bims-malgli Biomed News
on Biology of malignant gliomas
Issue of 2021‒03‒21
thirteen papers selected by
Oltea Sampetrean
Keio University

  1. J Clin Invest. 2021 Mar 15. pii: 136098. [Epub ahead of print]131(6):
      Glioblastoma (GBM) is composed of heterogeneous tumor cell populations, including those with stem cell properties, termed glioma stem cells (GSCs). GSCs are innately less radiation sensitive than the tumor bulk and are believed to drive GBM formation and recurrence after repeated irradiation. However, it is unclear how GSCs adapt to escape the toxicity of repeated irradiation used in clinical practice. To identify important mediators of adaptive radioresistance in GBM, we generated radioresistant human and mouse GSCs by exposing them to repeat cycles of irradiation. Surviving subpopulations acquired strong radioresistance in vivo, which was accompanied by a reduction in cell proliferation and an increase in cell-cell adhesion and N-cadherin expression. Increasing N-cadherin expression rendered parental GSCs radioresistant, reduced their proliferation, and increased their stemness and intercellular adhesive properties. Conversely, radioresistant GSCs lost their acquired phenotypes upon CRISPR/Cas9-mediated knockout of N-cadherin. Mechanistically, elevated N-cadherin expression resulted in the accumulation of β-catenin at the cell surface, which suppressed Wnt/β-catenin proliferative signaling, reduced neural differentiation, and protected against apoptosis through Clusterin secretion. N-cadherin upregulation was induced by radiation-induced IGF1 secretion, and the radiation resistance phenotype could be reverted with picropodophyllin, a clinically applicable blood-brain-barrier permeable IGF1 receptor inhibitor, supporting clinical translation.
    Keywords:  Brain cancer; Cell migration/adhesion; Oncology; Radiation therapy
  2. Oncogene. 2021 Mar 16.
      Glioblastoma (GBM) is the most malignant form of glioma. Glioma stem cells (GSCs) contribute to the initiation, progression, and recurrence of GBM as a result of their self-renewal potential and tumorigenicity. Cyclin-dependent kinase 8 (CDK8) belongs to the transcription-related CDK family. Although CDK8 has been shown to be implicated in the malignancy of several types of cancer, its functional role and mechanism in gliomagenesis remain largely unknown. Here, we demonstrate how CDK8 plays an essential role in maintaining stemness and tumorigenicity in GSCs. The genetic inhibition of CDK8 by shRNA or CRISPR interference resulted in an abrogation of the self-renewal potential and tumorigenicity of patient-derived GSCs, which could be significantly rescued by the ectopic expression of c-MYC, a stem cell transcription factor. Moreover, we demonstrated that the pharmacological inhibition of CDK8 significantly attenuated the self-renewal potential and tumorigenicity of GSCs. CDK8 expression was significantly higher in human GBM tissues than in normal brain tissues, and its expression was positively correlated with stem cell markers including c-MYC and SOX2 in human GBM specimens. Additionally, CDK8 expression is associated with poor survival in GBM patients. Collectively, these findings highlight the importance of the CDK8-c-MYC axis in maintaining stemness and tumorigenicity in GSCs; these findings also identify the CDK8-c-MYC axis as a potential target for GSC-directed therapy.
  3. Blood Adv. 2021 Mar 23. 5(6): 1682-1694
      Vascular anomalies, including local and peripheral thrombosis, are a hallmark of glioblastoma (GBM) and an aftermath of deregulation of the cancer cell genome and epigenome. Although the molecular effectors of these changes are poorly understood, the upregulation of podoplanin (PDPN) by cancer cells has recently been linked to an increased risk for venous thromboembolism (VTE) in GBM patients. Therefore, regulation of this platelet-activating protein by transforming events in cancer cells is of considerable interest. We used single-cell and bulk transcriptome data mining, as well as cellular and xenograft models in mice, to analyze the nature of cells expressing PDPN, as well as their impact on the activation of the coagulation system and platelets. We report that PDPN is expressed by distinct (mesenchymal) GBM cell subpopulations and downregulated by oncogenic mutations of EGFR and IDH1 genes, along with changes in chromatin modifications (enhancer of zeste homolog 2) and DNA methylation. Glioma cells exteriorize their PDPN and/or tissue factor (TF) as cargo of exosome-like extracellular vesicles (EVs) shed from cells in vitro and in vivo. Injection of glioma-derived podoplanin carrying extracelluar vesicles (PDPN-EVs) activates platelets, whereas tissue factor carrying extracellular vesicles (TF-EVs) activate the clotting cascade. Similarly, an increase in platelet activation (platelet factor 4) or coagulation (D-dimer) markers occurs in mice harboring the corresponding glioma xenografts expressing PDPN or TF, respectively. Coexpression of PDPN and TF by GBM cells cooperatively affects tumor microthrombosis. Thus, in GBM, distinct cellular subsets drive multiple facets of cancer-associated thrombosis and may represent targets for phenotype- and cell type-based diagnosis and antithrombotic intervention.
  4. Neurooncol Adv. 2021 Jan-Dec;3(1):3(1): vdab015
      Glioblastoma (GBM), the most aggressive primary brain tumor, has a dismal prognosis. Despite our growing knowledge of genomic and epigenomic alterations in GBM, standard therapies and outcomes have not changed significantly in the past two decades. There is therefore an urgent unmet need to develop novel therapies for GBM. The inter- and intratumoral heterogeneity of GBM, inadequate drug concentrations in the tumor owing to the blood-brain barrier, redundant signaling pathways contributing to resistance to conventional therapies, and an immunosuppressive tumor microenvironment, have all hindered the development of novel therapies for GBM. Given the high frequency of DNA damage pathway alterations in GBM, researchers have focused their efforts on pharmacologically targeting key enzymes, including poly(ADP-ribose) polymerase (PARP), DNA-dependent protein kinase, ataxia telangiectasia-mutated, and ataxia telangiectasia and Rad3-related. The mainstays of GBM treatment, ionizing radiation and alkylating chemotherapy, generate DNA damage that is repaired through the upregulation and activation of DNA damage response (DDR) enzymes. Therefore, the use of PARP and other DDR inhibitors to render GBM cells more vulnerable to conventional treatments is an area of intense investigation. In this review, we highlight the growing body of data behind DDR inhibitors in GBM, with a focus on putative predictive biomarkers of response. We also discuss the challenges involved in the successful development of DDR inhibitors for GBM, including the intracranial location and predicted overlapping toxicities of DDR agents with current standards of care, and propose promising strategies to overcome these hurdles.
    Keywords:  DDR inhibitors; MGMT methylation; glioblastoma; radiation; temozolomide
  5. Cancer Sci. 2021 Mar 16.
      Glioblastoma (GBM) is the most common, but extremely malignant, brain tumor; thus, the development of novel therapeutic strategies for GBMs is imperative. Many tyrosine kinase inhibitors (TKIs) have been approved for various cancers, yet none has demonstrated clinical benefit against GBM. Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase (RTK) that is confirmed only during the embryonic development period in humans. In addition, various ALK gene alterations are known to act as powerful oncogenes and therapeutic targets in various tumors. The antitumor activity of various TKIs was tested against three human GBM cell lines (U87MG, LN229, and GSC23), which expressed substantially low ALK levels; second-generation ALK inhibitors, alectinib and ceritinib, effectively induced GBM cell death. In addition, treatment with either alectinib or ceritinib modulated the activation of various molecules downstream of RTK signaling and induced caspase-dependent/independent cell death mainly by inhibiting signal transducer and activator of transcription 3 activation in human GBM cells. In addition, alectinib and ceritinib also showed antitumor activity against a U87MG cell line with acquired temozolomide resistance. Finally, oral administration of alectinib and ceritinib prolonged the survival of mice harboring intracerebral GBM xenografts compared to controls. These results suggested that treatment with the second-generation ALK inhibitors, alectinib and ceritinib, might serve as potent therapeutic strategies against GBM.
    Keywords:  Alectinib; Anaplastic lymphoma kinase; Ceritinib; Glioblastoma; STAT3 Transcription Factor
  6. Neurooncol Adv. 2021 Jan-Dec;3(1):3(1): vdab018
      The newly discovered functional integration of glioma cells into brain networks in mouse models provides groundbreaking insight into glioma aggressiveness and resistance to treatments, also suggesting novel potential therapeutic avenues and targets. In the context of such neuron-to-glioma communication, noninvasive brain modulation techniques traditionally applied to modulate neuronal function in neurological and psychiatric diseases (eg, increase/decrease cortical excitability and plasticity) could now be tested in patients with brain tumors to suppress glioma's activity and its pathological crosstalk with healthy brain tissue.
    Keywords:  NiBS; gliomas; noninvasive brain stimulation; plasticity; synapses
  7. Cell Death Dis. 2021 Mar 15. 12(3): 271
      Cancers, including glioblastoma multiforme (GBM), undergo coordinated reprogramming of metabolic pathways that control glycolysis and oxidative phosphorylation (OXPHOS) to promote tumor growth in diverse tumor microenvironments. Adaptation to limited nutrient availability in the microenvironment is associated with remodeling of mitochondrial morphology and bioenergetic capacity. We recently demonstrated that NF-κB-inducing kinase (NIK) regulates mitochondrial morphology to promote GBM cell invasion. Here, we show that NIK is recruited to the outer membrane of dividing mitochondria with the master fission regulator, Dynamin-related protein1 (DRP1). Moreover, glucose deprivation-mediated metabolic shift to OXPHOS increases fission and mitochondrial localization of both NIK and DRP1. NIK deficiency results in decreased mitochondrial respiration, ATP production, and spare respiratory capacity (SRC), a critical measure of mitochondrial fitness. Although IκB kinase α and β (IKKα/β) and NIK are required for OXPHOS in high glucose media, only NIK is required to increase SRC under glucose deprivation. Consistent with an IKK-independent role for NIK in regulating metabolism, we show that NIK phosphorylates DRP1-S616 in vitro and in vivo. Notably, a constitutively active DRP1-S616E mutant rescues oxidative metabolism, invasiveness, and tumorigenic potential in NIK-/- cells without inducing IKK. Thus, we establish that NIK is critical for bioenergetic stress responses to promote GBM cell pathogenesis independently of IKK. Our data suggest that targeting NIK may be used to exploit metabolic vulnerabilities and improve therapeutic strategies for GBM.
  8. Sci Rep. 2021 Mar 16. 11(1): 6066
      Glioblastoma multiforme is the most common primary brain tumor and among the most lethal types of cancer. Several mono-target small molecule-inhibitors have been investigated as novel therapeutics, thus far with poor success. In this study we investigated the anticancer effects of SB747651A, a multi-target small-molecule inhibitor, in three well characterized patient-derived glioblastoma spheroid cultures and a murine orthotopic xenograft model. Concentrations of 5-10 µM SB747651A reduced cell proliferation, spheroid formation, migration and chemoresistance, while apoptotic cell death increased. Investigation of oncogenic kinase signaling showed decreased phosphorylation levels of mTOR, CREB, GSK3 and GYS1 leading to altered glycogen metabolism and formation of intracellular reactive oxygen species. Expression levels of cancer stemness marker SOX2 were reduced in treated tumor cells and SB747651A treatment significantly prolonged survival of mice with intracranial glioblastoma xenografts, while no adverse effects were observed in vivo at doses of 25 mg/kg administered 5 days/week for 8 weeks. These findings suggest that SB747651A has anticancer effects in glioblastoma. The cancer-related pathophysiological mechanisms targeted by SB747651A are shared among many types of cancer; however, an in-depth clarification of the mechanisms of action in cancer cells is important before further potential application of SB747651A as an anticancer agent can be considered.
  9. Methods Mol Biol. 2021 ;2294 59-77
      Brain metastasis is a major challenge for therapy and defines the end stage of tumor progression with a very limited patients' prognosis. Experimental setups that faithfully mimic these processes are necessary to understand the mechanism of brain metastasis and to develop new improved therapeutic strategies. Here, we describe an in vitro model, which closely resembles the in vivo situation. Organotypic hippocampal brain slice cultures (OHSCs) prepared from 3- to 8-day-old mice are well suited for neuro-oncology research including brain metastasis. The original morphology is preserved in OHSCs even after culture periods of several days to weeks. Tumor cells or cells of metastatic origin can be seeded onto OHSCs to evaluate micro-tumor formation, tumor cell invasion, or treatment response. We describe preparation and culture of OHSCs including the seeding of tumor cells. Finally, we show examples of how to treat the OHSCs for life-dead or immunohistochemical staining.
    Keywords:  Brain tumor; Cryosection; Glioblastoma; Glioma; Immunohistochemistry; Invasion; Life–dead staining; Metastasis; Organotypic hippocampal slice cultures (OHSCs)
  10. Sci Rep. 2021 Mar 16. 11(1): 6067
      Dismal prognosis of glioblastoma (GBM) prompts for the identification of response predictors and therapeutic resistance mechanisms of current therapies. The authors investigated the impact of c-Met, HGF, VEGFR2 expression and microvessel density (MVD) in GBM patients submitted to second-line chemotherapy with bevacizumab. Immunohistochemical expression of c-Met, HGF, VEGFR2, and MVD was assessed in tumor specimens of GBM patients treated with bevacizumab, after progression under temozolomide. Survival analysis was evaluated according to the expression of the aforementioned biomarkers. c-Met overexpression was associated with a time-to-progression (TTP) after bevacizumab of 3 months (95% CI, 1.5-4.5) compared with a TTP of 7 months (95% CI, 4.6-9.4) in patients with low or no expression of c-Met (p = 0.05). VEGFR2 expression was associated with a TTP after bevacizumab of 3 months (95% CI, 1.8-4.2) compared with a TTP of 7 months (95% CI, 5.7-8.3) in patients with no tumoral expression of VEGFR2 (p = 0.009). Concomitant c-Met/VEGFR2 overexpression was associated with worse overall survival (13 months) compared with concomitant c-Met/VEGFR2 negative expression (19 months; p = 0.025). Our data support the hypothesis that c-Met and VEGFR2 overexpression have a role in the development of glioblastoma early resistance and might predict poorer responses to anti-angiogenic therapies.
  11. Mol Cell. 2021 Mar 18. pii: S1097-2765(21)00136-2. [Epub ahead of print]81(6): 1128-1129
      Huang et al. (2021) identified a mechanism acting through the arginine methyltransferase PRMT6 that stabilizes the interaction of RCC1 with chromatin, promoting cell proliferation and tumorigenicity. Targeting this mechanism might enhance the treatment of tumors such as glioblastoma.
  12. Neuro Oncol. 2021 Mar 13. pii: noab056. [Epub ahead of print]
  13. Acta Neuropathol. 2021 Mar 19.
      Somatic mutations in the isocitrate dehydrogenase genes IDH1 and IDH2 occur at high frequency in several tumour types. Even though these mutations are confined to distinct hotspots, we show that gliomas are the only tumour type with an exceptionally high percentage of IDH1R132H mutations. Patients harbouring IDH1R132H mutated tumours have lower levels of genome-wide DNA-methylation, and an associated increased gene expression, compared to tumours with other IDH1/2 mutations ("non-R132H IDH1/2 mutations"). This reduced methylation is seen in multiple tumour types and thus appears independent of the site of origin. For 1p/19q non-codeleted glioma (astrocytoma) patients, we show that this difference is clinically relevant: in samples of the randomised phase III CATNON trial, patients harbouring tumours with IDH mutations other than IDH1R132H have a better outcome (hazard ratio 0.41, 95% CI [0.24, 0.71], p = 0.0013). Such non-R132H IDH1/2-mutated tumours also had a significantly lower proportion of tumours assigned to prognostically poor DNA-methylation classes (p < 0.001). IDH mutation-type was independent in a multivariable model containing known clinical and molecular prognostic factors. To confirm these observations, we validated the prognostic effect of IDH mutation type on a large independent dataset. The observation that non-R132H IDH1/2-mutated astrocytomas have a more favourable prognosis than their IDH1R132H mutated counterpart indicates that not all IDH-mutations are identical. This difference is clinically relevant and should be taken into account for patient prognostication.
    Keywords:  Astrocytoma; Gene expression; Genome-wide DNA methylation; IDH1; IDH2