bims-mascan Biomed News
on Mass spectrometry in cancer research
Issue of 2020‒10‒18
twenty-two papers selected by
Giovanny Rodriguez Blanco
University of Edinburgh

  1. Anal Chim Acta. 2020 Oct 16. pii: S0003-2670(20)30824-2. [Epub ahead of print]1134 125-135
    Neef SK, Winter S, Hofmann U, Mürdter TE, Schaeffeler E, Horn H, Buck A, Walch A, Hennenlotter J, Ott G, Fend F, Bedke J, Schwab M, Haag M.
      Formalin-fixed and paraffin-embedded (FFPE) tissue represents a valuable resource to examine cancer metabolic alterations and to identify potential markers of disease. Protocols commonly used for liquid-chromatography mass spectrometry (LC-MS)-based FFPE metabolomics have not been optimized for lipidomic analysis and pre-analytical factors, that potentially affect metabolite levels, were scarcely investigated. We here demonstrate the assessment and optimization of sample preparation procedures for comprehensive metabolomic and lipidomic profiling in FFPE kidney tissue by LC-QTOF-MS. The optimized protocol allows improved monitoring of lipids including ceramides (Cer), glycosphingolipids (GSL) and triglycerides (TAGs) while the profiling capability for small polar molecules is maintained. Further, repeatable sample preparation (CVs < 20%) along with high analytical (CVs < 10%) and inter-day precision (CVs < 20%) is achieved. As proof of concept, we analyzed a set of clear cell renal cell carcinoma (ccRCC) and corresponding non-tumorous FFPE tissue samples, achieving phenotypic distinction. Investigation of the impact of tissue fixation time (6 h, 30 h and 54 h) on FFPE tissue metabolic profiles revealed metabolite class-dependent differences on their detection abundance. Whereas specific lipids (e.g. phosphatidylinositoles, GSLs, saturated fatty acids and saturated lyso-phosphatidytlethanolamines [LPE]) remained largely unaffected (CVs < 20% between groups of fixation time), neutral lipids (e.g. Cer and TAGs) exhibited high variability (CVs > 80%). Strikingly, out of the lipid classes assigned as unaffected, fatty acids 18:0, 16:0 and LPE 18:0 were detectable by high-resolution MALDI-FT-ICR MS imaging in an independent cohort of ccRCC tissues (n = 64) and exhibited significant differences between tumor and non-tumor regions.
    Keywords:  Formalin-fixed paraffin-embedded kidney tissue; Lipidomics; Mass spectrometry; Metabolite extraction; Metabolomics; Non-targeted metabolomics
  2. Biochim Biophys Acta Mol Cell Biol Lipids. 2020 Oct 10. pii: S1388-1981(20)30232-8. [Epub ahead of print] 158840
    Igal RA, Sinner DI.
      A large body of research has demonstrated that human stearoyl-CoA desaturase 1 (SCD1), a universally expressed fatty acid Δ9-desaturase that converts saturated fatty acids (SFA) into monounsaturated fatty acids, is a central regulator of metabolic and signaling pathways involved in cell proliferation, differentiation, and survival. Unlike SCD1, stearoyl-CoA desaturase 5 (SCD5), a second SCD isoform found in a variety of vertebrates, including humans, has received considerably less attention but new information on its catalytic properties, regulation and biological functions of this enzyme has begun to emerge. This review will examine the new evidence that supports key metabolic and biological roles for SCD5, as well as the potential implication of this desaturase in the mechanisms of human diseases.
    Keywords:  cancer; desaturase; developmental diseases; lipid metabolism; monounsaturated fatty acids; signal transduction
  3. Metabolites. 2020 Oct 08. pii: E399. [Epub ahead of print]10(10):
    Blackburn G, Hay J, Skagen C, Paul E, Achcar F, Wilson J, Best C, Manson E, Burgess K, Barrett MP, Gill JMR.
      Understanding the metabolic processes in energy metabolism, particularly during fasted exercise, is a growing area of research. Previous work has focused on measuring metabolites pre and post exercise. This can provide information about the final state of energy metabolism in the participants, but it does not show how these processes vary during the exercise and any subsequent post-exercise period. To address this, the work described here took fasted participants and subjected them to an exercise and rest protocol under laboratory settings, which allowed for breath and blood sampling both pre, during and post exercise. Analysis of the data produced from both the physiological measurements and the untargeted metabolomics measurements showed clear switching between glycolytic and ketolytic metabolism, with the liquid chromatography-mass spectrometry (LC-MS) data showing the separate stages of ketolytic metabolism, notably the transport, release and breakdown of long chain fatty acids. Several signals, putatively identified as short peptides, were observed to change in a pattern similar to that of the ketolytic metabolites. This work highlights the power of untargeted metabolomic methods as an investigative tool for exercise science, both to follow known processes in a more complete way and discover possible novel biomarkers.
    Keywords:  biomarker research; energy metabolism; fasted exercise; liquid chromatography-mass spectrometry (LC-MS); nutritional metabolomics; sports metabolism
  4. Nat Metab. 2020 Oct 12.
    Boon R, Silveira GG, Mostoslavsky R.
      Cellular metabolism has emerged as a major biological node governing cellular behaviour. Metabolic pathways fuel cellular energy needs, providing basic chemical molecules to sustain cellular homeostasis, proliferation and function. Changes in nutrient consumption or availability therefore can result in complete reprogramming of cellular metabolism towards stabilizing core metabolite pools, such as ATP, S-adenosyl methionine, acetyl-CoA, NAD/NADP and α-ketoglutarate. Because these metabolites underlie a variety of essential metabolic reactions, metabolism has evolved to operate in separate subcellular compartments through diversification of metabolic enzyme complexes, oscillating metabolic activity and physical separation of metabolite pools. Given that these same core metabolites are also consumed by chromatin modifiers in the establishment of epigenetic signatures, metabolite consumption on and release from chromatin directly influence cellular metabolism and gene expression. In this Review, we highlight recent studies describing the mechanisms determining nuclear metabolism and governing the redistribution of metabolites between the nuclear and non-nuclear compartments.
  5. Anal Chem. 2020 Oct 15.
    van der Laan T, Dubbelman AC, Duisters K, Kindt A, Harms AC, Hankemeier T.
      Metabolomics is emerging as an important field in life sciences. However, a weakness of current mass spectrometry (MS) based metabolomics platforms is the time-consuming analysis and the occurrence of severe matrix effects in complex mixtures. To overcome this problem, we have developed an automated and fast fractionation module coupled online to MS. The fractionation is realized by the implementation of three consecutive high performance solid-phase extraction columns consisting of a reversed phase, mixed-mode anion exchange, and mixed-mode cation exchange sorbent chemistry. The different chemistries resulted in an efficient interaction with a wide range of metabolites based on polarity, charge, and allocation of important matrix interferences like salts and phospholipids. The use of short columns and direct solvent switches allowed for fast screening (3 min per polarity). In total, 50 commonly reported diagnostic or explorative biomarkers were validated with a limit of quantification that was comparable with conventional LC-MS(/MS). In comparison with a flow injection analysis without fractionation, ion suppression decreased from 89% to 25%, and the sensitivity was 21 times higher. The validated method was used to investigate the effects of circadian rhythm and food intake on several metabolite classes. The significant diurnal changes that were observed stress the importance of standardized sampling times and fasting states when metabolite biomarkers are used. Our method demonstrates a fast approach for global profiling of the metabolome. This brings metabolomics one step closer to implementation into the clinic.
  6. J Proteome Res. 2020 Oct 15.
    Zhu Y, Wancewicz B, Schaid M, Tiambeng TN, Wenger K, Jin Y, Heyman H, Thompson CJ, Barsch A, Cox ED, Davis DB, Brasier AR, Kimple M, Ge Y.
      Metabolomics-the endpoint of the omics cascade-is increasingly recognized as a preferred method for understanding the ultimate responses of biological systems to stress. Flow injection electrospray (FIE) mass spectrometry (MS) has advantages for untargeted metabolic fingerprinting due to its simplicity and capability for high-throughput screening but requires a high-resolution mass spectrometer to resolve metabolite features. In this study, we developed and validated a high-throughput and highly reproducible metabolomics platform integrating FIE with ultrahigh-resolution Fourier transform ion cyclotron resonance (FTICR) MS for analysis of both polar and nonpolar metabolite features from plasma samples. FIE-FTICR MS enables high-throughput detection of hundreds of metabolite features in a single mass spectrum without a front-end separation step. Using plasma samples from genetically identical obese mice with or without type 2 diabetes (T2D), we validated the intra and intersample reproducibility of our method and its robustness for simultaneously detecting alterations in both polar and nonpolar metabolite features. Only 5 min is needed to acquire an ultra-high resolution mass spectrum in either a positive or negative ionization mode. Approximately 1000 metabolic features were reproducibly detected and annotated in each mouse plasma group. For significantly altered and highly abundant metabolite features, targeted tandem MS (MS/MS) analyses can be applied to confirm their identity. With this integrated platform, we successfully detected over 300 statistically significant metabolic features in T2D mouse plasma as compared to controls and identified new T2D biomarker candidates. This FIE-FTICR MS-based method is of high throughput and highly reproducible with great promise for metabolomics studies toward a better understanding and diagnosis of human diseases.
    Keywords:  Fourier transform ion cyclotron resonance mass spectrometry; diabetes; flow injection electrospray; high-throughput platform; metabolite fingerprinting; plasma metabolomics
  7. Sci Rep. 2020 Oct 16. 10(1): 17523
    Rashid MM, Lee H, Jung BH.
      PP242, an inhibitor of mechanistic target of rapamycin (mTOR), displays potent anticancer effects against various cancer types. However, the underlying metabolic mechanism associated with the PP242 effects is not clearly understood. In this study, comprehensive metabolomics and lipidomics investigations were performed using ultra-high-performance chromatography-Orbitrap-mass spectrometry (UHPLC-Orbitrap-MS) in plasma and tumor tissue to reveal the metabolic mechanism of PP242 in an LS174T cell-induced colon cancer xenograft mouse model. After 3 weeks of PP242 treatment, a reduction in tumor size and weight was observed without any critical toxicities. According to results, metabolic changes due to the effects of PP242 were not significant in plasma. In contrast, metabolic changes in tumor tissues were very significant in the PP242-treated group compared to the xenograft control (XC) group, and revealed that energy and lipid metabolism were mainly altered by PP242 treatment like other cancer inhibitors. Additionally, in this study, it was discovered that not only TCA cycle but also fatty acid β-oxidation (β-FAO) for energy metabolism was inhibited and clear reduction in glycerophospholipid was observed. This study reveals new insights into the underlying anticancer mechanism of the dual mTOR inhibitor PP242, and could help further to facilitate the understanding of PP242 effects in the clinical application.
  8. Anal Chem. 2020 Oct 13.
    Zheng N, Taylor K, Gu H, Santockyte R, Wang XT, McCarty J, Adelakun O, Zhang YJ, Pillutla R, Zeng J.
      Despite huge promises, bioanalysis of protein biomarkers in formalin-fixed paraffin-embedded (FFPE) tissues by liquid chromatography-tandem mass spectrometry (LC-MS/MS) for clinical applications is still very challenging. Here, we describe a sensitive and robust LC-MS/MS assay to quantify clinical protein biomarkers in FFPE tumor sections using automated antipeptide antibody immunocapture followed by in-sample calibration curve (ISCC) strategy with multiple isotopologue reaction monitoring (MIRM) technique. ISCC approach with MIRM of stable isotopically labeled (SIL) peptides eliminated the need for authentic matrices for external calibration curves, overcame the matrix effects, and validated the quantification range in each individual sample. Specifically, after deparaffinization, rehydration, antigen retrieval, and homogenization, the protein analytes in FFPE tumor tissues were spiked with a known concentration of one SIL peptide for each analyte, followed by trypsin digestion and antipeptide immunocapture enrichment prior to MIRM-ISCC-based LC-MS/MS analysis. This approach has been successfully used for sensitive quantification of programmed cell death-1 (PD-1) and programmed cell death-ligand 1 (PD-L1) in 15 representative FFPE tumor samples from lung, colorectal, and head and neck cancer patients. Except for one sample, PD-L1 and PD-1 in all samples were quantifiable using this assay with concentrations of 27.85-798.43 (amol/μg protein) for PD-L1 and 16.96-129.89 (amol/μg protein) for PD-1. These results were generally in agreement with the immunohistochemistry (IHC) data but with some exceptions. This approach demonstrated the feasibility to quantify low abundant protein biomarkers in FFPE tissues with improved sensitivity, specificity, and robustness and showed great potential as an orthogonal analytical approach to IHC for clinical applications.
  9. Cancer Chemother Pharmacol. 2020 Oct 11.
    Volpato M, Ingram N, Perry SL, Spencer J, Race AD, Marshall C, Hutchinson JM, Nicolaou A, Loadman PM, Coletta PL, Hull MA.
      PURPOSE: The naturally-occurring omega-3 polyunsaturated fatty acid eicosapentaenoic acid (EPA) is safe, well-tolerated and inexpensive, making it an attractive anti-cancer intervention. However, EPA has only modest anti-colorectal cancer (CRC) activity, when used alone. Both cyclooxygenase (COX) isoforms metabolise EPA and are over-expressed in CRC cells. We investigated whether COX inhibition increases the sensitivity of CRC cells to growth inhibition by EPA.METHODS: A panel of 18 human and mouse CRC cell lines was used to characterize the differential sensitivity of CRC cells to the growth inhibitory effects of EPA. The effect of CRISPR-Cas9 genetic deletion and pharmacological inhibition of COX-1 and COX-2 on the anti-cancer activity of EPA was determined using in vitro and in vivo models.
    RESULTS: Genetic ablation of both COX isoforms increased sensitivity of CT26 mouse CRC cells to growth inhibition by EPA in vitro and in vivo. The non-selective COX inhibitor aspirin and the selective COX-2 inhibitor celecoxib increased sensitivity of several human and mouse CRC cell lines to EPA in vitro. However, in a MC38 mouse CRC cell tumour model, with dosing that mirrored low-dose aspirin use in humans, thereby producing significant platelet COX-1 inhibition, there was ineffective intra-tumoral COX-2 inhibition by aspirin and no effect on EPA sensitivity of MC38 cell tumours.
    CONCLUSION: Cyclooxygenase inhibition by non-steroidal anti-inflammatory drugs represents a therapeutic opportunity to augment the modest anti-CRC activity of EPA. However, intra-tumoral COX inhibition is likely to be critical for this drug-nutrient interaction and careful tissue pharmacodynamic profiling is required in subsequent pre-clinical and human studies.
    Keywords:  Aspirin; Cancer pharmacology; Celecoxib; Colorectal cancer; Cyclooxygenase; Drug metabolism; Eicosapentaenoic acid
  10. Anal Biochem. 2020 Oct 13. pii: S0003-2697(20)30512-1. [Epub ahead of print] 113980
    Arachchige GPR, Thorstensen EB, Coe M, McKenzie EJ, O'Sullivan JM, Pook CJ.
      Fat-soluble vitamers (FSV) are several biochemically diverse micronutrients essential for healthy development, growth, metabolism, and cell regulation. We cannot synthesize FSV completely or at the required concentrations. Deficiency or excess of FSV can result in many health problems. Plasma is the most accessible sample matrix for the quantification of FSV. However, due to its complexity and other analytical challenges (e.g., FSV sensitivity to light, oxygen, heat, pH, chemical heterogeneity, standard availability), developing a method for the simultaneous quantification of multiple FSV at physiological concentrations has been challenging. In this systematic review, we examine the parameters and criteria used in existing Liquid Chromatography with tandem Mass Spectrometry (LC-MS/MS) methods for FSV quantification to the extraction method, chromatographic resolution, matrix effects, and method validation as critical to a sensitive and robust method. We conclude that the final FSV method sensitivity is predominantly based on aforementioned criteria and future method development using LC-MS/MS will benefit from the application of this systematic review.
    Keywords:  Fat-soluble vitamers (FSV); Limit of Quantitation (LOQ); Ultrahigh Pressure Chromatography (UPLC); tandem mass spectrometry (MS/MS)
  11. Science. 2020 Oct 16. 370(6514): 364-368
    Murashige D, Jang C, Neinast M, Edwards JJ, Cowan A, Hyman MC, Rabinowitz JD, Frankel DS, Arany Z.
      The heart consumes circulating nutrients to fuel lifelong contraction, but a comprehensive mapping of human cardiac fuel use is lacking. We used metabolomics on blood from artery, coronary sinus, and femoral vein in 110 patients with or without heart failure to quantify the uptake and release of 277 metabolites, including all major nutrients, by the human heart and leg. The heart primarily consumed fatty acids and, unexpectedly, little glucose; secreted glutamine and other nitrogen-rich amino acids, indicating active protein breakdown, at a rate ~10 times that of the leg; and released intermediates of the tricarboxylic acid cycle, balancing anaplerosis from amino acid breakdown. Both heart and leg consumed ketones, glutamate, and acetate in direct proportionality to circulating levels, indicating that availability is a key driver for consumption of these substrates. The failing heart consumed more ketones and lactate and had higher rates of proteolysis. These data provide a comprehensive and quantitative picture of human cardiac fuel use.
  12. Cells. 2020 Oct 08. pii: E2258. [Epub ahead of print]9(10):
    Diehl KL, Vorac J, Hofmann K, Meiser P, Unterweger I, Kuerschner L, Weighardt H, Förster I, Thiele C.
      A high fat Western-style diet leads to hepatic steatosis that can progress to steatohepatitis and ultimately cirrhosis or liver cancer. The mechanism that leads to the development of steatosis upon nutritional overload is complex and only partially understood. Using click chemistry-based metabolic tracing and microscopy, we study the interaction between Kupffer cells and hepatocytes ex vivo. In the early phase of steatosis, hepatocytes alone do not display significant deviations in fatty acid metabolism. However, in co-cultures or supernatant transfer experiments, we show that tumor necrosis factor (TNF) secretion by Kupffer cells is necessary and sufficient to induce steatosis in hepatocytes, independent of the challenge of hepatocytes with elevated fatty acid levels. We further show that free fatty acid (FFA) or lipopolysaccharide are both able to trigger release of TNF from Kupffer cells. We conclude that Kupffer cells act as the primary sensor for both FFA overload and bacterial lipopolysaccharide, integrate these signals and transmit the information to the hepatocyte via TNF secretion. Hepatocytes react by alteration in lipid metabolism prominently leading to the accumulation of triacylglycerols (TAGs) in lipid droplets, a hallmark of steatosis.
    Keywords:  lipids/chemistry; metabolic disease; non-alcoholic fatty liver disease; nutrition/lipids
  13. Adipocyte. 2020 Dec;9(1): 620-625
    Lecoutre S, Maqdasy S, Petrus P, Ludzki A, Couchet M, Mejhert N, Rydén M.
      A chronic low-grade inflammation of white adipose tissue (WAT) is one of the hallmarks of obesity and is proposed to contribute to insulin resistance and type 2 diabetes. Despite this, the causal mechanisms underlying WAT inflammation remain unclear. Based on metabolomic analyses of human WAT, Petrus et al. showed that the amino acid glutamine was the most markedly reduced polar metabolite in the obese state. Reduced glutamine levels in adipocytes induce an increase of Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) levels via induction of glycolysis and the hexosamine biosynthetic pathways. This promotes nuclear O-GlcNAcylation, a posttranslational modification that activates the transcription of pro-inflammatory genes. Conversely, glutamine supplementation in vitro and in vivo, reversed these effects. Altogether, dysregulation of intracellular glutamine metabolism in WAT establishes an epigenetic link between adipocytes and inflammation. This commentary discusses these findings and their possibly therapeutic relevance in relation to insulin resistance and type 2 diabetes.
    Keywords:  adipocyte; amino acids; epigenetics; inflammation; insulin resistance; metabolite
  14. Metabolites. 2020 Oct 09. pii: E400. [Epub ahead of print]10(10):
    Aidaros AA, Sharma C, Langhans CD, G Okun J, Hoffmann GF, Dasouki M, Chakraborty P, Aljasmi F, Y Al-Dirbashi O.
      This article reports a targeted metabolomic method for total plasma fatty acids (FAs) of clinical or nutritional relevance. Thirty-six saturated, unsaturated, or branched-chain FAs with a chain length of C8-C28 were quantified using reversed-phase liquid chromatography-tandem mass spectrometry. FAs in plasma (10 μL) were acid-hydrolyzed, extracted, and derivatized with DAABD-AE (4-[2-(N,N-Dimethylamino)ethylaminosulfonyl]-7-(2-aminoethylamino)-2,1,3-benzoxadiazole) at 60 °C for 1 h. Derivatization resulted in a staggering nine orders of magnitude higher sensitivity compared to underivatized analytes. FAs were measured by multiple-reaction monitoring using stable isotope internal standards. With physiological and pathological analyte levels in mind, linearity was established using spiked plasma. Intra-day (n = 15) and inter-day (n = 20) imprecisions expressed as variation coefficient were ≤10.2% with recovery ranging between 94.5-106.4%. Limits of detection and limit of quantitation ranged between 4.2-14.0 and 15.1-51.3 pmol per injection, respectively. Age-stratified reference intervals were established in four categories: <1 month, 1-12 month, 1-18 year, and >18 year. This method was assessed using samples from patients with disorders affecting FAs metabolism. For the first time, C28:0 and C28:0/C22:0 ratio were evaluated as novel disease biomarkers. This method can potentially be utilized in diagnosing patients with inborn errors of metabolism, chronic disease risk estimation, or nutritional applications.
    Keywords:  derivatization; inborn errors of metabolism; liquid chromatography-tandem mass spectrometry; plasma fatty acids; targeted metabolomics
  15. Molecules. 2020 Oct 12. pii: E4639. [Epub ahead of print]25(20):
    Klupczynska A, Misiura M, Miltyk W, Oscilowska I, Palka J, Kokot ZJ, Matysiak J.
      A growing interest in metabolomics studies of cultured cells requires development not only untargeted methods capable of fingerprinting the complete metabolite profile but also targeted methods enabling the precise and accurate determination of a selected group of metabolites. Proline metabolism affects many crucial processes at the cellular level, including collagen biosynthesis, redox balance, energetic processes as well as intracellular signaling. The study aimed to develop a robust and easy-to-use targeted metabolomics method for the determination of the intracellular level of proline and the other two amino acids closely related to proline metabolism: glutamic acid and arginine. The method employs hydrophilic interaction liquid chromatography followed by high-resolution, accurate-mass mass spectrometry for reliable detection and quantification of the target metabolites in cell lysates. The sample preparation consisted of quenching by the addition of ice-cold methanol and subsequent cell scraping into a quenching solution. The method validation showed acceptable linearity (r > 0.995), precision (%RSD < 15%), and accuracy (88.5-108.5%). Pilot research using HaCaT spontaneously immortalized human keratinocytes in a model for wound healing was performed, indicating the usefulness of the method in studies of disturbances in proline metabolism. The developed method addresses the need to determine the intracellular concentration of three key amino acids and can be used routinely in targeted mammalian cell culture metabolomics research.
    Keywords:  amino acids; cell culture; liquid chromatography-mass spectrometry; metabolomics; proline
  16. Elife. 2020 Oct 12. pii: e59699. [Epub ahead of print]9
    Chantranupong L, Saulnier JL, Wang W, Jones DR, Pacold ME, Sabatini BL.
      Neurons communicate by the activity-dependent release of small-molecule neurotransmitters packaged into synaptic vesicles (SVs). Although many molecules have been identified as neurotransmitters, technical limitations have precluded a full metabolomic analysis of synaptic vesicle content. Here, we present a workflow to rapidly isolate SVs and to interrogate their metabolic contents at high-resolution using mass spectrometry. We validated the enrichment of glutamate in SVs of primary cortical neurons using targeted polar metabolomics. Unbiased and extensive global profiling of SVs isolated from these neurons revealed that the only detectable polar metabolites they contain are the established neurotransmitters glutamate and GABA. In addition, we adapted the approach to enable quick capture of SVs directly from brain tissue and determined the neurotransmitter profiles of diverse brain regions in a cell-type specific manner. The speed, robustness, and precision of this method to interrogate SV contents will facilitate novel insights into the chemical basis of neurotransmission.
    Keywords:  mouse; neuroscience
  17. J Mass Spectrom. 2020 Sep 24. e4659
    Li N, Li J, Desiderio DM, Zhan X.
      The antiparasitic agent ivermectin offers more promises to treat a diverse range of diseases. However, a comprehensive proteomic analysis of ivermectin-treated ovarian cancer (OC) cells has not been performed. This study sought to identify ivermectin-related proteomic profiling and molecular network alterations in human OC cells. Stable isotope labeling with amino acids in cell culture (SILAC)-based quantitative proteomics was used to study the human OC TOV-21G cells. After TOV-21G cells underwent 10 passages in SILAC-labeled growth media, TOV-21G cells were treated with 10 ml of 20 μmol/L ivermectin in cell growing medium for 24 h. The SILAC-labeled proteins were digested with trypsin; tryptic peptides were identified with mass spectrometry (MS). Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was used to mine signaling pathway alterations with ivermectin-related proteins in TOV-21G cells. Gene ontology (GO) analysis was used to explore biological functions of ivermectin-related proteins, including biological processes (BPs), cellular components (CCs), and molecular functions (MFs). The protein-protein interaction network was analyzed with molecular complex detection (MCODE) to identify hub modules. In total, 4,447 proteins were identified in ivermectin-treated TOV-21G cells. KEGG analysis revealed 89 statistically significant signaling pathways. Interestingly, the clustering analysis of these pathways showed that ivermectin was involved in various cancer pathogenesis processes, including modulation of replication, RNA metabolism, and translational machinery. GO analysis revealed 69 statistically significant CCs, 87 MFs, and 62 BPs. Furthermore, MCODE analysis identified five hub modules, including 147 hub molecules. Those hub modules involved ribosomal proteins, RNA-binding proteins, cell-cycle progression-related proteins, proteasome subunits, and minichromosome maintenance proteins. These findings demonstrate that SILAC quantitative proteomics is an effective method to analyze ivermectin-treated cells, provide the first ivermectin-related proteomic profiling and molecular network alterations in human OC cells, and provide deeper insights into molecular mechanisms and functions of ivermectin to inhibit OC cells.
    Keywords:  biomarker; ivermectin; molecular network; ovarian cancer; quantitative proteomics; stable isotope labeling with amino acids in cell culture
  18. Nat Commun. 2020 Oct 16. 11(1): 5251
    Midha MK, Campbell DS, Kapil C, Kusebauch U, Hoopmann MR, Bader SL, Moritz RL.
      Data-independent acquisition (DIA) mass spectrometry, also known as Sequential Window Acquisition of all Theoretical Mass Spectra (SWATH), is a popular label-free proteomics strategy to comprehensively quantify peptides/proteins utilizing mass spectral libraries to decipher inherently multiplexed spectra collected linearly across a mass range. Although there are many spectral libraries produced worldwide, the quality control of these libraries is lacking. We present the DIALib-QC (DIA library quality control) software tool for the systematic evaluation of a library's characteristics, completeness and correctness across 62 parameters of compliance, and further provide the option to improve its quality. We demonstrate its utility in assessing and repairing spectral libraries for correctness, accuracy and sensitivity.
  19. Small GTPases. 2020 Oct 12. 1-8
    De Piano M, Manuelli V, Zadra G, Loda M, Muir G, Chandra A, Morris J, Van Hemelrijck M, Wells CM.
      Fatty acid synthase (FASN) is commonly overexpressed in prostate cancer and associated with tumour progression. FASN is responsible for de novo synthesis of the fatty acid palmitate; the building block for protein palmitoylation. A functional role for FASN in regulating cell proliferation is widely accepted. We recently reported that FASN activity can also mediate prostate cancer HGF-mediated cell motility. Moreover, we found that modulation of FASN expression specifically impacts on the palmitoylation of RhoU. Findings we will describe here. We now report that loss of FASN expression also impairs HGF-mediated cell dissociation responses. Taken together our results provide compelling evidence that FASN activity directly promotes cell migration and supports FASN as a potential therapeutic target in metastatic prostate cancer.
    Keywords:  Fatty acid synthase; RhoU; prostate cancer
  20. Trends Analyt Chem. 2020 Oct 07. 116064
    Stevens KG, Pukala TL.
      Developments in immunoassays and mass spectrometry have independently influenced diagnostic technology. However, both techniques possess unique strengths and limitations, which define their ability to meet evolving requirements for faster, more affordable and more accurate clinical tests. In response, hybrid techniques, which combine the accessibility and ease-of-use of immunoassays with the sensitivity, high throughput and multiplexing capabilities of mass spectrometry are continually being explored. Developments in antibody conjugation methodology have expanded the role of these biomolecules to applications outside of conventional colorimetric assays and histology. Furthermore, the range of different mass spectrometry ionisation and analysis technologies has enabled its successful adaptation as a detection method for numerous clinically relevant immunological assays. Several recent examples of combined mass spectrometry-immunoassay techniques demonstrate the potential of these methods as improved diagnostic tests for several important human diseases. The present challenges are to continue technological advancements in mass spectrometry instrumentation and develop improved bioconjugation methods, which can overcome their existing limitations and demonstrate the clinical significance of these hybrid approaches.
    Keywords:  Antibodies; Bioconjugation; Biomarkers; Diagnostic tests; Electrospray ionisation-mass spectrometry (ESI-MS); Immunoassay; Mass cytometry; Mass spectrometry imaging; Matrix-assisted laser desorption/ionisation (MALDI); Proteomics
  21. Cancers (Basel). 2020 Oct 10. pii: E2910. [Epub ahead of print]12(10):
    Dowdy T, Zhang L, Celiku O, Movva S, Lita A, Ruiz-Rodado V, Gilbert MR, Larion M.
      In addition to providing integrity to cellular structure, the various classes of lipids participate in a multitude of functions including secondary messengers, receptor stimulation, lymphocyte trafficking, inflammation, angiogenesis, cell migration, proliferation, necrosis and apoptosis, thus highlighting the importance of understanding their role in the tumor phenotype. In the context of IDH1mut glioma, investigations focused on metabolic alterations involving lipidomics' present potential to uncover novel vulnerabilities. Herein, a detailed lipidomic analysis of the sphingolipid metabolism was conducted in patient-derived IDH1mut glioma cell lines, as well as model systems, with the of identifying points of metabolic vulnerability. We probed the effect of decreasing D-2HG levels on the sphingolipid pathway, by treating these cell lines with an IDH1mut inhibitor, AGI5198. The results revealed that N,N-dimethylsphingosine (NDMS), sphingosine C17 and sphinganine C18 were significantly downregulated, while sphingosine-1-phosphate (S1P) was significantly upregulated in glioma cultures following suppression of IDH1mut activity. We exploited the pathway using a small-scale, rational drug screen and identified a combination that was lethal to IDHmut cells. Our work revealed that further addition of N,N-dimethylsphingosine in combination with sphingosine C17 triggered a dose-dependent biostatic and apoptotic response in a panel of IDH1mut glioma cell lines specifically, while it had little effect on the IDHWT cells probed here. To our knowledge, this is the first study that shows how altering the sphingolipid pathway in IDH1mut gliomas elucidates susceptibility that can arrest proliferation and initiate subsequent cellular death.
    Keywords:  IDHmut gliomas; N,N-dimethylsphingosine; sphinganine; sphingolipid metabolism; sphingosine
  22. JCI Insight. 2020 Oct 15. pii: 143003. [Epub ahead of print]
    Toptan T, Cantrell PS, Zeng X, Liu Y, Sun M, Yates NA, Chang Y, Moore PS.
      The challenge of discovering a completely new human tumor virus of unknown phylogeny or sequence depends on detecting viral molecules and differentiating them from host molecules in the virus-associated neoplasm. We developed differential peptide subtraction (DPS) using differential mass-spectrometry (dMS) followed by targeted analysis to facilitate this discovery. We validated this approach by analyzing Merkel cell carcinoma (MCC), an aggressive human neoplasm, in which ~80% of cases are caused by the human Merkel cell polyomavirus (MCV). Approximately 20% of MCC have a high mutational burden and are negative for MCV, but are microscopically indistinguishable from virus positive cases. Using 23 (12 MCV positive, 11 MCV negative) formalin-fixed MCC, DPS identified both viral and human biomarkers (MCV Large T antigen, CDKN2AIP, SERPINB5 and TRIM29) that discriminates MCV positive and negative MCC. Statistical analysis of 498,131 dMS features not matching the human proteome by DPS revealed 562 (0.11%) to be up-regulated in virus-infected samples. Remarkably, four (20%) of the top 20 candidate MS spectra originated from MCV T oncoprotein peptides and confirmed by reverse translation degenerate oligonucleotide sequencing. DPS is a robust proteomic approach to identify novel viral sequences in infectious tumors when nucleic acid-based methods are not feasible.
    Keywords:  Cancer; Proteomics; Virology