bims-meluca Biomed News
on Metabolism of non-small cell lung carcinoma
Issue of 2023‒06‒18
six papers selected by
the Muñoz-Pinedo/Nadal (PReTT) lab
L’Institut d’Investigació Biomèdica de Bellvitge


  1. J Clin Med. 2023 May 28. pii: 3725. [Epub ahead of print]12(11):
      OBJECTIVES: We aimed to assess the predictive value of the total metabolic tumor burden prior to treatment in patients with advanced non-small-cell lung cancer (NSCLC) receiving immune checkpoint inhibitors (ICIs).METHODS: Pre-treatment 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography/computed tomography (PET/CT) scans performed in two consecutive years for staging in adult patients with confirmed NSCLC were considered. Volume, maximum/mean standardized uptake value (SUVmax/SUVmean), metabolic tumor volume (MTV) and total lesion glycolysis (TLG) were assessed per delineated malignant lesion (including primary tumor, regional lymph nodes and distant metastases) in addition to the morphology of the primary tumor and clinical data. Total metabolic tumor burden was captured by totalMTV and totalTLG. Overall survival (OS), progression-free survival (PFS) and clinical benefit (CB) were used as endpoints for response to treatment.
    RESULTS: A total of 125 NSCLC patients were included. Osseous metastases were the most frequent distant metastases (n = 17), followed by thoracal distant metastases (pulmonal = 14 and pleural = 13). Total metabolic tumor burden prior to treatment was significantly higher in patients treated with ICIs (mean totalMTV ± standard deviation (SD) 72.2 ± 78.7; mean totalTLG ± SD 462.2 ± 538.9) compared to those without ICI treatment (mean totalMTV ± SD 58.1 ± 233.8; mean totalTLG ± SD 290.0 ± 784.2). Among the patients who received ICIs, a solid morphology of the primary tumor on imaging prior to treatment was the strongest outcome predictor for OS (Hazard ratio HR 28.04, p < 0.01), PFS (HR 30.89, p < 0.01) and CB (parameter estimation PE 3.46, p < 0.01), followed by the metabolic features of the primary tumor. Interestingly, total metabolic tumor burden prior to immunotherapy showed a negligible impact on OS (p = 0.04) and PFS (p = 0.01) after treatment given the hazard ratios of 1.00, but also on CB (p = 0.01) given the PE < 0.01. Overall, biomarkers on pre-treatment PET/CT scans showed greater predictive power in patients receiving ICIs, compared to patients without ICI treatment.
    CONCLUSIONS: Morphological and metabolic properties of the primary tumors prior to treatment in advanced NSCLC patients treated with ICI showed great outcome prediction performances, as opposed to the pre-treatment total metabolic tumor burdens, captured by totalMTV and totalTLG, both with negligible impact on OS, PFS and CB. However, the outcome prediction performance of the total metabolic tumor burden might be influenced by the value itself (e.g., poorer prediction performance at very high or very low values of total metabolic tumor burden). Further studies including subgroup analysis with regards to different values of total metabolic tumor burden and their respective outcome prediction performances might be needed.
    Keywords:  FDG-PET/CT; NSCLC; immunotherapy; lung cancer; metabolic tumor burden; novel therapeutic approaches; predictive biomarker
    DOI:  https://doi.org/10.3390/jcm12113725
  2. J Thorac Dis. 2023 May 30. 15(5): 2708-2720
      Background: To identify the potential key genes of ferroptosis in the pathogenesis of lung cancer with bone metastasis (LCBM) by bioinformatics analysis to provide new targets for treating LCBM and an indicator for early monitoring.Methods: We first obtained differentially expressed genes (DEGs) associated with ferroptosis from the Gene Expression Omnibus (GEO) database. MiRWalk 2.0 was used to predict the key microRNAs (miRNAs) and construct related gene-miRNA interaction networks. The functional enrichment analysis of key miRNAs was performed using the miEAA database. Finally, the clinical data of 105 lung cancer patients were retrospectively analyzed, and logistic regression analysis was conducted to assess the relationship between serum alkaline phosphatase (ALP), neuron-specific enolase (NSE), and bone metastasis in lung cancer patients, and a receiver operating characteristic (ROC) curve was drawn.
    Results: We identified 15 ferroptosis-related genes that were differentially expressed in lung cancer bone metastasis. GO and KEGG enrichment analyses suggested that these genes may affect the oxidative stress response, hypoxia response, rough endoplasmic reticulum, mitochondrial outer membrane, iron-sulfur cluster binding, virus receptor activity, central carbon metabolism in cancer, the interleukin-17 (IL-17) signaling pathway, and other aspects to participate in the occurrence and development of lung cancer bone metastasis. Among the 105 lung cancer patients included in the study, 39 cases had bone metastasis, and the incidence rate was 37.14%. A high Eastern Cooperative Oncology Group (ECOG) score and serum ALP and NSE overexpression were associated with bone metastasis in patients with lung cancer. By assessing the risk of bone metastasis in patients with lung cancer, we found that the Area Under Curves (AUCs) of serum ALP and NSE alone and combined were >0.70.
    Conclusions: The differentially expressed ferroptosis-related genes and predicted miRNA regulatory network in lung cancer bone metastasis and the related functional enrichment analysis provide new targets for the treatment of lung cancer bone metastasis. At the same time, from a serological perspective, it was found that early monitoring of serum ALP and NSE expression in patients with lung cancer could be considered to assess the risk of bone metastasis in the future.
    Keywords:  Lung cancer; a target point; bioinformatics analysis; bone metastasis; iron death
    DOI:  https://doi.org/10.21037/jtd-23-539
  3. Cancer Res. 2023 Jun 13. pii: CAN-22-3023. [Epub ahead of print]
      Immunotherapy resistance in non-small cell lung cancer (NSCLC) may be mediated by an immunosuppressive microenvironment, which can be shaped by the mutational landscape of the tumor. Here, we observed genetic alterations in the PTEN/PI3K/AKT/mTOR pathway and/or loss of PTEN expression in >25% NSCLC patients, with higher frequency in lung squamous carcinomas (LUSCs). Patients with PTEN-low tumors had higher levels of PD-L1 and PD-L2 and showed worse progression-free survival when treated with immunotherapy. Development of a Pten-null LUSC mouse model revealed that tumors with PTEN loss were refractory to anti-PD-1, highly metastatic and fibrotic, and secreted TGF-β/CXCL10 to promote conversion of CD4+ lymphocytes into regulatory T cells (Tregs). Human and mouse PTEN-low tumors were enriched in Tregs and expressed higher levels of immunosuppressive genes. Importantly, treatment of mice bearing Pten-null tumors with TLR agonists and anti-TGF-β antibody aimed to alter this immunosuppressive microenvironment led to tumor rejection and immunological memory in 100% of mice. These results demonstrate that lack of PTEN causes immunotherapy resistance in LUSC by establishing an immunosuppressive tumor microenvironment that can be reversed therapeutically.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-22-3023
  4. Oncol Res. 2023 ;31(3): 275-286
      Background: Lung cancer is one of the most lethal cancers worldwide, but studies have shown that the higher the expression of programmed cell death protein 1 ligand 1 (PD-L1) in non-small cell lung cancer (NSCLC), the more likely it will benefit from anti-PD-L1 immunotherapy. The purpose of our study was to collect and analyze abundant clinical samples in order to provide evidence for clinicians and patients who might consider anti-PD-L1 immunotherapy while jointly formulating treatment plans.Methods: On the one hand, we obtained cases from The Cancer Genome Atlas (TCGA) database, including 498 lung squamous cell cancer (LUSC) patients and 515 lung adenocarcinoma (LUAD) patients. We studied the lung caner driver gene in LUSC and LUAD. On the other hand, PD-L1 expression was detected in lung cancer tissues of 1,008 NSCLC patients with immunohistochemistry staining (IHC), and we studied the correlation between PD-L1 protein expression and clinicopathological characteristics.
    Results: PD-L1 expression was higher in LUSC than in LUAD at the mRNA level. In univariate analysis, PD-L1 expression at the protein level was higher in patients who were males, were LUSC, were smokers, had a tumor diameter >3 cm, had poor differentiation, or had stages III~IV disease. In multivariate analysis, PD-L1 expression was higher in patients who were LUSC or in poor differentiation.
    Conclusion: In term of protein level, PD-L1 expression was higher in NSCLC patients who were LUSC or in poor differentiation. We recommend that PD-L1 IHC detection can be routinely performed in such populations that are likely to benefit most from PD-L1 immunotherapy.
    Keywords:  Immunotherapy; LUAD; LUSC; NSCLC; PD-L1
    DOI:  https://doi.org/10.32604/or.2023.028227
  5. FASEB J. 2023 07;37(7): e23018
      Early detection, accurate monitoring, and therapeutics are major problems in non-small-cell lung cancer (NSCLC) patients. We identified genomic copy number variation of a unique panel of 40 mitochondria-targeted genes in NSCLCs (GEOGSE #29365). Validation of mRNA expression of these molecules revealed an altered panel of 34 genes in lung adenocarcinomas (LUAD) and 36 genes in lung squamous cell carcinomas (LUSC). In the LUAD subtype (n = 533), we identified 29 upregulated and 5 downregulated genes, while in the LUSC subtype (n = 502), a panel of 30 upregulated and 6 downregulated genes were discovered. The majority of these genes are associated with mitochondrial protein transport, ferroptosis, calcium signaling, metabolism, OXPHOS function, TCA cycle, apoptosis, and MARylation. Altered mRNA expression of SLC25A4, ACSF2, MACROD1, and GCAT was associated with poor survival of the NSCLC patients. Progressive loss of SLC25A4 protein expression was confirmed in NSCLC tissues (n = 59), predicting poor survival of the patients. Forced overexpression of SLC25A4 in two LUAD cell lines inhibited their growth, viability, and migration. A significant association of the altered mitochondrial pathway genes with LC subtype-specific classical molecular signatures was observed, implicating the existence of nuclear-mitochondrial cross-talks. Key alteration signatures shared between LUAD and LUSC subtypes including SLC25A4, ACSF2, MACROD1, MDH2, LONP1, MTHFD2, and CA5A could be helpful in developing new biomarkers and therapeutics.
    Keywords:  OXPHOS; TCA cycle; apoptosis; ferroptosis; lung cancer; mitochondria; protein transport; ribosome
    DOI:  https://doi.org/10.1096/fj.202201724RR
  6. Cancer Med. 2023 Jun 16.
      BACKGROUND/AIMS: Response to therapy after using immune checkpoint inhibitors (ICIs) is unpredictable due to significant interindividual variation in efficacy among advanced non-small cell lung cancer (NSCLC) patients. The current study centered on the identification of perivascular blood biomarkers for predicting the effectiveness of anti-programmed cell death protein 1 (anti-PD-1) treatment and progression-free survival (PFS) in advanced NSCLC patients, that could be applied to help determine how to change treatment plans therapeutic regimens for optimizing clinical benefits.METHODS: A comprehensive review of 100 advanced or recurrent NSCLC patients receiving anti-PD-1 therapy (Camrelizumab, pembrolizumab, sintilimab, or nivolumab) was conducted between January 2018 and April 2021 in Tianjin Medical University Cancer Hospital. The cutoff values of D-dimer were selected from rom our previous study, and interleukin-6 (IL-6) was divided according to the median. Using computed tomography, tumor response was evaluated in accordance with the Response Assessment Criteria in Solid Tumors, version 1.1.
    RESULTS: High IL-6 level in advanced NSCLC patients was predictive of low efficacy and a short PFS duration after anti-PD-1 therapy. An increased D-dimer value of 981 ng/mL was significantly predictive of disease progression in NSCLC patients treated with anti-PD-1 and high D-dimer expression predictive of short duration of PFS. Further studies on the correlation between IL-6, D-dimer, and anti-PD-1 efficacy in NSCLC patients stratified by gender revealed that D-dimer and IL-6 levels were significantly associated with the risk of PFS in male patients.
    CONCLUSIONS: High IL-6 content in peripheral blood in patients with advanced non-small cell lung cancer may contribute to poor anti-PD-1 efficacy and short duration of PFS through inducing alterations in the tumor microenvironment. D-dimer in peripheral blood is predictive of hyperfibrinolysis and contributes to the release of tumor-driven specific factors, leading to poor effects of anti-PD-1 therapy.
    Keywords:  D-dimer; IL-6; NSCLC
    DOI:  https://doi.org/10.1002/cam4.6222