bims-mecosi Biomed News
on Membrane Contact Sites
Issue of 2021‒06‒27
five papers selected by
Verena Kohler
Stockholm University


  1. Biochim Biophys Acta Mol Cell Biol Lipids. 2021 Jun 17. pii: S1388-1981(21)00120-7. [Epub ahead of print]1866(10): 158992
      Brown adipose tissue (BAT) is specialized for uncoupled heat production through mitochondrion fueled majorly from fatty acids (FAs) of lipid droplets (LDs). How the interaction between the two organelles contributes the generation of heat remains elusive. Here, we report that LD-anchored mitochondria (LDAM) were observed in the BAT of mice raised at three different temperatures, 30 °C, 23 °C, and 6 °C. The biochemical analyses including Western blotting of electron transport chain subunits showed that LDAM were functional. Comparative proteomics analysis was conducted, which revealed differential expressions of proteins between LDAM and cytoplasmic mitochondria (CM) at different temperatures. Higher expressions of proteins at low temperature were observed for i) FA β-oxidation in LDAM including FA synthesis and uncoupling, ii) pseudo-futile cycle in CM, and iii) two shuttle systems: glycerol 3-phosphate in both CM and LDAM and citrate malate in CM. Together, these results suggest that LDs and LDAM form a preorganized and functional organelle complex that permits the rapid response to cold.
    Keywords:  BAT; Comparative proteomics; FA β-oxidation; Lipid droplet-anchored mitochondria
    DOI:  https://doi.org/10.1016/j.bbalip.2021.158992
  2. Mol Microbiol. 2021 Jun 24.
      Aging is associated with altered mitochondrial function, which is dependent on the magnesium (Mg+2 ) ion flux. The molecular mechanism underlying Mg+2 homeostasis, especially during aging has not been well understood. We previously demonstrated that the absence of a vacuolar ion transporter Mnr2 accelerates cell death in the older part of the colony in Magnaporthe oryzae presumably due to an altered Mg+2 homeostasis. Here, we show the localization of Mnr2 as dynamic puncta at the vacuolar membrane, especially in the older Magnaporthe cells. Such vacuolar Mnr2 puncta are often localized in close proximity with the filamentous mitochondria in the older cells. Further, we show loss of integrity of mitochondria and vacuoles in older mnr2∆ null cells. Remarkably, exogenously added Mg+2 restores the mitochondrial structure as well as improves the lifespan of mnr2∆ null cells. Taken together, we propose an ion transporter Mnr2-based Mg+2 homeostasis as a means in preserving mitochondrial and vacuolar integrity and function in older M. oryzae cells.
    Keywords:  Mg+2 ion transporter; Rice blast; aging; ion homeostasis; mitochondrial integrity
    DOI:  https://doi.org/10.1111/mmi.14776
  3. Mol Biol Cell. 2021 Jun 23. mbcE20110695
      Lipid droplets (LDs) are dynamic organelles for lipid storage and homeostasis. Cells respond to metabolic changes by regulating the spatial distribution of LDs and enzymes required for LD growth and turnover. The small size of LDs precludes the observation of their associated enzyme densities and dynamics with conventional fluorescence microscopy. Here, we employ quantitative photo-activated localization microscopy to study the density of the fatty acid activating enzyme Faa4 on LDs in live yeast cells with single-molecule sensitivity and 30 nm resolution. During the log phase LDs co-localize with the Endoplasmic Reticulum (ER) where their emergence and expansion is mediated by the highest observed Faa4 densities. During transition to the stationary phase LDs with a ∼2-fold increased surface area translocate to the vacuolar surface and lumen and exhibit a ∼2.5-fold increase in Faa4 density. The increased Faa4 density on LDs further suggests its role in LD expansion, is caused by its ∼5-fold increased expression level and is specific to exogenous fatty acid chain-lengths. When lipolysis is induced by refreshed medium, Faa4 shuttles through ER- and lipophagy to the vacuole, where it may activate fatty acids for membrane expansion and degrade to reset cellular Faa4 abundance to levels in the log phase. [Media: see text] [Media: see text] [Media: see text] [Media: see text].
    DOI:  https://doi.org/10.1091/mbc.E20-11-0695
  4. J Cell Sci. 2022 03 01. pii: jcs258579. [Epub ahead of print]135(5):
      Store-operated Ca2+ entry is a central component of intracellular Ca2+ signaling pathways. The Ca2+ release-activated channel (CRAC) mediates store-operated Ca2+ entry in many different cell types. The CRAC channel is composed of the plasma membrane (PM)-localized Orai1 channel and endoplasmic reticulum (ER)-localized STIM1 Ca2+ sensor. Upon ER Ca2+ store depletion, Orai1 and STIM1 form complexes at ER-PM junctions, leading to the formation of activated CRAC channels. Although the importance of CRAC channels is well described, the underlying mechanisms that regulate the recruitment of Orai1 to ER-PM junctions are not fully understood. Here, we describe the rapid and transient S-acylation of Orai1. Using biochemical approaches, we show that Orai1 is rapidly S-acylated at cysteine 143 upon ER Ca2+ store depletion. Importantly, S-acylation of cysteine 143 is required for Orai1-mediated Ca2+ entry and recruitment to STIM1 puncta. We conclude that store depletion-induced S-acylation of Orai1 is necessary for recruitment to ER-PM junctions, subsequent binding to STIM1 and channel activation.
    Keywords:  Ca2+ channel; Calcium; Orai1; Palmitoylation; S-acylation
    DOI:  https://doi.org/10.1242/jcs.258579
  5. Protoplasma. 2021 Jun 21.
      Glands of Drosera absorb and transport nutrients from captured prey, but the mechanism and dynamics remain unclear. In this study, we offered animal proteins in the form of fluorescent albumin (FITC-BSA) and observed the reactions of the glands by live cell imaging and fluorescence microscopy. The ultrastructure of these highly dynamic processes was also assessed in high-pressure frozen and freeze substituted (HPF-FS) cells. HPF-FS yielded excellent preservation of the cytoplasm of all cell types, although the cytosol looked different in gland cells as compared to endodermoid and stalk cells. Especially prominent were the ER and its contacts with the plasma membrane, plasmodesmata, and other organelles as well as continuities between organelles. Also distinct were actin microfilaments in association with ER and organelles. Application of FITC-BSA to glands caused the formation of fluorescent endosomes that pinched off the plasma membrane. Endosomes fused to larger aggregates, and accumulated in the bulk cytoplasm around the nucleus. They did not fuse with the cell sap vacuole but remained for at least three days; in addition, fluorescent vesicles also proceeded through endodermoid and transfer cells to the epidermal and parenchymal cells of the tentacle stalk.
    Keywords:  Carnivorous; Drosera capensis; Gland cell
    DOI:  https://doi.org/10.1007/s00709-021-01667-5