol. 2023 Dec 18. pii: S2213-2317(23)00405-6. [Epub ahead of print]69 103004
      Angiotensin converting enzyme 2 (ACE2) is a new identified member of the renin-angiotensin-aldosterone system (RAAS) that cleaves angiotensin II (Ang II) to Ang (1-7), which exerts anti-inflammatory and antioxidative activities via binding with Mas receptor (MasR). However, the functional role of ACE2 in sepsis-related hypotension remains unknown. Our results indicated that sepsis significantly reduced blood pressure and led to disruption between ACE-Ang II and ACE2-Ang (1-7) balance. ACE2 knock-in mice exhibited improved sepsis-induced mortality, hypotension and vascular dysfunction, while ACE2 knockout mice exhibited the opposite effects. Bone marrow transplantation and in vitro experiments confirmed that myeloid ACE2 exerted a protective role by suppressing oxidative stress, NO production and macrophage polarization via the Ang (1-7)-MasR-NF-κB and STAT1 pathways. Thus, ACE2 on myeloid cells could protect against sepsis-mediated hypotension and vascular dysfunction, and upregulating ACE2 may represent a promising therapeutic option for septic patients with hypotension.
    Keywords:  ACE2; Hypotension; Macrophage polarization; Sepsis; Vascular dysfunction
    DOI:  https://doi.org/10.1016/j.redox.2023.103004
  14. Immunity. 2023 Dec 16. pii: S1074-7613(23)00499-5. [Epub ahead of print]
      Tissue factor (TF), which is a member of the cytokine receptor family, promotes coagulation and coagulation-dependent inflammation. TF also exerts protective effects through unknown mechanisms. Here, we showed that TF bound to interferon-α receptor 1 (IFNAR1) and antagonized its signaling, preventing spontaneous sterile inflammation and maintaining immune homeostasis. Structural modeling and direct binding studies revealed binding of the TF C-terminal fibronectin III domain to IFNAR1, which restricted the expression of interferon-stimulated genes (ISGs). Podocyte-specific loss of TF in mice (PodΔF3) resulted in sterile renal inflammation, characterized by JAK/STAT signaling, proinflammatory cytokine expression, disrupted immune homeostasis, and glomerulopathy. Inhibiting IFNAR1 signaling or loss of Ifnar1 expression in podocytes attenuated these effects in PodΔF3 mice. As a heteromer, TF and IFNAR1 were both inactive, while dissociation of the TF-IFNAR1 heteromer promoted TF activity and IFNAR1 signaling. These data suggest that the TF-IFNAR1 heteromer is a molecular switch that controls thrombo-inflammation.
    Keywords:  COVID-19; IFNAR1; ISGs; autoinflammatory syndromes; glomerulopathy; immune homeostasis; inflammation; thrombo-inflammation; tissue factor
    DOI:  https://doi.org/10.1016/j.immuni.2023.11.017
  15. Circ Res. 2023 Dec 29.
      BACKGROUND: Single-nucleotide polymorphisms linked with the rs1474868 T allele (MFN2 [mitofusin-2] T/T) in the human mitochondrial fusion protein MFN2 gene are associated with reduced platelet MFN2 RNA expression and platelet counts. This study investigates the impact of MFN2 on megakaryocyte and platelet biology.METHODS: Mice with megakaryocyte/platelet deletion of Mfn2 (Mfn2-/- [Mfn2 conditional knockout]) were generated using Pf4-Cre crossed with floxed Mfn2 mice. Human megakaryocytes were generated from cord blood and platelets isolated from healthy subjects genotyped for rs1474868. Ex vivo approaches assessed mitochondrial morphology, function, and platelet activation responses. In vivo measurements included endogenous/transfused platelet life span, tail bleed time, transient middle cerebral artery occlusion, and pulmonary vascular permeability/hemorrhage following lipopolysaccharide-induced acute lung injury.
    RESULTS: Mitochondria was more fragmented in megakaryocytes derived from Mfn2-/- mice and from human cord blood with MFN2 T/T genotype compared with control megakaryocytes. Human resting platelets of MFN2 T/T genotype had reduced MFN2 protein, diminished mitochondrial membrane potential, and an increased rate of phosphatidylserine exposure during ex vivo culture. Platelet counts and platelet life span were reduced in Mfn2-/- mice accompanied by an increased rate of phosphatidylserine exposure in resting platelets, especially aged platelets, during ex vivo culture. Mfn2-/- also decreased platelet mitochondrial membrane potential (basal) and activated mitochondrial oxygen consumption rate, reactive oxygen species generation, calcium flux, platelet-neutrophil aggregate formation, and phosphatidylserine exposure following dual agonist activation. Ultimately, Mfn2-/- mice showed prolonged tail bleed times, decreased ischemic stroke infarct size after cerebral ischemia-reperfusion, and exacerbated pulmonary inflammatory hemorrhage following lipopolysaccharide-induced acute lung injury. Analysis of MFN2 SNPs in the iSPAAR study (Identification of SNPs Predisposing to Altered ALI Risk) identified a significant association between MFN2 and 28-day mortality in patients with acute respiratory distress syndrome.
    CONCLUSIONS: Mfn2 preserves mitochondrial phenotypes in megakaryocytes and platelets and influences platelet life span, function, and outcomes of stroke and lung injury.
    Keywords:  blood platelets; ischemic stroke; megakaryocytes; mitochondria; neutrophils
    DOI:  https://doi.org/10.1161/CIRCRESAHA.123.322914