bims-meluca Biomed News
on Metabolism of non-small cell lung carcinoma
Issue of 2021‒01‒31
two papers selected by
Cristina Muñoz Pinedo
L’Institut d’Investigació Biomèdica de Bellvitge


  1. Transl Lung Cancer Res. 2020 Dec;9(6): 2337-2355
    Huang S, He T, Yang S, Sheng H, Tang X, Bao F, Wang Y, Lin X, Yu W, Cheng F, Lv W, Hu J.
      Background: The therapeutic efficacy of cisplatin-based chemotherapy for non-small cell lung cancer (NSCLC) is limited by drug resistance. In NSCLC, hyperactivation of nuclear factor erythroid 2-related factor 2 (Nrf2) counteracts oxidative stress to promote chemoresistance. Metformin-mediated downregulation of Nrf2 plays a pivotal role in overcoming drug resistance in NSCLC cells. Therefore, a deeper understanding of the molecular mechanisms of combination therapy and the role of Nrf2 in chemotherapeutic response is critical to clinical translation.Methods: The effects of combination therapy with metformin and cisplatin on cell proliferation and apoptosis, intracellular reactive oxygen species (ROS) levels, and xenograft tumor formation were analyzed in NSCLC cells. Co-immunoprecipitation (co-IP) and Phos-tag assays were used to explore the mechanism of metformin-mediated Nrf2 suppression. Immunohistochemical (IHC) staining was performed to detect Nrf2 expression in matched tumor samples before and after neoadjuvant chemotherapy.
    Results: Metformin was observed to synergistically augment cisplatin-induced cytotoxicity by strongly inhibiting the level of Nrf2, thereby weakening the antioxidant system and detoxification ability of Nrf2 and enhancing ROS-mediated apoptosis in NSCLC. The synergistic antitumor effect of combination therapy is blocked by treatment with the ROS scavenger N-acetyl cysteine (NAC) as well as overexpression of Nrf2 and its downstream antioxidant protein. Mechanistically, metformin extensively dephosphorylates Nrf2 by attenuating the interaction between Nrf2 and extracellular signal-regulated kinases 1/2 (ERK1/2), which then restores its polyubiquitination and accelerates its proteasomal degradation. Moreover, for the first time, an association of non-decreased Nrf2 expression in patients after neoadjuvant chemotherapy with poor survival and chemoresistance in NSCLC was revealed.
    Conclusions: Our findings illustrate the mechanism of metformin-mediated Nrf2 degradation through posttranslational modifications (PTMs), which weakens the ROS defense system in NSCLC. Fluctuations in Nrf2 expression have a strong predictive ability for chemotherapeutic response in neoadjuvant NSCLC patients. Targeting of the Nrf2 pathway could be a therapeutic strategy for overcoming chemoresistance, with metformin as the first choice for this strategy.
    Keywords:  Metformin; Nrf2; chemoresistance; lung cancer; posttranslational modification (PTM)
    DOI:  https://doi.org/10.21037/tlcr-20-1072
  2. Am J Physiol Lung Cell Mol Physiol. 2021 Jan 27.
    Lee DD, Park SJ, Zborek K, Schwarz MA.
      During postnatal lung development, metabolic changes that coincide with stages of alveolar formation are poorly understood. Responding to developmental and environmental factors, metabolic changes can be rapidly and adaptively altered. The objective of the present study was to determine biological and technical determinants of metabolic changes during postnatal lung development. Over 118 metabolic features were identified by liquid chromatography with tandem mass spectrometry (LC-MS/MS, Sciex QTRAP 5500 Triple Quadrupole). Biological determinants of metabolic changes were the transition from the postnatal saccular to alveolar stages and exposure to 85% hyperoxia, an environmental insult. Technical determinants of metabolic identification were brevity and temperature of harvesting, both of which improved metabolic preservation within samples. Multivariate statistical analyses revealed the transition between stages of lung development as the period of major metabolic alteration. Of 3 distinctive groups that clustered by age, the saccular stage was identified by its enrichment of both glycolytic and fatty acid derivatives. The critical transition between stages of development were denoted by changes in amino acid derivatives. Of the amino acid derivatives that significantly changed, a majority were linked to metabolites of the one-carbon metabolic pathway. The enrichment of one-carbon metabolites was independent of age and environmental insult. Temperature was also found to significantly influence the metabolic levels within the post-mortem sampled lung, which underscored the importance of methodology. Collectively, these data support not only distinctive stages of metabolic change but also highlight amino acid metabolism, in particular one-carbon metabolites as metabolic signatures of the early postnatal lung.
    Keywords:  alveologenesis; hyperoxia; lung maturation and development; metabolomics; one-carbon metabolism
    DOI:  https://doi.org/10.1152/ajplung.00417.2020