bims-malgli Biomed News
on Biology of malignant gliomas
Issue of 2021‒02‒21
twelve papers selected by
Oltea Sampetrean
Keio University


  1. Front Oncol. 2020 ;10 603495
    Geribaldi-Doldán N, Fernández-Ponce C, Quiroz RN, Sánchez-Gomar I, Escorcia LG, Velásquez EP, Quiroz EN.
      Glioblastoma (GB), the most aggressive malignant glioma, is made up of a large percentage of glioma-associated microglia/macrophages (GAM), suggesting that immune cells play an important role in the pathophysiology of GB. Under physiological conditions, microglia, the phagocytes of the central nervous system (CNS), are involved in various processes such as neurogenesis or axonal growth, and the progression of different conditions such as Alzheimer's disease. Through immunohistochemical studies, markers that enhance GB invasiveness have been shown to be expressed in the peritumoral area of ​​the brain, such as Transforming Growth Factor α (TGF-α), Stromal Sell-Derived Factor 1 (SDF1/CXCL12), Sphingosine-1-Phosphate (S1P) and Neurotrophic Factor Derived from the Glial cell line (GDNF), contributing to the increase in tumor mass. Similarly, it has also been described 17 biomarkers that are present in hypoxic periarteriolar HSC niches in bone marrow and in hypoxic periarteriolar GSC niches in glioblastoma. Interestingly, microglia plays an important role in the microenvironment that supports GB progression, being one of the most important focal points in the study of therapeutic targets for the development of new drugs. In this review, we describe the altered signaling pathways in microglia in the context of GB. We also show how microglia interact with glioblastoma cells and the epigenetic mechanisms involved. Regarding the interactions between microglia and neurogenic niches, some authors indicate that glioblastoma stem cells (GSC) are similar to neural stem cells (NSC), common stem cells in the subventricular zone (SVZ), suggesting that this could be the origin of GB. Understanding the similarities between SVZ and the tumor microenvironment could be important to clarify some mechanisms involved in GB malignancy and to support the discovering of new therapeutic targets for the development of more effective glioblastoma treatments.
    Keywords:  epigenetic; glioblastoma; microglia; signaling pathways; therapeutic target
    DOI:  https://doi.org/10.3389/fonc.2020.603495
  2. Cell. 2021 Feb 10. pii: S0092-8674(21)00065-9. [Epub ahead of print]
    Mathewson ND, Ashenberg O, Tirosh I, Gritsch S, Perez EM, Marx S, Jerby-Arnon L, Chanoch-Myers R, Hara T, Richman AR, Ito Y, Pyrdol J, Friedrich M, Schumann K, Poitras MJ, Gokhale PC, Gonzalez Castro LN, Shore ME, Hebert CM, Shaw B, Cahill HL, Drummond M, Zhang W, Olawoyin O, Wakimoto H, Rozenblatt-Rosen O, Brastianos PK, Liu XS, Jones PS, Cahill DP, Frosch MP, Louis DN, Freeman GJ, Ligon KL, Marson A, Chiocca EA, Reardon DA, Regev A, Suvà ML, Wucherpfennig KW.
      T cells are critical effectors of cancer immunotherapies, but little is known about their gene expression programs in diffuse gliomas. Here, we leverage single-cell RNA sequencing (RNA-seq) to chart the gene expression and clonal landscape of tumor-infiltrating T cells across 31 patients with isocitrate dehydrogenase (IDH) wild-type glioblastoma and IDH mutant glioma. We identify potential effectors of anti-tumor immunity in subsets of T cells that co-express cytotoxic programs and several natural killer (NK) cell genes. Analysis of clonally expanded tumor-infiltrating T cells further identifies the NK gene KLRB1 (encoding CD161) as a candidate inhibitory receptor. Accordingly, genetic inactivation of KLRB1 or antibody-mediated CD161 blockade enhances T cell-mediated killing of glioma cells in vitro and their anti-tumor function in vivo. KLRB1 and its associated transcriptional program are also expressed by substantial T cell populations in other human cancers. Our work provides an atlas of T cells in gliomas and highlights CD161 and other NK cell receptors as immunotherapy targets.
    Keywords:  CD161; IDH-mutant gliomas; T cells; glioblastoma; single-cell RNA-seq
    DOI:  https://doi.org/10.1016/j.cell.2021.01.022
  3. Front Oncol. 2020 ;10 614295
    Gómez-Oliva R, Domínguez-García S, Carrascal L, Abalos-Martínez J, Pardillo-Díaz R, Verástegui C, Castro C, Nunez-Abades P, Geribaldi-Doldán N.
      Glioblastoma (GBM) is the most common form of brain tumor characterized by its resistance to conventional therapies, including temozolomide, the most widely used chemotherapeutic agent in the treatment of GBM. Within the tumor, the presence of glioma stem cells (GSC) seems to be the reason for drug resistance. The discovery of GSC has boosted the search for new experimental models to study GBM, which allow the development of new GBM treatments targeting these cells. In here, we describe different strategies currently in use to study GBM. Initial GBM investigations were focused in the development of xenograft assays. Thereafter, techniques advanced to dissociate tumor cells into single-cell suspensions, which generate aggregates referred to as neurospheres, thus facilitating their selective expansion. Concomitantly, the finding of genes involved in the initiation and progression of GBM tumors, led to the generation of mice models for the GBM. The latest advances have been the use of GBM organoids or 3D-bioprinted mini-brains. 3D bio-printing mimics tissue cytoarchitecture by combining different types of cells interacting with each other and with extracellular matrix components. These in vivo models faithfully replicate human diseases in which the effect of new drugs can easily be tested. Based on recent data from human glioblastoma, this review critically evaluates the different experimental models used in the study of GB, including cell cultures, mouse models, brain organoids, and 3D bioprinting focusing in the advantages and disadvantages of each approach to understand the mechanisms involved in the progression and treatment response of this devastating disease.
    Keywords:  3D bioprinting; brain organoids; cell cultures of glioma cells; glioma stem cells; mouse models of glioblastoma
    DOI:  https://doi.org/10.3389/fonc.2020.614295
  4. Cell Syst. 2021 Feb 09. pii: S2405-4712(21)00036-3. [Epub ahead of print]
    Kälin RE, Cai L, Li Y, Zhao D, Zhang H, Cheng J, Zhang W, Wu Y, Eisenhut K, Janssen P, Schmitt L, Enard W, Michels F, Flüh C, Hou M, Kirchleitner SV, Siller S, Schiemann M, Andrä I, Montanez E, Giachino C, Taylor V, Synowitz M, Tonn JC, von Baumgarten L, Schulz C, Hellmann I, Glass R.
      Aggressive brain tumors like glioblastoma depend on support by their local environment and subsets of tumor parenchymal cells may promote specific phases of disease progression. We investigated the glioblastoma microenvironment with transgenic lineage-tracing models, intravital imaging, single-cell transcriptomics, immunofluorescence analysis as well as histopathology and characterized a previously unacknowledged population of tumor-associated cells with a myeloid-like expression profile (TAMEP) that transiently appeared during glioblastoma growth. TAMEP of mice and humans were identified with specific markers. Notably, TAMEP did not derive from microglia or peripheral monocytes but were generated by a fraction of CNS-resident, SOX2-positive progenitors. Abrogation of this progenitor cell population, by conditional Sox2-knockout, drastically reduced glioblastoma vascularization and size. Hence, TAMEP emerge as a tumor parenchymal component with a strong impact on glioblastoma progression.
    Keywords:  angiogenesis; brain tumor; brain tumor microenvironment; brain tumor parenchyma; glioblastoma; glioma; microglia; myeloid cells; progenitor cells; rain; tumor-associated macrophages
    DOI:  https://doi.org/10.1016/j.cels.2021.01.002
  5. Neuro Oncol. 2021 Feb 18. pii: noab038. [Epub ahead of print]
    Kim MM, Aryal MP, Sun Y, Parmar HA, Li P, Schipper M, Wahl DR, Lawrence TS, Cao Y.
      BACKGROUND: Adversely prognostic hypercellular and hyperperfused regions of glioblastoma (GBM) predict progression-free survival, and are a novel target for dose-intensified chemoradiation (chemoRT) recently implemented in a phase II clinical trial. As a secondary aim, we hypothesized that dose-intensified chemoRT would induce greater mid-treatment response of hypercellular/hyperperfused tumor regions versus standard chemoradiation, and that early response would improve overall survival (OS).METHODS: Forty-nine patients with newly diagnosed GBM underwent prospective, multiparametric high b-value diffusion-weighted (DW-MRI) and perfusion dynamic contrast-enhanced MRI (DCE-MRI) pre-RT and 3-4 weeks into RT. The hypercellular tumor volume (TVHCV, mean contralateral normal brain+2SD) and hyperperfused tumor volume (TVCBV, contralateral normal frontal grey matter+1SD) were generated using automated thresholding. Twenty-six patients were enrolled on a dose-escalation trial targeting TVHCV/TVCBV with 75 Gy in 30 fractions, and 23 non-trial patients comprised the control group. OS was estimated using Kaplan-Meier method and compared using log-rank test. The effect of TVHCV/TVCBV and Gd-enhanced tumor volume on OS were assessed using multivariable Cox proportional-hazard regression.
    RESULTS: Most patients had gross total (47%) or subtotal resection (37%), 25% were MGMT methylated. Patients treated on the dose-escalation trial had significantly greater reduction in TVHCV/TVCBV (41% reduction, IQR 17-75%) vs non-trial patients (6% reduction, IQR 6-22%, p=0.002). An increase in TVHCV/TVCBV during chemoRT was associated with worse OS (AHR 1.2, 95%CI 1.0-1.4, p=0.02), while pre-treatment tumor volumes (p>0.5) and changes in Gd-enhanced volume (p=0.9) were not.
    CONCLUSIONS: Multiparametric MRI permits identification of therapeutic resistance during chemoRT and supports adaptive strategies in future trials.
    Keywords:  Response assessment; glioblastoma; multiparametric MRI; overall survival; radiation therapy
    DOI:  https://doi.org/10.1093/neuonc/noab038
  6. Front Oncol. 2020 ;10 626751
    Borgenvik A, Čančer M, Hutter S, Swartling FJ.
      Misregulation of MYC genes, causing MYC overexpression or protein stabilization, is frequently found in malignant brain tumors highlighting their important roles as oncogenes. Brain tumors in children are the most lethal of all pediatric malignancies and the most common malignant primary adult brain tumor, glioblastoma, is still practically incurable. MYCN is one of three MYC family members and is crucial for normal brain development. It is associated with poor prognosis in many malignant pediatric brain tumor types and is focally amplified in specific adult brain tumors. Targeting MYCN has proved to be challenging due to its undruggable nature as a transcription factor and for its importance in regulating developmental programs also in healthy cells. In this review, we will discuss efforts made to circumvent the difficulty of targeting MYCN specifically by using direct or indirect measures to treat MYCN-driven brain tumors. We will further consider the mechanism of action of these measures and suggest which molecularly defined brain tumor patients that might benefit from MYCN-directed precision therapies.
    Keywords:  MYCN; OCT4; brain tumor; c-MYC; glioma; medulloblastoma; targeted therapies
    DOI:  https://doi.org/10.3389/fonc.2020.626751
  7. Nat Commun. 2021 Feb 19. 12(1): 1151
    Ochocka N, Segit P, Walentynowicz KA, Wojnicki K, Cyranowski S, Swatler J, Mieczkowski J, Kaminska B.
      Microglia are resident myeloid cells in the central nervous system (CNS) that control homeostasis and protect CNS from damage and infections. Microglia and peripheral myeloid cells accumulate and adapt tumor supporting roles in human glioblastomas that show prevalence in men. Cell heterogeneity and functional phenotypes of myeloid subpopulations in gliomas remain elusive. Here we show single-cell RNA sequencing (scRNA-seq) of CD11b+ myeloid cells in naïve and GL261 glioma-bearing mice that reveal distinct profiles of microglia, infiltrating monocytes/macrophages and CNS border-associated macrophages. We demonstrate an unforeseen molecular heterogeneity among myeloid cells in naïve and glioma-bearing brains, validate selected marker proteins and show distinct spatial distribution of identified subsets in experimental gliomas. We find higher expression of MHCII encoding genes in glioma-activated male microglia, which was corroborated in bulk and scRNA-seq data from human diffuse gliomas. Our data suggest that sex-specific gene expression in glioma-activated microglia may be relevant to the incidence and outcomes of glioma patients.
    DOI:  https://doi.org/10.1038/s41467-021-21407-w
  8. Cancer Res. 2021 Feb 16. pii: canres.3558.2020. [Epub ahead of print]
    Segura-Collar B, Garranzo-Asensio M, Herranz B, Hernández-SanMiguel E, Cejalvo T, Casas BS, Matheu A, Pérez-Núñez Á, Sepúlveda-Sánchez JM, Hernández-Laín A, Palma V, Gargini R, Sánchez-Gómez P.
      The extraordinary plasticity of glioma cells allows them to contribute to different cellular compartments in tumor vessels, reinforcing the vascular architecture. It was recently revealed that targeting glioma-derived pericytes, which represent a big percentage of the mural cell population in aggressive tumors, increases the permeability of the vessels and improves the efficiency of chemotherapy. However, the molecular determinants of this transdifferentiation process have not been elucidated. Here we show that mutations in epidermal growth factor receptor (EGFR) stimulate the capacity of glioma cells to function as pericytes in a BMX (bone marrow and X-linked) and SOX9-dependent manner. Subsequent activation of platelet-derived growth factor receptor beta (PDGFRβ) in the vessel walls of EGFR mutant gliomas stabilized the vasculature and facilitated the recruitment of immune cells. These changes in the tumor microenvironment conferred a growth advantage to the tumors but also rendered them sensitive to pericyte-targeting molecules such as ibrutinib or sunitinib. In the absence of EGFR mutations, high-grade gliomas were enriched in blood vessels but showed a highly disrupted blood-brain-barrier due to the decreased BMX/SOX9 activation and pericyte coverage, which led to poor oxygenation, necrosis, and hypoxia. Overall, these findingds identify EGFR mutations as key regulators of the glioma-to-pericyte transdifferentiation, highlighting the intricate relationship between the tumor cells and their vascular and immune milieu. Our results lay the foundations for a vascular-dependent stratification of gliomas and suggest different therapeutic vulnerabilities determined by the genetic status of EGFR.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-20-3558
  9. Front Oncol. 2020 ;10 612385
    Tirrò E, Massimino M, Romano C, Martorana F, Pennisi MS, Stella S, Pavone G, Di Gregorio S, Puma A, Tomarchio C, Vitale SR, Manzella L, Vigneri P.
      Glioblastoma multiforme (GBM) is the most common primary brain malignancy and is often resistant to conventional treatments due to its extensive cellular heterogeneity. Thus, the overall survival of GBM patients remains extremely poor. Insulin-like growth factor (IGF) signaling entails a complex system that is a key regulator of cell transformation, growth and cell-cycle progression. Hence, its deregulation is frequently involved in the development of several cancers, including brain malignancies. In GBM, differential expression of several IGF system components and alterations of this signaling axis are linked to significantly worse prognosis and reduced responsiveness to temozolomide, the most commonly used pharmacological agent for the treatment of the disease. In the present review we summarize the biological role of the IGF system in the pathogenesis of GBM and comprehensively discuss its clinical significance and contribution to the development of resistance to standard chemotherapy and experimental treatments.
    Keywords:  IGF-binding protein; drug resistance; glioblastoma; insulin-like growth factor signaling pathway; insulin/insulin-like growth factor system
    DOI:  https://doi.org/10.3389/fonc.2020.612385
  10. Cancer Discov. 2021 Feb 18.
      The largest multi-omics investigation of glioblastoma to date has revealed new molecular drivers and immune subtypes of the deadly brain cancer that should inform future treatment strategies and clinical trial designs.
    DOI:  https://doi.org/10.1158/2159-8290.CD-NB2021-0315
  11. Sci Adv. 2021 Feb;pii: eabc8929. [Epub ahead of print]7(8):
    Miska J, Rashidi A, Lee-Chang C, Gao P, Lopez-Rosas A, Zhang P, Burga R, Castro B, Xiao T, Han Y, Hou D, Sampat S, Cordero A, Stoolman JS, Horbinski CM, Burns M, Reshetnyak YK, Chandel NS, Lesniak MS.
      Glioblastoma is characterized by the robust infiltration of immunosuppressive tumor-associated myeloid cells (TAMCs). It is not fully understood how TAMCs survive in the acidic tumor microenvironment to cause immunosuppression in glioblastoma. Metabolic and RNA-seq analysis of TAMCs revealed that the arginine-ornithine-polyamine axis is up-regulated in glioblastoma TAMCs but not in tumor-infiltrating CD8+ T cells. Active de novo synthesis of highly basic polyamines within TAMCs efficiently buffered low intracellular pH to support the survival of these immunosuppressive cells in the harsh acidic environment of solid tumors. Administration of difluoromethylornithine (DFMO), a clinically approved inhibitor of polyamine generation, enhanced animal survival in immunocompetent mice by causing a tumor-specific reduction of polyamines and decreased intracellular pH in TAMCs. DFMO combination with immunotherapy or radiotherapy further enhanced animal survival. These findings indicate that polyamines are used by glioblastoma TAMCs to maintain normal intracellular pH and cell survival and thus promote immunosuppression during tumor evolution.
    DOI:  https://doi.org/10.1126/sciadv.abc8929
  12. Cancer Res. 2021 Feb 18. pii: canres.2858.2020. [Epub ahead of print]
    Filippova N, Yang X, Ananthan S, Calano J, Pathak V, Bratton L, Vekariya RH, Zhang S, Ofori E, Hayward EN, Namkoong D, Crossman DK, Crowley MR, King PH, Mobley J, Nabors LB.
      The development of novel therapeutics that exploit alterations in the activation state of key cellular signaling pathways due to mutations in upstream regulators has generated the field of personalized medicine. These first-generation efforts have focused on actionable mutations identified by deep sequencing of large numbers of tumor samples. We propose that a second-generation opportunity exists by exploiting key downstream "nodes of control" that contribute to oncogenesis and are inappropriately activated due to loss of upstream regulation and microenvironmental influences. The RNA-binding protein HuR represents such a node. Since HuR functionality in cancer cells is dependent on HuR dimerization and its nuclear/cytoplasmic shuttling, we developed a new class of molecules targeting HuR protein dimerization. A structure-activity relationship algorithm enabled development of inhibitors of HuR multimer formation that were soluble, had micromolar activity, and penetrated the blood-brain-barrier (BBB). These inhibitors were evaluated for activity validation and specificity in a robust cell-based assay of HuR dimerization. SRI-42127, a molecule that met these criteria, inhibited HuR multimer formation across primary patient-derived glioblastoma (PDGx) xenolines, leading to arrest of proliferation, induction of apoptosis, and inhibition of colony formation. SRI-42127 had favorable attributes with central nervous system penetration and inhibited tumor growth in mouse models. RNA and protein analysis of SRI-42127-treated PDGx xenolines across glioblastoma molecular subtypes confirmed attenuation of targets upregulated by HuR. These results highlight how focusing on key attributes of HuR that contribute to cancer progression, namely cytoplasmic localization and multimerization, has led to the development of a novel, highly effective inhibitor.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-20-2858