bims-meluca Biomed News
on Metabolism of non-small cell lung carcinoma
Issue of 2023‒04‒09
eight papers selected by
the Muñoz-Pinedo/Nadal (PReTT) lab
L’Institut d’Investigació Biomèdica de Bellvitge


  1. J Cachexia Sarcopenia Muscle. 2023 Apr 06.
      INTRODUCTION: Cancer cachexia, highly prevalent in lung cancer, is a debilitating syndrome characterized by involuntary loss of skeletal muscle mass and is associated with poor clinical outcome, decreased survival and negative impact on tumour therapy. Various lung tumour-bearing animal models have been used to explore underlying mechanisms of cancer cachexia. However, these models do not simulate anatomical and immunological features key to lung cancer and associated muscle wasting. Overcoming these shortcomings is essential to translate experimental findings into the clinic. We therefore evaluated whether a syngeneic, orthotopic lung cancer mouse model replicates systemic and muscle-specific alterations associated with human lung cancer cachexia.METHODS: Immune competent, 11 weeks old male 129S2/Sv mice, were randomly allocated to either (1) sham control group or (2) tumour-bearing group. Syngeneic lung epithelium-derived adenocarcinoma cells (K-rasG12D ; p53R172HΔG ) were inoculated intrapulmonary into the left lung lobe of the mice. Body weight and food intake were measured daily. At baseline and weekly after surgery, grip strength was measured and tumour growth and muscle volume were assessed using micro cone beam CT imaging. After reaching predefined surrogate survival endpoint, animals were euthanized, and skeletal muscles of the lower hind limbs were collected for biochemical analysis.
    RESULTS: Two-third of the tumour-bearing mice developed cachexia based on predefined criteria. Final body weight (-13.7 ± 5.7%; P < 0.01), muscle mass (-13.8 ± 8.1%; P < 0.01) and muscle strength (-25.5 ± 10.5%; P < 0.001) were reduced in cachectic mice compared with sham controls and median survival time post-surgery was 33.5 days until humane endpoint. Markers for proteolysis, both ubiquitin proteasome system (Fbxo32 and Trim63) and autophagy-lysosomal pathway (Gabarapl1 and Bnip3), were significantly upregulated, whereas markers for protein synthesis (relative phosphorylation of Akt, S6 and 4E-BP1) were significantly decreased in the skeletal muscle of cachectic mice compared with control. The cachectic mice exhibited increased pentraxin-2 (P < 0.001) and CXCL1/KC (P < 0.01) expression levels in blood plasma and increased mRNA expression of IκBα (P < 0.05) in skeletal muscle, indicative for the presence of systemic inflammation. Strikingly, RNA sequencing, pathway enrichment and miRNA expression analyses of mouse skeletal muscle strongly mirrored alterations observed in muscle biopsies of patients with lung cancer cachexia.
    CONCLUSIONS: We developed an orthotopic model of lung cancer cachexia in immune competent mice. Because this model simulates key aspects specific to cachexia in lung cancer patients, it is highly suitable to further investigate the underlying mechanisms of lung cancer cachexia and to test the efficacy of novel intervention strategies.
    Keywords:  Cancer cachexia; Lung cancer; Mouse model; Muscle wasting; OLCC; Orthotopic mouse model
    DOI:  https://doi.org/10.1002/jcsm.13222
  2. Sci Rep. 2023 Apr 06. 13(1): 5662
      Neoplasms of the lungs are the leading cause of cancer incidence and mortality worldwide. Although immunotherapy has increased the overall survival of patients with lung cancer, there is the need to improve this treatment. At this regard, blood lipid levels are thought to be linked to cancer risk and thus a preventive intervention through regulation of the nutrition of patients with lung cancer is gaining much attention. In this study, we therefore asked about the contribution of serum lipids and cholesterol cellular metabolism in lung cancer development and progression. We measured different serum lipids and analyzed cholesterol synthesis enzymes 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR) and acetyl-coenzyme A cholesterol acetyltransferase 1 (ACAT1) as well as the cholesterol cellular export protein ATP-binding cassette (ABC) A-1 mRNA by quantitative PCR (qPCR) in the control and tumoral regions of post-surgery lung tissues to analyze the accumulation of cholesterol in cancer cells in a cohort of patients with lung adenocarcinoma (LUAD). We found that triglycerides in serum directly correlated with the body mass index (BMI) in patients with LUAD. By contrast, we found that high-density lipoprotein (HDL) cholesterol inversely correlated with the BMI, C-reactive protein (CRP) and overall survival and total cholesterol inversely correlated with the tumor diameter, serum CRP and overall survival in these LUAD patients. Functionally, the role of cholesterol is indispensable for the growth and development of normal animal cells where it is tightly regulated. Excess of cellular cholesterol regulated by HMGCR is converted to cholesteryl esters by the enzyme ACAT1 and exported extracellularly by the cholesterol transporter ABCA1. Here we found HMGCR and ACAT1 upregulated and ABCA1 downregulated in the lung's tumoral region of our LUAD cohort, indicating cholesterol dysregulated cellular export in lung tumor cells.
    DOI:  https://doi.org/10.1038/s41598-023-31575-y
  3. Biomed Chromatogr. 2023 Apr 04. e5642
      The hexosamine biosynthesis pathway (HBP) is a glucose metabolism pathway that produces uridine diphosphate N-acetyl glucosamine (UDP-GlcNAc). Substantial changes in HBP, including elevated HBP flux and UDP-GlcNAc levels, are associated with cancer pathogenesis. Particularly, cancer cells expressing oncogenic Kirsten rat sarcoma virus (KRAS) are highly dependent on HBP for growth and survival. To differentiate between HBP metabolites in KRAS wild-type (WT) and mutant (MT) lung cancer cells, a simultaneous quantitative method for analyzing seven HPB metabolites was developed using ultra-high-performance liquid chromatography-tandem mass spectrometry. A simple method without complicated preparation steps, such as derivatization or isotope labeling, was optimized for the simultaneous analysis of highly hydrophilic HBP metabolites, and the developed method was successfully verified. The intra- and inter-day coefficients of variation were less than 15% for all HBP metabolites, and the recovery was 89.67-114.5%. All results of the validation list were in accordance with ICM M10 guidelines. Through this method, accurate quantification of HBP metabolites in lung cancer cells was performed, and it was confirmed that all HBP metabolites were upregulated in KRAS MT cells compared with KRAS WT lung cancer cells. We expect that this will be a useful tool for metabolic research on cancer and for the development of new drugs for cancer treatment.
    Keywords:  Hexosamine biosynthesis pathway; KRAS mutation; UPLC-MS/MS; ZIC-pHILIC column; quantitative analysis
    DOI:  https://doi.org/10.1002/bmc.5642
  4. Chem Biol Interact. 2023 Mar 31. pii: S0009-2797(23)00134-5. [Epub ahead of print] 110467
      Pyruvate dehydrogenase kinase 1 (PDK1) is an important metabolic enzyme which is often overexpressed in many types of cancers, including non-small-cell lung cancers (NSCLC). Targeting PDK1 appears to be an attractive anticancer strategy. Based on a previously reported moderate potent anticancer PDK1 inhibitor, 64, we developed three dichloroacetophenone biphenylsulfone ethers, 30, 31 and 32, which showed strong PDK1 inhibitions of 74%, 83% and 72% at 10 μM, respectively. Then we investigated the anticancer effects of 31 in two NSCLC cell lines, namely, NCI-H1299 and NCI-H1975. It was found that 31 exhibited sub-micromolar cancer cell IC50s, suppressed colony formation, induced mitochondrial membrane potential depolarization, triggered apoptosis, altered cellular glucose metabolism, with concomitant reductions in extracellular lactate levels and enhanced the generation of reactive oxygen species in NSCLC cells. Moreover, 31 significantly suppressed the tumor growth in an NCI-H1975 mouse xenograft model, outperforming the anticancer effects of 64. Taken together our results suggested that inhibition of PDK1 via dichloroacetophenone biphenylsulfone ethers may provide a novel direction leading to an alternative treatment option in NSCLC therapy.
    Keywords:  Anticancer effect; Dichloroacetophenone; Metabolic alteration; NSCLC; PDK
    DOI:  https://doi.org/10.1016/j.cbi.2023.110467
  5. Life Sci. 2023 Apr 03. pii: S0024-3205(23)00289-8. [Epub ahead of print]322 121655
      AIMS: Cancer metastasis is a major cause of lung cancer-related mortality, so identification of related molecular mechanisms is of interest. Calmodulin-regulated spectrin-associated protein 3 (CAMSAP3) has been implicated in lung cancer malignancies; however, its role in metastatic processes, including invasion and angiogenesis, is largely unknown.MAIN METHOD: The clinical relevance of CAMSAP3 expression in lung cancer was evaluated. The relevance of CAMSAP3 expression to in vitro cell invasion and angiogenesis was assessed in human lung cancer cells and endothelial cells, respectively. The molecular mechanism was identified by qRT-PCR, immunoprecipitation, mass spectrometry, and RNA immunoprecipitation. The in vivo metastatic and angiogenic activities of lung cancer cells were assessed.
    KEY FINDINGS: Low CAMSAP3 expression was found in malignant lung tissues and strongly correlated with a poor prognosis in lung adenocarcinoma (LUAD). CAMSAP3-knockout NSCLC exhibited high invasive ability, and CAMSAP3 knockout induced HUVEC proliferation and tube formation; these effects were significantly attenuated by reintroduction of exogenous wild-type CAMSAP3. Mechanistically, in the absence of CAMSAP3, the expression of hypoxia-inducible factor-1α (HIF-1α) was upregulated, which increased the levels of downstream HIF-1α targets such as vascular endothelial growth factor A (VEGFA) and matrix metalloproteinases (MMPs) 2 and 9. Proteomic analysis revealed that nucleolin (NCL) bound to CAMSAP3 to regulate HIF-1α mRNA stabilization. In addition, CAMSAP3-knockout lung cancer cells displayed highly aggressive behavior in metastasis and angiogenesis in vivo.
    SIGNIFICANCE: This study reveals that CAMSAP3 plays a negative regulatory role in lung cancer cell metastatic behavior both in vitro and in vivo through NCL/HIF-1α mRNA complex stabilization.
    Keywords:  Angiogenesis; Calmodulin-regulated spectrin-associated protein 3 (CAMSAP3); Hypoxia-inducible factor-1α (HIF-1α); Invasion; Lung cancer; Nucleolin (NCL)
    DOI:  https://doi.org/10.1016/j.lfs.2023.121655
  6. Pharmacol Rep. 2023 Apr 03.
      BACKGROUND: Pegylated arginine deiminase (ADI-PEG20; pegargiminase) depletes arginine and improves survival outcomes for patients with argininosuccinate synthetase 1 (ASS1)-deficient malignant pleural mesothelioma (MPM). Optimisation of ADI-PEG20-based therapy will require a deeper understanding of resistance mechanisms, including those mediated by the tumor microenvironment. Here, we sought to reverse translate increased tumoral macrophage infiltration in patients with ASS1-deficient MPM relapsing on pegargiminase therapy.METHODS: Macrophage-MPM tumor cell line (2591, MSTO, JU77) co-cultures treated with ADI-PEG20 were analyzed by flow cytometry. Microarray experiments of gene expression profiling were performed in ADI-PEG20-treated MPM tumor cells, and macrophage-relevant genetic "hits" were validated by qPCR, ELISA, and LC/MS. Cytokine and argininosuccinate analyses were performed using plasma from pegargiminase-treated patients with MPM.
    RESULTS: We identified that ASS1-expressing macrophages promoted viability of ADI-PEG20-treated ASS1-negative MPM cell lines. Microarray gene expression data revealed a dominant CXCR2-dependent chemotactic signature and co-expression of VEGF-A and IL-1α in ADI-PEG20-treated MPM cell lines. We confirmed that ASS1 in macrophages was IL-1α-inducible and that the argininosuccinate concentration doubled in the cell supernatant sufficient to restore MPM cell viability under co-culture conditions with ADI-PEG20. For further validation, we detected elevated plasma VEGF-A and CXCR2-dependent cytokines, and increased argininosuccinate in patients with MPM progressing on ADI-PEG20. Finally, liposomal clodronate depleted ADI-PEG20-driven macrophage infiltration and suppressed growth significantly in the MSTO xenograft murine model.
    CONCLUSIONS: Collectively, our data indicate that ADI-PEG20-inducible cytokines orchestrate argininosuccinate fuelling of ASS1-deficient mesothelioma by macrophages. This novel stromal-mediated resistance pathway may be leveraged to optimize arginine deprivation therapy for mesothelioma and related arginine-dependent cancers.
    Keywords:  ADI-PEG20; ASS1; Arginine deprivation; Macrophages; Mesothelioma
    DOI:  https://doi.org/10.1007/s43440-023-00480-6
  7. Cancer Sci. 2023 Apr 05.
      Chemotherapy in combination with immune checkpoint blockade (ICB) targeting to programmed death-1 (PD-1) or its ligand PD-L1 is one of the first-line treatments for patients with advanced non-small cell lung cancer (NSCLC). However, a large proportion of patients, especially those with PD-L1 negative tumors, do not benefit from this treatment. This may be due to the existence of multiple immunosuppressive mechanisms other than PD-1/PD-L1 axis. Human leukocyte antigen-G (HLA-G) has been identified as an immune checkpoint protein (ICP) and a neo-expressed tumor-associated antigen (TAA) in a large proportion of solid tumors. In this study, we evaluated the induction of HLA-G as well as PD-L1 by sub-lethal doses of chemotherapeutics including pemetrexed in different NSCLC cell lines. Except gefitinib, most of the chemotherapeutic agents enhanced HLA-G and PD-L1 expression in a dose-dependent manner, whereas pemetrexed and carboplatin treatments showed the most consistent upregulation of PD-L1 and HLA-G in each cell line. In addition to protein levels, a novel finding of this study is that pemetrexed enhanced glycosylation of HLA-G and PD-L1. Pemetrexed potentiated the cytotoxicity of cytotoxic T lymphocytes (CTLs) to treat NSCLC. Both in vitro and in vivo experiments revealed that the CTL-mediated cytotoxicity was most pronounced when both anti-PD-L1 and anti-HLA-G ICBs were combined to pemetrexed treatment. In conclusion, anti-HLA-G could be an intervention strategy in addition to anti-PD-1/PD-L1 pathway for NSCLC. Moreover, dual targeting of PD-L1 and HLA-G combined with pemetrexed may have a better extend of CTLs-based immunotherapy.
    Keywords:  CTLs; HLA-G; NSCLC; PD-L1; pemetrexed
    DOI:  https://doi.org/10.1111/cas.15806