bims-malgli Biomed News
on Biology of malignant gliomas
Issue of 2021‒07‒18
23 papers selected by
Oltea Sampetrean
Keio University

  1. Neuro Oncol. 2021 Jul 14. pii: noab175. [Epub ahead of print]
      BACKGROUND: Tumor-specific metabolic processes essential for cell survival are promising targets to potentially circumvent intratumoral heterogeneity, a major resistance factor in gliomas. Tumor cells preferentially using nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the salvage pathway for synthesis of NAD, a critical cofactor for diverse biological processes including cellular redox reactions, energy metabolism and biosynthesis. NAMPT is overexpressed in most malignancies, including gliomas, and can serve as a tumor-specific target.METHODS: Effects of pharmacological inhibition of NAMPT on cellular oxygen consumption rate, extracellular acidification, mitochondrial respiration, cell proliferation, invasion and survival were assessed through in vitro and ex vivo studies on genetically heterogeneous glioma cell lines, glioma stem-like cells (GSCs) and mouse and human ex vivo organotypic glioma slice culture models.
    RESULTS: Pharmacological inhibition of the NAD salvage biosynthesis pathway using a highly specific inhibitor, KPT-9274, resulted in reduction of NAD levels and related downstream metabolites, inhibited proliferation, and induced apoptosis in vitro in cell lines and ex vivo in human glioma tissue. These effects were mediated by mitochondrial dysfunction, DNA damage and increased oxidative stress leading to apoptosis in GSCs independent of genotype, IDH status or MGMT promoter methylation status. Conversely, NAMPT inhibition had minimal in vitro effects on normal human astrocytes (NHA) and no apparent in vivo toxicity in non-tumor-bearing mice.
    CONCLUSIONS: Pharmacological NAMPT inhibition by KPT9274 potently targeted genetically heterogeneous gliomas by activating mitochondrial dysfunction. Our preclinical results provide a rationale for targeting the NAMPT-dependent alternative NAD biosynthesis pathway as a novel clinical strategy against gliomas.
    Keywords:  Gliomas; KPT-9274; NAD; NAMPT; metabolism
  2. Sci Rep. 2021 Jul 13. 11(1): 14377
      We evaluate the topographic distribution of diffuse midline gliomas and hemispheric high-grade gliomas in children with respect to their normal gene expression patterns and pathologic driver mutation patterns. We identified 19 pediatric patients with diffuse midline or high-grade glioma with preoperative MRI from tumor board review. 7 of these had 500 gene panel mutation testing, 11 patients had 50 gene panel mutation testing and one 343 gene panel testing from a separate institution were included as validation set. Tumor imaging features and gene expression patterns were analyzed using Allen Brain Atlas. Twelve patients had diffuse midline gliomas and seven had hemispheric high-grade gliomas. Three diffuse midline gliomas had the K27M mutation in the tail of histone H3 protein. All patients undergoing 500 gene panel testing had additional mutations, the most common being in ACVR1, PPM1D, and p53. Hemispheric high-grade gliomas had either TP53 or IDH1 mutation and diffuse midline gliomas had H3 K27M-mutation. Gene expression analysis in normal brains demonstrated that genes mutated in diffuse midline gliomas had higher expression along midline structures as compared to the cerebral hemispheres. Our study suggests that topographic location of pediatric diffuse midline gliomas and hemispheric high-grade gliomas correlates with driver mutations of tumor to the endogenous gene expression in that location. This correlation suggests that cellular state that is required for increased gene expression predisposes that location to mutations and defines the driver mutations within tumors that arise from that region.
  3. Neuro Oncol. 2021 Jul 13. pii: noab153. [Epub ahead of print]
      BACKGROUND: Gliomas are the most common primary brain tumors and are universally fatal. Mutations in the isocitrate dehydrogenase genes (IDH1 and IDH2) define a distinct glioma subtype associated with an immunosuppressive tumor microenvironment. Mechanisms underlying systemic immunosuppression in IDH mutant (mutIDH) gliomas are largely unknown. Here, we define genotype-specific local and systemic tumor immunomodulatory functions of tumor-derived glioma exosomes (TEX).METHODS: TEX produced by human and murine wildtype and mutant IDH glioma cells (wtIDH and mutIDH, respectively) were isolated by size exclusion chromatography (SEC). TEX morphology, size, quantity, molecular profiles and biodistribution were characterized. TEX were injected into naive and tumor-bearing mice, and the local and systemic immune microenvironment composition was characterized.
    RESULTS: Using in vitro and in vivo glioma models, we show that mutIDH TEX are more numerous, possess distinct morphological features and are more immunosuppressive than wtIDH TEX. mutIDH TEX cargo mimics their parental cells, and induces systemic immune suppression in naive and tumor-bearing mice. TEX derived from mutIDH gliomas and injected into wtIDH tumor-bearing mice reduce tumor-infiltrating effector lymphocytes, dendritic cells and macrophages, and increase circulating monocytes. Astonishingly, mutIDH TEX injected into brain tumor-bearing syngeneic mice accelerate tumor growth and increase mortality compared with wtIDH TEX.
    CONCLUSIONS: Targeting of mutIDH TEX represents a novel therapeutic approach in gliomas.
    Keywords:  exosomes; glioma; immune suppression; isocitrate dehydrogenase (IDH); small extracellular vesicles
  4. Front Oncol. 2021 ;11 650316
      Despite current strategies combining surgery, radiation, and chemotherapy, glioblastoma (GBM) is the most common and aggressive malignant primary brain tumor in adults. Tumor location plays a key role in the prognosis of patients, with GBM tumors located in close proximity to the lateral ventricles (LVs) resulting in worse survival expectancy and higher incidence of distal recurrence. Though the reason for worse prognosis in these patients remains unknown, it may be due to proximity to the subventricular zone (SVZ) neurogenic niche contained within the lateral wall of the LVs. We present a novel rodent model to analyze the bidirectional signaling between GBM tumors and cells contained within the SVZ. Patient-derived GBM cells expressing GFP and luciferase were engrafted at locations proximal, intermediate, and distal to the LVs in immunosuppressed mice. Mice were either sacrificed after 4 weeks for immunohistochemical analysis of the tumor and SVZ or maintained for survival analysis. Analysis of the GFP+ tumor bulk revealed that GBM tumors proximal to the LV show increased levels of proliferation and tumor growth than LV-distal counterparts and is accompanied by decreased median survival. Conversely, numbers of innate proliferative cells, neural stem cells (NSCs), migratory cells and progenitors contained within the SVZ are decreased as a result of GBM proximity to the LV. These results indicate that our rodent model is able to accurately recapitulate several of the clinical aspects of LV-associated GBM, including increased tumor growth and decreased median survival. Additionally, we have found the neurogenic and cell division process of the SVZ in these adult mice is negatively influenced according to the presence and proximity of the tumor mass. This model will be invaluable for further investigation into the bidirectional signaling between GBM and the neurogenic cell populations of the SVZ.
    Keywords:  cancer stem cell (CSC); glioblastoma; lateral ventricle; neural stem cell (NSC); neurogenic niche; subventricular zone (SVZ)
  5. Brain Tumor Pathol. 2021 Jul 15.
      The revised 4th edition of the 2016 World Health Organization Classification of Tumors of the Central Nervous System (2016 CNS WHO) has introduced the integrated diagnostic classification that combines molecular and histological diagnoses for diffuse gliomas. In this study, we evaluated the molecular alterations for consecutive 300 diffuse glioma cases (grade 2, 56; grade 3, 62; grade 4, 182) based on this classification. Mutations in the isocitrate dehydrogenase (IDH) genes were common in lower grade glioma (LGG: grade2-3), and when combined with 1p/19q status, LGGs could be stratified into three groups except for four cases (Astrocytoma, IDH-mutant: 44; Oligodendroglioma, IDH-mutant and 1p/19q codeleted: 37; Astrocytoma, IDH-wildtype: 33). 1p/19q-codeleted oligodendrogliomas were clinically the most favorable subgroup even with upfront chemotherapy. In contrast, IDH-wildtype astrocytomas had a relatively worse prognosis; however, this subgroup was more heterogeneous. Of this subgroup, 11 cases had TERT promoter (pTERT) mutation with shorter overall survival than 12 pTERT-wildtype cases. Additionally, a longitudinal analysis indicated pTERT mutation as early molecular event for gliomagenesis. Therefore, pTERT mutation is critical for the diagnosis of molecular glioblastoma (WHO grade 4), regardless of histological findings, and future treatment strategy should be considered based on the precise molecular analysis.
    Keywords:  1p/19q codeletion; Glioma; IDH; TERT promoter; WHO classification
  6. Neurooncol Adv. 2021 Jan-Dec;3(1):3(1): vdab057
      Background: Mutations in isocitrate dehydrogenase 1 or 2 (IDH1/2) define glioma subtypes and are considered primary events in gliomagenesis, impacting tumor epigenetics and metabolism. IDH enzyme activity is crucial for the generation of reducing potential in normal cells, yet the impact of the mutation on the cellular antioxidant system in glioma is not understood. The aim of this study was to determine how glutathione (GSH), the main antioxidant in the brain, is maintained in IDH1-mutant gliomas, despite an altered NADPH/NADP balance.Methods: Proteomics, metabolomics, metabolic tracer studies, genetic silencing, and drug targeting approaches in vitro and in vivo were applied. Analyses were done in clinical specimen of different glioma subtypes, in glioma patient-derived cell lines carrying the endogenous IDH1 mutation and corresponding orthotopic xenografts in mice.
    Results: We find that cystathionine-γ-lyase (CSE), the enzyme responsible for cysteine production upstream of GSH biosynthesis, is specifically upregulated in IDH1-mutant astrocytomas. CSE inhibition sensitized these cells to cysteine depletion, an effect not observed in IDH1 wild-type gliomas. This correlated with an increase in reactive oxygen species and reduced GSH synthesis. Propargylglycine (PAG), a brain-penetrant drug specifically targeting CSE, led to delayed tumor growth in mice.
    Conclusions: We show that IDH1-mutant astrocytic gliomas critically rely on NADPH-independent de novo GSH synthesis via CSE to maintain the antioxidant defense, which highlights a novel metabolic vulnerability that may be therapeutically exploited.
    Keywords:  IDH mutation; antioxidant defense; cysteine; glioma; glutathione; transsulfuration pathway
  7. Front Immunol. 2021 ;12 670131
      Targeting the unique glioma immune microenvironment is a promising approach in developing breakthrough immunotherapy treatments. However, recent advances in immunotherapy, including the development of immune checkpoint inhibitors, have not improved the outcomes of patients with glioma. A way of monitoring biological activity of immune cells in neural tissues affected by glioma should be developed to address this lack of sensitivity to immunotherapy. Thus, in this study, we sought to examine the feasibility of non-invasive monitoring of glioma-associated microglia/macrophages (GAM) by utilizing our previously developed induced microglia-like (iMG) cells. Primary microglia (pMG) were isolated from surgically obtained brain tissues of 22 patients with neurological diseases. iMG cells were produced from monocytes extracted from the patients' peripheral blood. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) revealed a significant correlation of the expression levels of representative markers for M1 and M2 microglia phenotypes between pMG and the corresponding iMG cells in each patient (Spearman's correlation coefficient = 0.5225, P <0.0001). Synchronous upregulation of CD206 expression levels was observed in most patients with glioma (6/9, 66.7%) and almost all patients with glioblastoma (4/5, 80%). Therefore, iMG cells can be used as a minimally invasive tool for monitoring the disease-related immunological state of GAM in various brain diseases, including glioma. CD206 upregulation detected in iMG cells can be used as a surrogate biomarker of glioma.
    Keywords:  CD206; glioma; induced microglia-like cells; microglia; surrogate biomarker
  8. Cancer Discov. 2021 Jul 09.
      Delivery of oncolytic viruses to the brain following tumor resection was tolerable and nontoxic.
  9. Nat Commun. 2021 07 09. 12(1): 4228
      Homozygous deletion of methylthioadenosine phosphorylase (MTAP) in cancers such as glioblastoma represents a potentially targetable vulnerability. Homozygous MTAP-deleted cell lines in culture show elevation of MTAP's substrate metabolite, methylthioadenosine (MTA). High levels of MTA inhibit protein arginine methyltransferase 5 (PRMT5), which sensitizes MTAP-deleted cells to PRMT5 and methionine adenosyltransferase 2A (MAT2A) inhibition. While this concept has been extensively corroborated in vitro, the clinical relevance relies on exhibiting significant MTA accumulation in human glioblastoma. In this work, using comprehensive metabolomic profiling, we show that MTA secreted by MTAP-deleted cells in vitro results in high levels of extracellular MTA. We further demonstrate that homozygous MTAP-deleted primary glioblastoma tumors do not significantly accumulate MTA in vivo due to metabolism of MTA by MTAP-expressing stroma. These findings highlight metabolic discrepancies between in vitro models and primary human tumors that must be considered when developing strategies for precision therapies targeting glioblastoma with homozygous MTAP deletion.
  10. J Clin Invest. 2021 Jul 13. pii: 138276. [Epub ahead of print]
      Glioblastoma (GBM) remains among the deadliest of human malignancies, and the emergence of the cancer stem cell (CSC) phenotype represents a major challenge to durable treatment response. Because the environmental and lifestyle factors that impact CSC populations are not clear, we sought to understand the consequences of diet on CSC enrichment. We evaluated disease progression in mice fed an obesity-inducing high-fat diet (HFD) versus a low-fat, control diet. HFD resulted in hyper-aggressive disease accompanied by CSC enrichment and shortened survival. HFD drove intracerebral accumulation of saturated fats, which inhibited the production of the cysteine metabolite and gasotransmitter, hydrogen sulfide (H2S). H2S functions principally through protein S-sulfhydration and regulates multiple programs including bioenergetics and metabolism. Inhibition of H2S increased proliferation and chemotherapy resistance, whereas treatment with H2S donors led to death of cultured GBM cells and stasis of GBM tumors in vivo. Syngeneic GBM models and GBM patient specimens present an overall reduction in protein S-sulfhydration, primarily associated with proteins regulating cellular metabolism. These findings provide clear evidence that diet modifiable H2S signaling serves to suppress GBM by restricting metabolic fitness, while its loss triggers CSC enrichment and disease acceleration. Interventions augmenting H2S bioavailability concurrent with GBM standard of care may improve outcomes for GBM patients.
    Keywords:  Brain cancer; Oncology; Stem cells
  11. Drug Discov Today. 2021 Jul 13. pii: S1359-6446(21)00315-9. [Epub ahead of print]
      Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumour in adults. Treatments include surgical resection, radiotherapy, and chemotherapy. Despite this, the prognosis remains poor, with an impacted quality of life during treatment coupled with brain tumour recurrence; thus, new treatments are desperately needed. In this review, we focus on recent advances in G-protein-coupled receptor (GPCR) targets. To date, the most promising targets are the chemokine, cannabinoid, and dopamine receptors, but future work should further examine the melanocortin receptor-4 (MC4R), adhesion, lysophosphatidic acid (LPA) and smoothened (Smo) receptors to initiate new drug-screening strategies and targeted delivery of safe and effective GBM therapies.
    Keywords:  G-protein-coupled receptors (GPCRs); glioblastoma multiforme (GBM)
  12. Sci Adv. 2021 Jul;pii: eabg7444. [Epub ahead of print]7(29):
      Histone H3K27M is a driving mutation in diffuse intrinsic pontine glioma (DIPG), a deadly pediatric brain tumor. H3K27M reshapes the epigenome through a global inhibition of PRC2 catalytic activity and displacement of H3K27me2/3, promoting oncogenesis of DIPG. As a consequence, a histone modification H3K36me2, antagonistic to H3K27me2/3, is aberrantly elevated. Here, we investigate the role of H3K36me2 in H3K27M-DIPG by tackling its upstream catalyzing enzymes (writers) and downstream binding factors (readers). We determine that NSD1 and NSD2 are the key writers for H3K36me2. Loss of NSD1/2 in H3K27M-DIPG impedes cellular proliferation and tumorigenesis by disrupting tumor-promoting transcriptional programs. Further, we demonstrate that LEDGF and HDGF2 are the main readers mediating the protumorigenic effects downstream of NSD1/2-H3K36me2. Treatment with a chemically modified peptide mimicking endogenous H3K36me2 dislodges LEDGF/HDGF2 from chromatin and specifically inhibits the proliferation of H3K27M-DIPG. Our results indicate a functional pathway of NSD1/2-H3K36me2-LEDGF/HDGF2 as an acquired dependency in H3K27M-DIPG.
  13. J Biochem. 2021 Jul 09. pii: mvab077. [Epub ahead of print]
      Since the discovery of nucleotides over 100 years ago, extensive studies have revealed the importance of nucleotides for homeostasis, health, and disease. However, there remains no established method to investigate quantitively and accurately intact nucleotide incorporation into RNA and DNA. Herein, we report a new method, Stable-Isotope Measure Of Influxed Ribonucleic Acid Index (SI-MOIRAI), for the identification and quantification of the metabolic fate of ribonucleotides and their precursors. SI-MOIRAI, named after Greek goddesses of fate, combines a stable isotope-labeling flux assay with mass spectrometry to enable quantification of the newly synthesized ribonucleotides into r/m/tRNA under a metabolic stationary state. Using glioblastoma U87MG cells and a patient-derived xenograft (PDX) glioblastoma mouse model, SI-MOIRAI analyses showed that newly synthesized GTP was particularly and disproportionally highly utilized for rRNA and tRNA synthesis but not for mRNA synthesis in glioblastoma (GBM) in vitro and in vivo. Furthermore, newly synthesized pyrimidine nucleotides exhibited a significantly lower utilization rate for RNA synthesis than newly synthesized purine nucleotides. The results reveal the existence of discrete pathways and compartmentalization of purine and pyrimidine metabolism designated for RNA synthesis, demonstrating the capacity of SI-MOIRAI to reveal previously unknown aspects of nucleotide biology.
    Keywords:  cancer metabolism; flux analysis; glioblastoma (GBM); mass spectrometry; metabolomics; nucleotide metabolism
  14. Sci Rep. 2021 Jul 15. 11(1): 14556
      Cell-to-cell communication is essential for the development and proper function of multicellular systems. We and others demonstrated that tunneling nanotubes (TNT) proliferate in several pathological conditions such as HIV, cancer, and neurodegenerative diseases. However, the nature, function, and contribution of TNT to cancer pathogenesis are poorly understood. Our analyses demonstrate that TNT structures are induced between glioblastoma (GBM) cells and surrounding non-tumor astrocytes to transfer tumor-derived mitochondria. The mitochondrial transfer mediated by TNT resulted in the adaptation of non-tumor astrocytes to tumor-like metabolism and hypoxia conditions. In conclusion, TNT are an efficient cell-to-cell communication system used by cancer cells to adapt the microenvironment to the invasive nature of the tumor.
  15. Sci Rep. 2021 Jul 14. 11(1): 14469
      Tumor types are classically distinguished based on biopsies of the tumor itself, as well as a radiological interpretation using diverse MRI modalities. In the current study, the overarching goal is to demonstrate that primary (glioblastomas) and secondary (brain metastases) malignancies can be differentiated based on the microstructure of the peritumoral region. This is achieved by exploiting the extracellular water differences between vasogenic edema and infiltrative tissue and training a convolutional neural network (CNN) on the Diffusion Tensor Imaging (DTI)-derived free water volume fraction. We obtained 85% accuracy in discriminating extracellular water differences between local patches in the peritumoral area of 66 glioblastomas and 40 metastatic patients in a cross-validation setting. On an independent test cohort consisting of 20 glioblastomas and 10 metastases, we got 93% accuracy in discriminating metastases from glioblastomas using majority voting on patches. This level of accuracy surpasses CNNs trained on other conventional DTI-based measures such as fractional anisotropy (FA) and mean diffusivity (MD), that have been used in other studies. Additionally, the CNN captures the peritumoral heterogeneity better than conventional texture features, including Gabor and radiomic features. Our results demonstrate that the extracellular water content of the peritumoral tissue, as captured by the free water volume fraction, is best able to characterize the differences between infiltrative and vasogenic peritumoral regions, paving the way for its use in classifying and benchmarking peritumoral tissue with varying degrees of infiltration.
  16. ESMO Open. 2021 Jul 13. pii: S2059-7029(21)00175-7. [Epub ahead of print]6(4): 100214
      The development of anticancer vaccines as a pillar of cancer immunotherapy has been hampered by the scarcity of suitable tumor-specific antigens. While response to immune checkpoint inhibitors is driven by T cells recognizing mutated antigens, the vast majority of these neoantigens are patient-specific, mandating personalized approaches. In addition, neoantigens are often subclonal present in only a fraction of tumor cells resulting in immune evasion of neoantigen-negative tumor cells. Isocitrate dehydrogenase (IDH)1 mutations, most frequently encoding for the neomorphic protein IDH1R132H, are frequent driver mutations found in the majority of diffuse World Health Organization grade 2 and 3 gliomas. In addition, IDH1R132H generates a shared clonal neoepitope that is recognized by mutation-specific T-helper cells. A recent phase 1 trial (NOA-16, NCT02454634) demonstrated safety and immunogenicity of IDH1-vac, a long IDH1R132H peptide vaccine in patients with newly diagnosed astrocytoma and provided evidence of biological efficacy based on imaging parameters. In addition, vaccine-induced IDH1R132H-reactive tumor-infiltrating T cells were identified. Here we discuss clinical and scientific implications and future developments of IDH-directed immunotherapies.
    Keywords:  glioma; immunotherapy; isocitrate dehydrogenase; neoantigen; vaccine
  17. Adv Drug Deliv Rev. 2021 Jul 08. pii: S0169-409X(21)00251-9. [Epub ahead of print] 113859
      Brain delivery is a broad research area, the outcomes of which are far hindered by the limited permeability of the blood-brain barrier (BBB). Over the last century, research has been revealing the BBB complexity and the crosstalk between its cellular and molecular components. Pathologically, BBB alterations may precede as well as be concomitant or lead to brain diseases. To simulate the BBB and investigate options for drug delivery, several in vitro, in vivo, ex vivo, in situ and in silico models are used. Hundreds of drug delivery vehicles successfully pass preclinical trials but fail in clinical settings. Inadequate selection of BBB models is believed to remarkably impact the data reliability leading to unsatisfactory results in clinical trials. In this review, we suggest a rationale for BBB model selection with respect to the addressed research question and downstream applications. The essential considerations of an optimal BBB model are discussed.
    Keywords:  animal modeling; brain targeting; cerebral capillaries; drug delivery; in vivo-in vitro correlation; nanotechnology
  18. Nat Commun. 2021 07 09. 12(1): 4227
      Glycine decarboxylase (GLDC) is a key enzyme of glycine cleavage system that converts glycine into one-carbon units. GLDC is commonly up-regulated and plays important roles in many human cancers. Whether and how GLDC is regulated by post-translational modifications is unknown. Here we report that mechanistic target of rapamycin complex 1 (mTORC1) signal inhibits GLDC acetylation at lysine (K) 514 by inducing transcription of the deacetylase sirtuin 3 (SIRT3). Upon inhibition of mTORC1, the acetyltransferase acetyl-CoA acetyltransferase 1 (ACAT1) catalyzes GLDC K514 acetylation. This acetylation of GLDC impairs its enzymatic activity. In addition, this acetylation of GLDC primes for its K33-linked polyubiquitination at K544 by the ubiquitin ligase NF-X1, leading to its degradation by the proteasomal pathway. Finally, we find that GLDC K514 acetylation inhibits glycine catabolism, pyrimidines synthesis and glioma tumorigenesis. Our finding reveals critical roles of post-translational modifications of GLDC in regulation of its enzymatic activity, glycine metabolism and tumorigenesis, and provides potential targets for therapeutics of cancers such as glioma.