bims-mascan Biomed News
on Mass spectrometry in cancer research
Issue of 2020‒08‒16
eighteen papers selected by
Giovanny Rodriguez Blanco
University of Edinburgh


  1. Nat Commun. 2020 Aug 07. 11(1): 3978
      Methionine restriction, a dietary regimen that protects against metabolic diseases and aging, represses cancer growth and improves cancer therapy. However, the response of different cancer cells to this nutritional manipulation is highly variable, and the molecular determinants of this heterogeneity remain poorly understood. Here we report that hepatocyte nuclear factor 4α (HNF4α) dictates the sensitivity of liver cancer to methionine restriction. We show that hepatic sulfur amino acid (SAA) metabolism is under transcriptional control of HNF4α. Knocking down HNF4α or SAA enzymes in HNF4α-positive epithelial liver cancer lines impairs SAA metabolism, increases resistance to methionine restriction or sorafenib, promotes epithelial-mesenchymal transition, and induces cell migration. Conversely, genetic or metabolic restoration of the transsulfuration pathway in SAA metabolism significantly alleviates the outcomes induced by HNF4α deficiency in liver cancer cells. Our study identifies HNF4α as a regulator of hepatic SAA metabolism that regulates the sensitivity of liver cancer to methionine restriction.
    DOI:  https://doi.org/10.1038/s41467-020-17818-w
  2. Cell Metab. 2020 Jul 31. pii: S1550-4131(20)30366-1. [Epub ahead of print]
      Dysregulated metabolism is a key driver of maladaptive tumor-reactive T lymphocytes within the tumor microenvironment. Actionable targets that rescue the effector activity of antitumor T cells remain elusive. Here, we report that the Sirtuin-2 (Sirt2) NAD+-dependent deacetylase inhibits T cell metabolism and impairs T cell effector functions. Remarkably, upregulation of Sirt2 in human tumor-infiltrating lymphocytes (TILs) negatively correlates with response to TIL therapy in advanced non-small-cell lung cancer. Mechanistically, Sirt2 suppresses T cell metabolism by targeting key enzymes involved in glycolysis, tricarboxylic acid-cycle, fatty acid oxidation, and glutaminolysis. Accordingly, Sirt2-deficient murine T cells exhibit increased glycolysis and oxidative phosphorylation, resulting in enhanced proliferation and effector functions and subsequently exhibiting superior antitumor activity. Importantly, pharmacologic inhibition of Sirt2 endows human TILs with these superior metabolic fitness and effector functions. Our findings unveil Sirt2 as an unexpected actionable target for reprogramming T cell metabolism to augment a broad spectrum of cancer immunotherapies.
    Keywords:  FAO; OxPhos; Sirt2; T cells; antitumor immunity; deacetylase; dysregulated metabolism; glutaminolysis; glycolysis; metabolic checkpoint
    DOI:  https://doi.org/10.1016/j.cmet.2020.07.008
  3. Nat Chem Biol. 2020 Aug 10.
      Cancer cells rewire their metabolism and rely on endogenous antioxidants to mitigate lethal oxidative damage to lipids. However, the metabolic processes that modulate the response to lipid peroxidation are poorly defined. Using genetic screens, we compared metabolic genes essential for proliferation upon inhibition of cystine uptake or glutathione peroxidase-4 (GPX4). Interestingly, very few genes were commonly required under both conditions, suggesting that cystine limitation and GPX4 inhibition may impair proliferation via distinct mechanisms. Our screens also identify tetrahydrobiopterin (BH4) biosynthesis as an essential metabolic pathway upon GPX4 inhibition. Mechanistically, BH4 is a potent radical-trapping antioxidant that protects lipid membranes from autoxidation, alone and in synergy with vitamin E. Dihydrofolate reductase catalyzes the regeneration of BH4, and its inhibition by methotrexate synergizes with GPX4 inhibition. Altogether, our work identifies the mechanism by which BH4 acts as an endogenous antioxidant and provides a compendium of metabolic modifiers of lipid peroxidation.
    DOI:  https://doi.org/10.1038/s41589-020-0613-y
  4. Front Oncol. 2020 ;10 1197
      Immune checkpoint inhibitors (ICIs) targeting immune checkpoint proteins, such as CTLA-4 and PD-1/PD-L1, have demonstrated remarkable and durable clinical responses in various cancer types. However, a considerable number of patients receiving ICIs eventually experience a relapse due to diverse resistance mechanisms. As a result, there have been increasing research efforts to elucidate the molecular mechanisms behind resistance to ICIs and improve patient outcomes. There is growing evidence that the dysregulated metabolic activity of tumor cells generates an immunosuppressive tumor microenvironment (TME) that orchestrates an impaired anti-tumor immune response. Notably, the immunosuppressive TME is characterized by nutrient shortage, hypoxia, an acidic extracellular milieu, and abundant immunosuppressive molecules. A detailed understanding of the TME remains a major challenge in mounting a more effective anti-tumor immune response. Herein, we discuss how tumor cells reprogram metabolism to modulate a pro-tumor TME, driving disease progression and immune evasion; in particular, we highlight potential approaches to target metabolic vulnerabilities in the context of anti-tumor immunotherapy.
    Keywords:  cancer cell metabolite; cancer metabolism; immune checkpoint inhibitors; immune evasion; tumor microenvironment
    DOI:  https://doi.org/10.3389/fonc.2020.01197
  5. Nature. 2020 Aug 12.
      Serine, glycine and other nonessential amino acids are critical for tumour progression, and strategies to limit their availability are emerging as potential therapies for cancer1-3. However, the molecular mechanisms driving this response remain unclear and the effects on lipid metabolism are relatively unexplored. Serine palmitoyltransferase (SPT) catalyses the de novo biosynthesis of sphingolipids but also produces noncanonical 1-deoxysphingolipids when using alanine as a substrate4,5. Deoxysphingolipids accumulate in the context of mutations in SPTLC1 or SPTLC26,7-or in conditions of low serine availability8,9-to drive neuropathy, and deoxysphinganine has previously been investigated as an anti-cancer agent10. Here we exploit amino acid metabolism and the promiscuity of SPT to modulate the endogenous synthesis of toxic deoxysphingolipids and slow tumour progression. Anchorage-independent growth reprogrammes a metabolic network involving serine, alanine and pyruvate that drives the endogenous synthesis and accumulation of deoxysphingolipids. Targeting the mitochondrial pyruvate carrier promotes alanine oxidation to mitigate deoxysphingolipid synthesis and improve spheroid growth, similar to phenotypes observed with the direct inhibition of SPT or ceramide synthesis. Restriction of dietary serine and glycine potently induces the accumulation of deoxysphingolipids while decreasing tumour growth in xenograft models in mice. Pharmacological inhibition of SPT rescues xenograft growth in mice fed diets restricted in serine and glycine, and the reduction of circulating serine by inhibition of phosphoglycerate dehydrogenase (PHGDH) leads to the accumulation of deoxysphingolipids and mitigates tumour growth. The promiscuity of SPT therefore links serine and mitochondrial alanine metabolism to membrane lipid diversity, which further sensitizes tumours to metabolic stress.
    DOI:  https://doi.org/10.1038/s41586-020-2609-x
  6. Cell Metab. 2020 Aug 10. pii: S1550-4131(20)30371-5. [Epub ahead of print]
      Mammalian organs are nourished by nutrients carried by the blood circulation. These nutrients originate from diet and internal stores, and can undergo various interconversions before their eventual use as tissue fuel. Here we develop isotope tracing, mass spectrometry, and mathematical analysis methods to determine the direct sources of circulating nutrients, their interconversion rates, and eventual tissue-specific contributions to TCA cycle metabolism. Experiments with fifteen nutrient tracers enabled extensive accounting for both circulatory metabolic cycles and tissue TCA inputs, across fed and fasted mice on either high-carbohydrate or ketogenic diet. We find that a majority of circulating carbon flux is carried by two major cycles: glucose-lactate and triglyceride-glycerol-fatty acid. Futile cycling through these pathways is prominent when dietary content of the associated nutrients is low, rendering internal metabolic activity robust to food choice. The presented in vivo flux quantification methods are broadly applicable to different physiological and disease states.
    Keywords:  TCA cycle; circulating metabolites; energy metabolism; in vivo flux quantification; isotope tracing; ketogenic diet; metabolic cycling
    DOI:  https://doi.org/10.1016/j.cmet.2020.07.013
  7. Prog Lipid Res. 2020 Aug 10. pii: S0163-7827(20)30035-7. [Epub ahead of print] 101055
      Over the past decade, the study of metabolic abnormalities in cancer cells has risen dramatically. Cancer cells can thrive in challenging environments, be it the hypoxic and nutrient-deplete tumor microenvironment or a distant tissue following metastasis. The ways in which cancer cells utilize lipids are often influenced by the complex interactions within the tumor microenvironment and adjacent stroma. Adipocytes can be activated by cancer cells to lipolyze their triglyceride stores, delivering secreted fatty acids to cancer cells for uptake through numerous fatty acid transporters. Cancer-associated fibroblasts are also implicated in lipid secretion for cancer cell catabolism and lipid signaling leading to activation of mitogenic and migratory pathways. As these cancer-stromal interactions are exacerbated during tumor progression, fatty acids secreted into the microenvironment can impact infiltrating immune cell function and phenotype. Lipid metabolic abnormalities such as increased fatty acid oxidation and de novo lipid synthesis can provide survival advantages for the tumor to resist chemotherapeutic and radiation treatments and alleviate cellular stresses involved in the metastatic cascade. In this review, we highlight recent literature that demonstrates how lipids can shape each part of the cancer lifecycle and show that there is significant potential for therapeutic intervention surrounding lipid metabolic and signaling pathways.
    Keywords:  Immune Response; Lipid Metabolism; Lipid Signaling; Metastasis; Radiation Therapy; Tumor Microenvironment
    DOI:  https://doi.org/10.1016/j.plipres.2020.101055
  8. Front Neurosci. 2020 ;14 783
      Medium-chain fatty acids (MCFA) are dietary components with a chain length ranging from 6 to 12 carbon atoms. MCFA can cross the blood-brain barrier and in the brain can be oxidized through mitochondrial β-oxidation. As components of ketogenic diets, MCFA have demonstrated beneficial effects on different brain diseases, such as traumatic brain injury, Alzheimer's disease, drug-resistant epilepsy, diabetes, and cancer. Despite the interest in MCFA effects, not much information is available about MCFA metabolism in the brain. In this study, with a gas chromatography-mass spectrometry (GC-MS)-based metabolomics approach, coupled with multivariate data analyses, we followed the metabolic changes of U87MG glioblastoma cells after the addition of octanoic (C8), or decanoic (C10) acids for 24 h. Our analysis highlighted significant differences in the metabolism of U87MG cells after the addition of C8 or C10 and identified several metabolites whose amount changed between the two groups of treated cells. Overall, metabolic pathway analyses suggested the citric acid cycle, Warburg effect, glutamine/glutamate metabolism, and ketone body metabolism as pathways influenced by C8 or C10 addition to U87MG cells. Our data demonstrated that, while C8 affected mitochondrial metabolism resulting in increased ketone body production, C10 mainly influenced cytosolic pathways by stimulating fatty acid synthesis. Moreover, glutamine might be the main substrate to support fatty acids synthesis in C10-treated cells. In conclusion, we identified a metabolic signature associated with C8 or C10 addition to U87MG cells that can be used to decipher metabolic responses of glioblastoma cells to MCFA treatment.
    Keywords:  citric acid cycle; decanoic acid; lipid synthesis; metabolomics; octanoic acid
    DOI:  https://doi.org/10.3389/fnins.2020.00783
  9. Cancer Cell. 2020 Jul 30. pii: S1535-6108(20)30369-X. [Epub ahead of print]
      H3K27M diffuse intrinsic pontine gliomas (DIPGs) are fatal and lack treatments. They mainly harbor H3.3K27M mutations resulting in H3K27me3 reduction. Integrated analysis in H3.3K27M cells, tumors, and in vivo imaging in patients showed enhanced glycolysis, glutaminolysis, and tricarboxylic acid cycle metabolism with high alpha-ketoglutarate (α-KG) production. Glucose and/or glutamine-derived α-KG maintained low H3K27me3 in H3.3K27M cells, and inhibition of key enzymes in glycolysis or glutaminolysis increased H3K27me3, altered chromatin accessibility, and prolonged survival in animal models. Previous studies have shown that mutant isocitrate-dehydrogenase (mIDH)1/2 glioma cells convert α-KG to D-2-hydroxyglutarate (D-2HG) to increase H3K27me3. Here, we show that H3K27M and IDH1 mutations are mutually exclusive and experimentally synthetic lethal. Overall, we demonstrate that H3.3K27M and mIDH1 hijack a conserved and critical metabolic pathway in opposing ways to maintain their preferred epigenetic state. Consequently, interruption of this metabolic/epigenetic pathway showed potent efficacy in preclinical models, suggesting key therapeutic targets for much needed treatments.
    Keywords:  D-2HG; DIPG; H3K27me3; IDH mutation; epigenetics; glutaminolysis; glycolysis; histone methylation; histone mutation; metabolism; α-KG
    DOI:  https://doi.org/10.1016/j.ccell.2020.07.008
  10. Mol Cell Proteomics. 2020 Aug 12. pii: mcp.P120.001997. [Epub ahead of print]
      High-speed analysis of large (prote)omics sample sets at the rate of thousands or millions of samples per day on a single platform has been a challenge since the beginning of proteomics. For many years, electrospray ionisation (ESI)-based mass spectrometry (MS) methods have dominated proteomics due to their high sensitivity and great depth in analysing complex proteomes. However, despite improvements in speed, ESI-based MS methods are fundamentally limited by their sample introduction, which excludes off-line sample preparation/fractionation due to the time required to switch between individual samples/sample fractions, and therefore being dependent on the speed of on-line sample preparation methods such as liquid chromatography. Laser-based ionisation methods have the advantage of moving from one sample to the next without these limitations, being mainly restricted by the speed of modern sample stages, i.e. 10 ms or less between samples. This speed matches the data acquisition speed of modern high-performing mass spectrometers while the pulse repetition rate of the lasers (>1 kHz) provides a sufficient number of desorption/ionisation events for successful ion signal detection from each sample at the above speed of the sample stages. Other advantages of laser-based ionisation methods include the generally higher tolerance to sample additives and contamination compared to ESI MS, and the contact-less and pulsed nature of the laser used for desorption, reducing the risk of cross-contamination. Furthermore, new developments in matrix-assisted laser desorption/ionisation (MALDI) have expanded its analytical capabilities, now being able to fully exploit high-performing hybrid mass analysers and their strengths in sensitivity and MS/MS analysis by generating an ESI-like stable yield of multiply charged analyte ions. Thus, these new developments and the intrinsically high speed of laser-based methods now provide a good basis for tackling extreme sample analysis speed in the omics.
    Keywords:  High Throughput Screening; MALDI; Mass Spectrometry; Omics; Personalized medicine; Systems biology*; large-scale analysis; mass spectrometry profiling
    DOI:  https://doi.org/10.1074/mcp.P120.001997
  11. Cell Biol Int. 2020 Aug 10.
      Colorectal cancer (CRC) is one of the most pressing health issues in today's society. As such, it is imperative that the scientific community devise effective methods to inhibit the proliferation and metastasis of CRC cells. Ferroptosis is a recently-discovered regulatory cell death mode mainly manifested by dysregulation of cellular iron metabolism and mitochondrial lipid peroxidation. ACADSB is a member of the acyl-CoA dehydrogenase. This study finds that ACADSB is lowly expressed in CRC tissues. Its expression is negatively correlated with N- and M-stage CRC, but positively correlated with the overall survival rate of CRC patients. In addition, it finds that ACADSB is found in the mitochondria of cells. Overexpression of ACADSB inhibits CRC cell migration, invasion, and proliferation, while ACADSB knockdown has the opposite effect. More importantly, the study finds that ACADSB negatively regulates expression of glutathione reductase (GSR) and glutathione peroxidase 4 (GPX4), the two main enzymes responsible for clearing glutathione (GSH) in CRC cells. ACADSB overexpression enhances the concentration of malondialdehyde (MDA), Fe+, superoxide dismutase (SOD), and lipid peroxidation in CRC cells, but reduces the concentration of GSH. This is significant, as all of these are important indicators of ferroptosis. Evaluating the data as a whole, this paper speculates that ACADSB affects CRC cell migration, invasion, and proliferation by regulating CRC cell ferroptosis. This article is protected by copyright. All rights reserved.
    Keywords:  Cancer; Cell death; Cell migration; Enzymes; Metabolism; Tumor suppressor
    DOI:  https://doi.org/10.1002/cbin.11443
  12. Methods Mol Biol. 2021 ;2187 27-35
      Lipid rafts are microdomains on plasma membrane that contain high levels of cholesterol and sphingolipids. Because of the detergent-resistant property of lipid rafts, lipid rafts isolated by methods that use detergents frequently yield different results. Artifacts can also be introduced through the use of detergents. These limitations could be overcome with a detergent-free method which eliminates possible artificial influences. Importantly, lipid rafts prepared with a detergent-free method is more compatible to mass spectrometric analysis since the ion suppression effect is largely reduced.This chapter describes a detergent-free two-step method for preparation of lipid rafts. Firstly, a purified plasma membrane fraction is prepared from cells by sedimentation of the postnuclear supernatant (PNS) in a Percoll gradient. Secondly, the as-prepared plasma membranes are sonicated to release lipid rafts which are further isolated by flotation in a continuous gradient of Optiprep solution. Then, we introduce a typical shotgun lipidomics workflow that can be used as a cost-effective and relatively high throughput method to determine the lipidomes of lipid rafts.The method also makes an easy start for lipidomics studies.
    Keywords:  Detergent-free preparation; Lipid rafts; Mass spectrometry; Plasma membrane; Shotgun lipidomics
    DOI:  https://doi.org/10.1007/978-1-0716-0814-2_2
  13. J Mol Histol. 2020 Aug 13.
      Severe aortic stenosis (AS) is prevalent in adults ≥ 65 years, a significant cause of morbidity and mortality, with no medical therapy. Lipid and proteomic alterations of human AS tissue were determined using mass spectrometry imaging (MSI) and liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) to understand histopathology, potential biomarkers of disease, and progression from non-calcified to calcified phenotype. A reproducible MSI method was developed using healthy murine aortic valves (n = 3) and subsequently applied to human AS (n = 2). Relative lipid levels were spatially mapped and associated with different microdomains. Proteomics for non-calcified and calcified microdomains were performed to ascertain differences in expression. Increased pro-osteogenic and inflammatory lysophosphatidylcholine (LPC) 16:0 and 18:0 were co-localized with calcified microdomains. Proteomics analysis identified differential patterns in calcified microdomains with high LPC and low cholesterol as compared to non-calcified microdomains with low LPC and high cholesterol. Calcified microdomains had higher levels of: apolipoproteins (Apo) B-100 (p < 0.001) and Apo A-IV (p < 0.001), complement C3 and C4-B (p < 0.001), C5 (p = 0.007), C8 beta chain (p = 0.013) and C9 (p = 0.010), antithrombotic proteins alpha-2-macroglobulin (p < 0.0001) and antithrombin III (p = 0.002), and higher anti-calcific fetuin-A (p = 0.02), while the osteoblast differentiating factor transgelin (p < 0.0001), extracellular matrix proteins versican, prolargin, and lumican ( p < 0.001) and regulator protein complement factor H (p < 0.001) were higher in non-calcified microdomains. A combined lipidomic and proteomic approach provided insight into factors potentially contributing to progression from non-calcified to calcific disease in severe AS. Additional studies of these candidates and protein networks could yield new targets for slowing progression of AS.
    Keywords:  Calcific aortic valve stenosis; Cholesterol; Mass spectrometry imaging; Proteomics
    DOI:  https://doi.org/10.1007/s10735-020-09905-5
  14. Cancer Metab. 2020 ;8 9
      Background: Glioblastoma (GBM) are highly heterogeneous on the cellular and molecular basis. It has been proposed that glutamine metabolism of primary cells established from human tumors discriminates aggressive mesenchymal GBM subtype to other subtypes.Methods: To study glutamine metabolism in vivo, we used a human orthotopic mouse model for GBM. Tumors evolving from the implanted primary GBM cells expressing different molecular signatures were analyzed using mass spectrometry for their metabolite pools and enrichment in carbon 13 (13C) after 13C-glutamine infusion.
    Results: Our results showed that mesenchymal GBM tumors displayed increased glutamine uptake and utilization compared to both control brain tissue and other GBM subtypes. Furthermore, both glutamine synthetase and transglutaminase-2 were expressed accordingly to GBM metabolic phenotypes.
    Conclusion: Thus, our results outline the specific enhanced glutamine flux in vivo of the aggressive mesenchymal GBM subtype.
    Keywords:  Glioblastoma; Glutamine; Human primary cells; Mesenchymal; Metabolism; Molecular subtype; Orthotopic model
    DOI:  https://doi.org/10.1186/s40170-020-00215-8
  15. Nat Commun. 2020 Aug 13. 11(1): 4046
      2-oxoglutarate (2-OG or α-ketoglutarate) relates mitochondrial metabolism to cell function by modulating the activity of 2-OG dependent dioxygenases involved in the hypoxia response and DNA/histone modifications. However, metabolic pathways that regulate these oxygen and 2-OG sensitive enzymes remain poorly understood. Here, using CRISPR Cas9 genome-wide mutagenesis to screen for genetic determinants of 2-OG levels, we uncover a redox sensitive mitochondrial lipoylation pathway, dependent on the mitochondrial hydrolase ABHD11, that signals changes in mitochondrial 2-OG metabolism to 2-OG dependent dioxygenase function. ABHD11 loss or inhibition drives a rapid increase in 2-OG levels by impairing lipoylation of the 2-OG dehydrogenase complex (OGDHc)-the rate limiting step for mitochondrial 2-OG metabolism. Rather than facilitating lipoate conjugation, ABHD11 associates with the OGDHc and maintains catalytic activity of lipoyl domain by preventing the formation of lipoyl adducts, highlighting ABHD11 as a regulator of functional lipoylation and 2-OG metabolism.
    DOI:  https://doi.org/10.1038/s41467-020-17862-6
  16. Cell Death Dis. 2020 Aug 13. 11(8): 616
      BH3-mimetics are a new class of anti-cancer drugs that inhibit anti-apoptotic Bcl-2 proteins. In doing so, BH3-mimetics sensitise to cell death. Venetoclax is a potent, BCL-2 selective BH3-mimetic that is clinically approved for use in chronic lymphocytic leukaemia. Venetoclax has also been shown to inhibit mitochondrial metabolism, this is consistent with a proposed role for BCL-2 in metabolic regulation. We used venetoclax to understand BCL-2 metabolic function. Similar to others, we found that venetoclax inhibited mitochondrial respiration. In addition, we also found that venetoclax impairs TCA cycle activity leading to activation of reductive carboxylation. Importantly, the metabolic effects of venetoclax were independent of cell death because they were also observed in apoptosis-resistant BAX/BAK-deficient cells. However, unlike venetoclax treatment, inhibiting BCL-2 expression had no effect on mitochondrial respiration. Unexpectedly, we found that venetoclax also inhibited mitochondrial respiration and the TCA cycle in BCL-2 deficient cells and in cells lacking all anti-apoptotic BCL-2 family members. Investigating the basis of this off-target effect, we found that venetoclax-induced metabolic reprogramming was dependent upon the integrated stress response and ATF4 transcription factor. These data demonstrate that venetoclax affects cellular metabolism independent of BCL-2 inhibition. This off-target metabolic effect has potential to modulate venetoclax cytotoxicity.
    DOI:  https://doi.org/10.1038/s41419-020-02867-2
  17. Sci Rep. 2020 Aug 07. 10(1): 13368
      Lipidomic analyses address the problem of characterizing the lipid components of given cells, tissues and organisms by means of chromatographic separations coupled to high-resolution, tandem mass spectrometry analyses. A number of software tools have been developed to help in the daunting task of mass spectrometry signal processing and cleaning, peak analysis and compound identification, and a typical finished lipidomic dataset contains hundreds to thousands of individual molecular lipid species. To provide researchers without a specific technical expertise in mass spectrometry the possibility of broadening the exploration of lipidomic datasets, we have developed liputils, a Python module that specializes in the extraction of fatty acid moieties from individual molecular lipids. There is no prerequisite data format, as liputils extracts residues from RefMet-compliant textual identifiers and from annotations of other commercially available services. We provide three examples of real-world data processing with liputils, as well as a detailed protocol on how to readily process an existing dataset that can be followed with basic informatics skills.
    DOI:  https://doi.org/10.1038/s41598-020-70259-9
  18. Nat Commun. 2020 Aug 13. 11(1): 4056
      Autophagy has been associated with oncogenesis with one of its emerging key functions being its contribution to the metabolism of tumors. Therefore, deciphering the mechanisms of how autophagy supports tumor cell metabolism is essential. Here, we demonstrate that the inhibition of autophagy induces an accumulation of lipid droplets (LD) due to a decrease in fatty acid β-oxidation, that leads to a reduction of oxidative phosphorylation (OxPHOS) in acute myeloid leukemia (AML), but not in normal cells. Thus, the autophagic process participates in lipid catabolism that supports OxPHOS in AML cells. Interestingly, the inhibition of OxPHOS leads to LD accumulation with the concomitant inhibition of autophagy. Mechanistically, we show that the disruption of mitochondria-endoplasmic reticulum (ER) contact sites (MERCs) phenocopies OxPHOS inhibition. Altogether, our data establish that mitochondria, through the regulation of MERCs, controls autophagy that, in turn finely tunes lipid degradation to fuel OxPHOS supporting proliferation and growth in leukemia.
    DOI:  https://doi.org/10.1038/s41467-020-17882-2