bims-lysosi Biomed News
on Lysosomes and signaling
Issue of 2021‒03‒07
forty-seven papers selected by
Stephanie Fernandes
Max Planck Institute for Biology of Ageing


  1. Elife. 2021 Mar 01. pii: e63326. [Epub ahead of print]10
      The mechanistic target of rapamycin complex 1 (mTORC1) stimulates a coordinated anabolic program in response to growth-promoting signals. Paradoxically, recent studies indicate that mTORC1 can activate the transcription factor ATF4 through mechanisms distinct from its canonical induction by the integrated stress response (ISR). However, its broader roles as a downstream target of mTORC1 are unknown. Therefore, we directly compared ATF4-dependent transcriptional changes induced upon insulin-stimulated mTORC1 signaling to those activated by the ISR. In multiple mouse embryo fibroblast (MEF) and human cancer cell lines, the mTORC1-ATF4 pathway stimulated expression of only a subset of the ATF4 target genes induced by the ISR, including genes involved in amino acid uptake, synthesis, and tRNA charging. We demonstrate that ATF4 is a metabolic effector of mTORC1 involved in both its established role in promoting protein synthesis and in a previously unappreciated function for mTORC1 in stimulating cellular cystine uptake and glutathione synthesis.
    Keywords:  cancer biology; cell biology; human; mouse; rat
    DOI:  https://doi.org/10.7554/eLife.63326
  2. J Cell Sci. 2021 Mar 01. pii: jcs.255026. [Epub ahead of print]
      Membrane contact sites (MCSs) between endoplasmic reticulum (ER) and late endosomes/lysosomes (LE/lys) are emerging as critical hubs for diverse cellular events, and changes in their extents are linked to severe neurological diseases. While recent studies show that synaptotagmin-like mitochondrial-lipid-binding (SMP) domain-containing protein PDZD8 may mediate the ER-LE/lys MCSs, the cellular functions of PDZD8 remain largely elusive. Here we attempt to investigate lipid transfer activities of PDZD8 and the extent to which its cellular functions depend on its lipid transfer activities. In accordance with recent studies, we demonstrate that PDZD8 is a Protrudin-interacting protein and PDZD8 acts as a tether at ER-LE/lys MCSs. Further, we discover that the SMP domain of PDZD8 binds glycerophospholipids and ceramides both in vivo and in vitro, and the SMP domain can transport lipids between membranes in vitro Functionally, PDZD8 is required for LE/lys positioning and neurite outgrowth, which is dependent on the lipid transfer activity of the SMP domain.
    Keywords:  Endoplasmic reticulum; Late endosome/lysosomes; Lipid transfer; Membrane contact sites; PDZD8
    DOI:  https://doi.org/10.1242/jcs.255026
  3. J Toxicol Sci. 2021 ;46(3): 143-156
      Lysosomes are degradative organelles essential for cell homeostasis. However, various internal and external stimuli, including L-leucyl-L-leucine methyl ester (LLOMe), which is one of the common lysosomotropic agents, permeabilize the lysosomal membrane, leading to lysosome-dependent cell death because of leakage of lysosomal contents to the cytosol. The microphthalmia/transcription factor E (MiT/TFE) family members, which include transcription factor EB (TFEB), transcription factor E3 (TFE3), and microphthalmia-associated transcription factor (MITF), are master regulators of lysosomal biogenesis and are known to be involved in the lysosomal stress response. However, their protective effects against cell death associated with lysosomal-membrane damage are still poorly understood. In this study, we confirmed that LLOMe-induced lysosomal damage triggered nuclear translocation of TFEB/TFE3/MITF and increased the mRNA levels of their target genes encoding lysosomal hydrolases and lysosomal membrane proteins in HeLa cells. Furthermore, we revealed that TFEB/TFE3/MITF knockdown exacerbated LLOMe-induced cell death. However, TFEB overexpression only slightly attenuated LLOMe-induced cell death, despite enhanced LLOMe-induced increase in CTSD mRNA levels, implying that the endogenous levels of MiT/TFE family members might be sufficient to promote lysosomal biogenesis in response to lysosomal-membrane damage. Our results suggest that MiT/TFE family members suppress the cell death associated with lysosomal-membrane damage.
    Keywords:  L-leucyl–L-leucine methyl ester; Lysosomal membrane permeabilization; MiT/TFE family; ​Lysosome
    DOI:  https://doi.org/10.2131/jts.46.143
  4. Cells. 2021 Feb 17. pii: 413. [Epub ahead of print]10(2):
      Alzheimer's disease-associated amyloid beta (Aβ) proteins accumulate in the outer retina with increasing age and in eyes of age-related macular degeneration (AMD) patients. To study Aβ-induced retinopathy, wild-type mice were injected with nanomolar human oligomeric Aβ1-42, which recapitulate the Aβ burden reported in human donor eyes. In vitro studies investigated the cellular effects of Aβ in endothelial and retinal pigment epithelial (RPE) cells. Results show subretinal Aβ-induced focal AMD-like pathology within 2 weeks. Aβ exposure caused endothelial cell migration, and morphological and barrier alterations to the RPE. Aβ co-localized to late-endocytic compartments of RPE cells, which persisted despite attempts to clear it through upregulation of lysosomal cathepsin B, revealing a novel mechanism of lysosomal impairment in retinal degeneration. The rapid upregulation of cathepsin B was out of step with the prolonged accumulation of Aβ within lysosomes, and contrasted with enzymatic responses to internalized photoreceptor outer segments (POS). Furthermore, RPE cells exposed to Aβ were identified as deficient in cargo-carrying lysosomes at time points that are critical to POS degradation. These findings imply that Aβ accumulation within late-endocytic compartments, as well as lysosomal deficiency, impairs RPE function over time, contributing to visual defects seen in aging and AMD eyes.
    Keywords:  age-related macular degeneration (AMD); aging; amyloid beta (Aβ); autophagy–lysosomal pathway; retinal pigment epithelium (RPE); sight loss
    DOI:  https://doi.org/10.3390/cells10020413
  5. Stem Cells Transl Med. 2021 Mar 03.
      Gaucher disease (GD) is a lysosomal storage disorder caused by mutations in GBA1, the gene that encodes lysosomal β-glucocerebrosidase (GCase). Mild mutations in GBA1 cause type 1 non-neuronopathic GD, whereas severe mutations cause types 2 and 3 neuronopathic GD (nGD). GCase deficiency results in the accumulation of glucosylceramide (GlcCer) and glucosylsphingosine (GlcSph). GlcSph is formed by deacylation of GlcCer by the lysosomal enzyme acid ceramidase. Brains from patients with nGD have high levels of GlcSph, a lipid believed to play an important role in nGD, but the mechanisms involved remain unclear. To identify these mechanisms, we used human induced pluripotent stem cell-derived neurons from nGD patients. We found that elevated levels of GlcSph activate mammalian target of rapamycin (mTOR) complex 1 (mTORC1), interfering with lysosomal biogenesis and autophagy, which were restored by incubation of nGD neurons with mTOR inhibitors. We also found that inhibition of acid ceramidase prevented both, mTOR hyperactivity and lysosomal dysfunction, suggesting that these alterations were caused by GlcSph accumulation in the mutant neurons. To directly determine whether GlcSph can cause mTOR hyperactivation, we incubated wild-type neurons with exogenous GlcSph. Remarkably, GlcSph treatment recapitulated the mTOR hyperactivation and lysosomal abnormalities in mutant neurons, which were prevented by coincubation of GlcSph with mTOR inhibitors. We conclude that elevated GlcSph activates an mTORC1-dependent pathogenic mechanism that is responsible for the lysosomal abnormalities of nGD neurons. We also identify acid ceramidase as essential to the pathogenesis of nGD, providing a new therapeutic target for treating GBA1-associated neurodegeneration.
    Keywords:  drug target; experimental models; iPSCs; neural differentiation; neuropathy; signal transduction; stem/progenitor cell
    DOI:  https://doi.org/10.1002/sctm.20-0386
  6. J Exp Neurol. 2021 ;2(1): 10-15
      Alzheimer disease (AD) is a debilitating neurodegenerative disorder characterized by extracellular deposition of the amyloid β-protein (Aβ) and intraneuronal accumulation of the microtubule-associated protein, tau. Despite a wealth of experimental and genetic evidence implicating both Aβ and tau in the pathogenesis of AD, the precise molecular links between these two pathological hallmarks have remained surprisingly elusive. Here, we review emerging evidence for a critical nexus among Aβ, tau, and the lysosomal protease cathepsin D (CatD) that we hypothesize may play a pivotal role in the etiology of AD. CatD degrades both Aβ and tau in vitro, but the in vivo relevance of this lysosomal protease to these principally extracellular and cytosolic proteins, respectively, had remained undefined for many decades. Recently, however, our group found that genetic deletion of CatD in mice results in dramatic accumulation of Aβ in lysosomes, revealing that Aβ is normally trafficked to lysosomes in substantial quantities. Moreover, emerging evidence suggests that tau is also trafficked to the lysosome via chaperone-mediated autophagy and other trafficking pathways. Thus, Aβ, tau and CatD are colocalized in the lysosome, an organelle that shows dysfunction early in AD pathogenesis, where they can potentially interact. Notably, we discovered that Aβ42-the Aβ species most strongly linked to AD pathogenesis-is a highly potent, low-nanomolar, competitive inhibitor of CatD. Taking these observations together, we hypothesize that Aβ42 may trigger tauopathy by competitive inhibition of CatD-mediated degradation of tau-pathogenic forms of tau, in particular. Herein, we review the evidence supporting this hypothesis and explore the implications for the molecular pathogenesis of AD. Future research into these novel mechanistic links among Aβ, tau and CatD promises to expand our understanding of the etiology of AD and could potentially lead to novel therapeutic approaches for combatting this devastating disease of brain and mind.
    Keywords:  Alzheimer disease; Amyloid β-protein; Cathepsin D; Lysosome; Tau
  7. Cells. 2021 Feb 17. pii: 420. [Epub ahead of print]10(2):
      Lysosomal storage disease (LSD) is an inherited metabolic disorder caused by enzyme deficiency in lysosomes. Some treatments for LSD can slow progression, but there are no effective treatments to restore the pathological phenotype to normal levels. Lysosomes and mitochondria interact with each other, and this crosstalk plays a role in the maintenance of cellular homeostasis. Deficiency of lysosome enzymes in LSD impairs the turnover of mitochondrial defects, leading to deterioration of the mitochondrial respiratory chain (MRC). Cells with MRC impairment are associated with reduced lysosomal calcium homeostasis, resulting in impaired autophagic and endolysosomal function. This malicious feedback loop between lysosomes and mitochondria exacerbates LSD. In this review, we assess the interactions between mitochondria and lysosomes and propose the mitochondrial-lysosomal axis as a research target to treat LSD. The importance of the mitochondrial-lysosomal axis has been systematically characterized in several studies, suggesting that proper regulation of this axis represents an important investigative guide for the development of therapeutics for LSD. Therefore, studying the mitochondrial-lysosomal axis will not only add knowledge of the essential physiological processes of LSD, but also provide new strategies for treatment of LSD.
    Keywords:  lysosomal storage disease; lysosome; mitochondria; mitochondrial–lysosomal axis
    DOI:  https://doi.org/10.3390/cells10020420
  8. J Clin Invest. 2021 Mar 01. pii: 146821. [Epub ahead of print]131(5):
      Lysosomal storage disorders (LSD) are a group of inherited metabolic diseases characterized by lysosomal enzyme deficiency. The cardiac phenotype includes cardiomyopathy with eventual heart failure. Lysosome-mediated degradation processes, such as autophagy, maintain cellular homeostasis by discarding cellular debris and damaged organelles. Under stress, the transcription factor EB (TFEB) moves into the nucleus to activate transcription of lysosome biogenesis and autophagic proteins. In this issue of the JCI, Ikeda et al. report on their exploration of the signaling pathway involved with regulating lysosomal proteins specifically in the heart. The researchers generated a mouse model for LSD that was restricted to cardiac tissue. Unexpectedly, modulation of TFEB alone was insufficient to fully rescue the underlying clearance defect in lysosomal-associated disorders. The authors identified the Yes-associated protein (YAP)/TFEB signaling pathway as a key regulator of autophagosomes. These findings suggest that undigested autophagosomes accumulate and result in the cell death and cardiac dysfunction observed with LSD.
    DOI:  https://doi.org/10.1172/JCI146821
  9. Proc Natl Acad Sci U S A. 2021 Mar 09. pii: e2021945118. [Epub ahead of print]118(10):
      Mechanistic Target of Rapamycin Complex 1 (mTORC1) is a central regulator of cell growth and metabolism that senses and integrates nutritional and environmental cues with cellular responses. Recent studies have revealed critical roles of mTORC1 in RNA biogenesis and processing. Here, we find that the m6A methyltransferase complex (MTC) is a downstream effector of mTORC1 during autophagy in Drosophila and human cells. Furthermore, we show that the Chaperonin Containing Tailless complex polypeptide 1 (CCT) complex, which facilitates protein folding, acts as a link between mTORC1 and MTC. The mTORC1 activates the chaperonin CCT complex to stabilize MTC, thereby increasing m6A levels on the messenger RNAs encoding autophagy-related genes, leading to their degradation and suppression of autophagy. Altogether, our study reveals an evolutionarily conserved mechanism linking mTORC1 signaling with m6A RNA methylation and demonstrates their roles in suppressing autophagy.
    Keywords:  autophagy; chaperonin containing Tailless complex polypeptide 1 (CCT); m6A RNA methylation; m6A methyltransferase complex (MTC); mTORC1
    DOI:  https://doi.org/10.1073/pnas.2021945118
  10. Int J Mol Sci. 2021 Feb 11. pii: 1784. [Epub ahead of print]22(4):
      The mechanistic target of rapamycin (mTOR) is a master regulator of cell growth, proliferation, and metabolism by integrating various environmental inputs including growth factors, nutrients, and energy, among others. mTOR signaling has been demonstrated to control almost all fundamental cellular processes, such as nucleotide, protein and lipid synthesis, autophagy, and apoptosis. Over the past fifteen years, mapping the network of the mTOR pathway has dramatically advanced our understanding of its upstream and downstream signaling. Dysregulation of the mTOR pathway is frequently associated with a variety of human diseases, such as cancers, metabolic diseases, and cardiovascular and neurodegenerative disorders. Besides genetic alterations, aberrancies in post-translational modifications (PTMs) of the mTOR components are the major causes of the aberrant mTOR signaling in a number of pathologies. In this review, we summarize current understanding of PTMs-mediated regulation of mTOR signaling, and also update the progress on targeting the mTOR pathway and PTM-related enzymes for treatment of human diseases.
    Keywords:  human diseases; inhibitors; mTOR; post-translational modifications
    DOI:  https://doi.org/10.3390/ijms22041784
  11. Bio Protoc. 2019 Dec 20. 9(24): e3455
      The process of autophagy is an essential cellular mechanism, required to maintain general cell health through the removal of dysfunctional organelles, such as the ER, peroxisomes and mitochondria, as well as protein aggregates, and bacteria. Autophagy is an extremely dynamic process, and tools are constantly being developed to study the various steps of this process. This protocol details a method to study the end steps of autophagy-lysosomal fusion and the formation of the autolysosome. Many techniques have been used to study the various steps of the autophagy process. Here we describe the RedGreen-assay (RG-assay), an immunofluorescence-based technique used to visualize the targeting of substrates to the autolysosome in live cells. This technique takes advantage of the low lysosomal pH and over-expression of a tandem GFP-mCherry tagged protein targeted to an organelle of interest. While in the neutral cytosol or autophagosome, both GFP and RFP will fluoresce. However, within the autolysosome, the GFP signal is quenched due to the low pH environment and the RFP emission signal will predominate. This technique is readily quantifiable and amenable to high throughput experiments. Additionally, by tagging the GFP-RFP tandem fluorescent protein with organelle specific targeting sequences, it can be used to measure a wide range of substrates of autophagy.
    Keywords:  Autolysosome; Autophagy; Live-cell imaging; Lysosome; Microscopy; Mitophagy; Pexophagy
    DOI:  https://doi.org/10.21769/BioProtoc.3455
  12. Bio Protoc. 2019 Sep 20. 9(18): e3362
      The enrichment of lysosomes is a useful way to study their structure and function. These dynamic vesicles can be enriched from cell cultures in a variety of ways including immunoprecipitation and fluorescence-activated organelle sorting. These methods are extremely precise but often require the transfection and expression of an affinity or fluorophore-tagged lysosomal membrane protein. A simpler approach uses differential density of subcellular organelles, which are characteristic to a particular type of organelle. Separation of organelles along a density-gradient enables fractionation to enrich for specific organelles (such as lysosomes) in their native state. This protocol outlines an optimized method for enriching lysosomes from HeLa cells with a continuous density-gradient that contains Percoll. Gentle cell lysis and extraction conditions yield dense-fractions that are enriched with functional and intact lysosomes, which can be assayed in downstream analyses. This method is quick (conducted in less than 2 h after harvesting cells), and can be easily scaled and optimized for other cell types.
    Keywords:  Density gradient; HeLa; Lysosome; Organelle enrichment; Subcellular fractionation
    DOI:  https://doi.org/10.21769/BioProtoc.3362
  13. Ann Rheum Dis. 2021 Mar 03. pii: annrheumdis-2020-219649. [Epub ahead of print]
      OBJECTIVES: Sjögren's syndrome (SS) is an autoimmune sialadenitis with unknown aetiology. Although extensive research implicated an abnormal immune response associated with lymphocytes, an initiating event mediated by salivary gland epithelial cell (SGEC) abnormalities causing activation is poorly characterised. Transcriptome studies have suggested alternations in lysosomal function are associated with SS, but a cause and effect linkage has not been established. In this study, we demonstrated that altered lysosome activity in SGECs by expression of lysosome-associated membrane protein 3 (LAMP3) can initiate an autoimmune response with autoantibody production and salivary dysfunction similar to SS.METHODS: Retroductal cannulation of the submandibular salivary glands with an adeno-associated virus serotype 2 vector encoding LAMP3 was used to establish a model system. Pilocarpine-stimulated salivary flow and the presence of autoantibodies were assessed at several time points post-cannulation. Salivary glands from the mice were evaluated using RNAseq and histologically.
    RESULTS: Following LAMP3 expression, saliva flow was significantly decreased and serum anti-Ro/SSA and La/SSB antibodies could be detected in the treated mice. Mechanistically, LAMP3 expression increased apoptosis in SGECs and decreased protein expression related to saliva secretion. Analysis of RNAseq data suggested altered lysosomal function in the transduced SGECs, and that the cellular changes can chemoattract immune cells into the salivary glands. Immune cells were activated via toll-like receptors by damage-associated molecular patterns released from LAMP3-expressing SGECs.
    CONCLUSIONS: These results show a critical role for lysosomal trafficking in the development of SS and establish a causal relationship between LAMP3 misexpression and the development of SS.
    Keywords:  Sjogren's syndrome; autoantibodies; autoimmunity
    DOI:  https://doi.org/10.1136/annrheumdis-2020-219649
  14. iScience. 2021 Feb 19. 24(2): 102099
      Two-pore channels (TPCs) are key components for regulating Ca2+ current from endosomes and lysosomes to the cytosol. This locally restricted Ca2+ current forms the basis for fusion and fission events between endolysosomal membranes and thereby for intracellular trafficking processes. Here, we study the function of TPC1 and TPC2 for uptake, recycling, and degradation of epidermal growth factor receptor (EGFR) using a set of TPC knockout cells. RNA sequencing analysis revealed multiple changes in the expression levels of EGFR pathway-related genes in TPC1-deficient cells. We propose that a prolonged presence of activated EGFRs in endolysosomal signaling platforms, caused by genetic inactivation of TPCs, does not only affect EGFR signaling pathways but also increases de novo synthesis of EGFR. Increased basal phospho-c-Jun levels contribute to the high EGFR expression in TPC-deficient cells. Our data point to a role of TPCs not only as important regulators for the EGFR transportation network but also for EGFR-signaling and expression.
    Keywords:  Biomolecules; Membranes; Molecular Biology
    DOI:  https://doi.org/10.1016/j.isci.2021.102099
  15. Cells. 2021 Feb 16. pii: 404. [Epub ahead of print]10(2):
      DJ-1 is an abundant and ubiquitous component of cellular proteomes. DJ-1 supposedly exerts a wide variety of molecular functions, ranging from enzymatic activities as a deglycase, protease, and esterase to chaperone functions. However, a consensus perspective on its molecular function in the cellular context has not yet been reached. Structurally, the C-terminal helix 8 of DJ-1 has been proposed to constitute a propeptide whose proteolytic removal transforms a DJ-1 zymogen to an active hydrolase with potential proteolytic activity. To better understand the cell-contextual functionality of DJ-1 and the role of helix 8, we employed post-mitotically differentiated, neuron-like SH-SY5Y neuroblastoma cells with stable over-expression of full length DJ-1 or DJ-1 lacking helix 8 (ΔH8), either with a native catalytically active site (C106) or an inactive site (C106A active site mutation). Global proteome comparison of cells over-expressing DJ-1 ΔH8 with native or mutated active site cysteine indicated a strong impact on mitochondrial biology. N-terminomic profiling however did not highlight direct protease substrate candidates for DJ-1 ΔH8, but linked DJ-1 to elevated levels of activated lysosomal proteases, albeit presumably in an indirect manner. Finally, we show that DJ-1 ΔH8 loses the deglycation activity of full length DJ-1. Our study further establishes DJ-1 as deglycation enzyme. Helix 8 is essential for the deglycation activity but dispensable for the impact on lysosomal and mitochondrial biology; further illustrating the pleiotropic nature of DJ-1.
    Keywords:  PARK7; TAILS; cathepsin b; degradation; glycase; lysosome; neurodegenerative disease; parkinson disease; protease; proteomics
    DOI:  https://doi.org/10.3390/cells10020404
  16. FEBS Open Bio. 2021 Feb 28.
      Rab44 is a large Rab GTPase containing a Rab GTPase domain and some additional N-terminal domains. We recently used Rab44-deficient mice to demonstrate that Rab44 regulates granule exocytosis in mast cells and IgE-mediated anaphylaxis. In mouse mast cells, Rab44 is expressed as two isoforms, namely, the long and short forms; however, the characteristics of these two isoforms remain unknown. Here, we investigated secretion and localization of the human long Rab44 isoform and the two mouse isoforms and their mutants expressed in rat basophilic leukemia (RBL)-2H3 cells. Expression of the human long isoform and both mouse isoforms caused an increase in β-hexosaminidase secretion. Confocal and quantitative analyses showed that both human and mouse long isoforms localized mainly to lysosomes while the mouse short isoform localized mainly to the ER. Live imaging with LysoTracker indicated that the size and number of LysoTracker-positive vesicles were altered by the various mutants. Ionomycin treatment partially altered localization of both long isoforms to the plasma membrane and cytosol, whereas it had little effect on colocalization of the short isoform with lysosomes. Mechanistically, both human and mouse Rab44 proteins interacted with vesicle-associated membrane protein 8 (VAMP8), a v-SNARE protein. Therefore, Rab44 isoforms similarly promote lysosomal exocytosis, but exhibit differential localization in mast cells.
    Keywords:  Rab44; exocytosis; isoforms; large GTPase; mast cells
    DOI:  https://doi.org/10.1002/2211-5463.13133
  17. Physiol Rep. 2021 Mar;9(5): e14789
      Mechanistic/mammalian target of rapamycin (mTOR) is a central factor of protein synthesis signaling and plays an important role in the resistance training-induced increase in skeletal muscle mass and subsequent skeletal muscle hypertrophy response. In particular, mTOR complex 1 (mTORC1) promotes protein synthesis in ribosomes by activating the downstream effectors, p70S6K and 4EBP1, in skeletal muscle and is highly sensitive to rapamycin, an mTOR inhibitor. Recently, resistance training has also been shown to affect mitochondrial dynamics, which is coupled with mitochondrial function. In skeletal muscle, mitochondria dynamically change their morphology through repeated fusion and fission, which may be key for controlling the quality of skeletal muscle. However, how the mechanisms of mitochondrial dynamics function during hypertrophy in skeletal muscle remains unclear. The aim of this study was to examine the impact of mTOR inhibition on mitochondrial dynamics during skeletal muscle hypertrophy. Consistent with previous studies, functional overload by synergist (gastrocnemius and soleus) ablation-induced progressive hypertrophy (increase in protein synthesis and fiber cross-sectional area) of the plantaris muscle was observed in mice. Moreover, these hypertrophic responses were significantly inhibited by rapamycin administration. Fourteen days of functional overload increased levels of MFN2 and OPA1, which regulate mitochondrial fusion, whereas this enhancement was inhibited by rapamycin administration. Additionally, overload decreased the levels of DRP1, which regulates mitochondrial fission and oxidative phosphorylation, regardless of rapamycin administration. These observations suggest that the relative reduction in mitochondrial function or content is complemented by enhancement of mitochondrial fusion and that this complementary response may be regulated by mTORC1.
    Keywords:  mTOR signaling; mitochondrial dynamics; skeletal muscle hypertrophy
    DOI:  https://doi.org/10.14814/phy2.14789
  18. Front Med (Lausanne). 2020 ;7 591736
      Autophagy is a highly conserved process by which superfluous or harmful components in eukaryotic cells are degraded by autophagosomes. This cytoprotective mechanism is strongly related to various human diseases, such as cancer, autoimmune diseases, and diabetes. DEAH-box helicase 15 (DHX15), a member of the DEAH box family, is mainly involved in RNA splicing and ribosome maturation. Recently, DHX15 was identified as a tumor-related factor. Although both autophagy and DHX15 are involved in cellular metabolism and cancer progression, their exact relationship and mechanism remain elusive. In this study, we discovered a non-classic function of DHX15 and identified DHX15 as a suppressive protein in autophagy for the first time. We further found that mTORC1 is involved in DHX15-mediated regulation of autophagy and that DHX15 inhibits proliferation of hepatocellular carcinoma (HCC) cells by suppressing autophagy. In conclusion, our study demonstrates a non-classical function of DHX15 as a negative regulator of autophagy related to the mTORC1 pathway and reveals that DHX15-related autophagy dysfunction promotes HCC cell proliferation, indicating that DHX15 may be a target for liver cancer treatment.
    Keywords:  DEAH-box helicase 15; HCC cells; RNA helicase; autophagy; mTORC1
    DOI:  https://doi.org/10.3389/fmed.2020.591736
  19. STAR Protoc. 2021 Mar 19. 2(1): 100349
      Hsp70 inhibitors have great potential as chemical probes and anticancer agents. Thus, it is important to elucidate their modes of action on cancer cell death. This protocol describes a step-by-step process for the synthesis of apoptozole as an inhibitor of Hsp70, analysis of internalization of apoptozole into lysosomes, and assessment of lysosomal membrane permeabilization induced by apoptozole. The current protocol can be used for detailed mechanistic studies of Hsp70 inhibitors and further substances targeting lysosomal proteins on cancer cell death. For complete information on the use and execution of this protocol, please refer to Park et al. (2018).
    Keywords:  Cancer; Molecular Biology; Molecular/Chemical Probes
    DOI:  https://doi.org/10.1016/j.xpro.2021.100349
  20. STAR Protoc. 2021 Mar 19. 2(1): 100340
      Lysosomes are critical for maintaining protein homeostasis and cellular metabolism. Lysosomal dysfunction and disrupted protein trafficking contribute to cell death in neurodegenerative disorders, including Parkinson's disease and dementia. We describe three complementary protocols-the use of protein glycosylation, western blotting, immunofluorescence, and hydrolase activity measurement-to analyze the trafficking and activity of lysosomal proteins in patient-derived neurons differentiated from iPSCs. These methods should help to identify lysosomal phenotypes in patient-derived cultures and aid the discovery of therapeutics that augment lysosomal function. For complete details on the use and execution of this protocol, please refer to Cuddy et al. (2019).
    Keywords:  Neuroscience; Protein biochemistry; Stem cells
    DOI:  https://doi.org/10.1016/j.xpro.2021.100340
  21. Biomolecules. 2021 Feb 12. pii: 271. [Epub ahead of print]11(2):
      Fabry disease (FD) is a lysosomal storage disorder (LSD) characterized by the deficiency of α-galactosidase A (α-GalA) and the consequent accumulation of toxic metabolites such as globotriaosylceramide (Gb3) and globotriaosylsphingosine (lysoGb3). Early diagnosis and appropriate timely treatment of FD patients are crucial to prevent tissue damage and organ failure which no treatment can reverse. LSDs might profit from four main therapeutic strategies, but hitherto there is no cure. Among the therapeutic possibilities are intravenous administered enzyme replacement therapy (ERT), oral pharmacological chaperone therapy (PCT) or enzyme stabilizers, substrate reduction therapy (SRT) and the more recent gene/RNA therapy. Unfortunately, FD patients can only benefit from ERT and, since 2016, PCT, both always combined with supportive adjunctive and preventive therapies to clinically manage FD-related chronic renal, cardiac and neurological complications. Gene therapy for FD is currently studied and further strategies such as substrate reduction therapy (SRT) and novel PCTs are under investigation. In this review, we discuss the molecular basis of FD, the pathophysiology and diagnostic procedures, together with the current treatments and potential therapeutic avenues that FD patients could benefit from in the future.
    Keywords:  A4GALT; Fabry disease; enzyme replacement therapy; globotriaosyl-sphingosine (lysoGb3); globotriaosylceramide (Gb3); lysosomal storage disorders; pharmacological chaperone therapy; substrate reduction therapy; α-galactosidase A
    DOI:  https://doi.org/10.3390/biom11020271
  22. Cell Stem Cell. 2021 Mar 04. pii: S1934-5909(21)00067-9. [Epub ahead of print]28(3): 374-377
      The depth of quiescence in hematopoietic stem cells (HSCs) dictates their potency and is sensitive to metabolic perturbations. Recent evidence suggests that lysosomal functions distinct from autophagic processes are pivotal in regulating quiescence versus activation by potential control of the access to a nutrient reservoir required for HSC activation.
    DOI:  https://doi.org/10.1016/j.stem.2021.02.017
  23. EMBO J. 2021 Mar 01. e106922
      The compartmentalization of eukaryotic cells, which is essential for their viability and functions, is ensured by single or double bilayer membranes that separate the cell from the exterior and form boundaries between the cell's organelles and the cytosol. Nascent nuclear envelopes and autophagosomes, which both are enveloped by double membranes, need to be sealed during the late stage of their biogenesis. On the other hand, the integrity of cellular membranes such as the plasma membrane, lysosomes and the nuclear envelope can be compromised by pathogens, chemicals, radiation, inflammatory responses and mechanical stress. There are cellular programmes that restore membrane integrity after injury. Here, we review cellular mechanisms that have evolved to maintain membrane integrity during organelle biogenesis and after injury, including membrane scission mediated by the endosomal sorting complex required for transport (ESCRT), vesicle patching and endocytosis.
    Keywords:  ESCRT; autophagy; endocytosis; lysosome; membrane repair
    DOI:  https://doi.org/10.15252/embj.2020106922
  24. Bio Protoc. 2020 Aug 05. 10(15): e3703
      Cell signalling, cell secretion, and plasma membrane repair are processes that critically rely on intracellular vesicles, important components of the endocytic and secretory pathways. More specifically, the strategic distribution of intracellular vesicles is important for diverse cellular processes. The method presented here is a simple, affordable, and efficient tool to analyze the distribution of intracellular vesicles such as lysosomes, endosomes, Golgi vesicles or secretory granules under different experimental conditions. The method is an accessible way to analyze the density and dispersion of intracellular vesicles by combining immunofluorescence with pixel-based quantification software (e.g., ImageJ/FIJI). This protocol can be used widely within the scientific community because it utilizes ImageJ/FIJI, an open source software that is free. By tracking fluorescent vesicles based on their position relative to cell nuclei we are able to quantify and analyze their distribution throughout the cell.
    Keywords:  Endocytic vesicles; Fluorescence microscopy; ImageJ/FIJI; Intracellular vesicles; Lysosomal dispersion; Vesicle dispersion
    DOI:  https://doi.org/10.21769/BioProtoc.3703
  25. Front Cell Dev Biol. 2021 ;9 626404
      The protein kinase Akt/PKB participates in a great variety of processes, including translation, cell proliferation and survival, as well as malignant transformation and viral infection. In the last few years, novel Akt posttranslational modifications have been found. However, how these modification patterns affect Akt subcellular localization, target specificity and, in general, function is not thoroughly understood. Here, we postulate and experimentally demonstrate by acyl-biotin exchange (ABE) assay and 3H-palmitate metabolic labeling that Akt is S-palmitoylated, a modification related to protein sorting throughout subcellular membranes. Mutating cysteine 344 into serine blocked Akt S-palmitoylation and diminished its phosphorylation at two key sites, T308 and T450. Particularly, we show that palmitoylation-deficient Akt increases its recruitment to cytoplasmic structures that colocalize with lysosomes, a process stimulated during autophagy. Finally, we found that cysteine 344 in Akt1 is important for proper its function, since Akt1-C344S was unable to support adipocyte cell differentiation in vitro. These results add an unexpected new layer to the already complex Akt molecular code, improving our understanding of cell decision-making mechanisms such as cell survival, differentiation and death.
    Keywords:  Akt; Golgi; S-palmitoylation; autophagy; cell differentiation; cell signaling; lysosomes; subcellular localization
    DOI:  https://doi.org/10.3389/fcell.2021.626404
  26. Mol Ther Methods Clin Dev. 2021 Mar 12. 20 497-507
      Batten disease is a family of rare, fatal, neuropediatric diseases presenting with memory/learning decline, blindness, and loss of motor function. Recently, we reported the use of an AAV9-mediated gene therapy that prevents disease progression in a mouse model of CLN6-Batten disease (Cln6 nclf ), restoring lifespans in treated animals. Despite the success of our viral-mediated gene therapy, the dosing strategy was optimized for delivery to the brain parenchyma and may limit the therapeutic potential to other disease-relevant tissues, such as the eye. Here, we examine whether cerebrospinal fluid (CSF) delivery of scAAV9.CB.CLN6 is sufficient to ameliorate visual deficits in Cln6 nclf mice. We show that intracerebroventricular (i.c.v.) delivery of scAAV9.CB.CLN6 completely prevents hallmark Batten disease pathology in the visual processing centers of the brain, preserving neurons of the superior colliculus, thalamus, and cerebral cortex. Importantly, i.c.v.-delivered scAAV9.CB.CLN6 also expresses in many cells throughout the central retina, preserving many photoreceptors typically lost in Cln6 nclf mice. Lastly, scAAV9.CB.CLN6 treatment partially preserved visual acuity in Cln6 nclf mice as measured by optokinetic response. Taken together, we report the first instance of CSF-delivered viral gene reaching and rescuing pathology in both the brain parenchyma and retinal neurons, thereby partially slowing visual deterioration.
    Keywords:  AAV9; Batten disease; CLN6; Gene therapy; ICV; NCL; retina; vision
    DOI:  https://doi.org/10.1016/j.omtm.2020.12.014
  27. Front Neurol. 2021 ;12 639319
      Epilepsy affects ~5 out of every 10,000 children per year. Up to one-third of these children have medically refractory epilepsy, with limited to no options for improved seizure control. mTOR, a ubiquitous 289 kDa serine/threonine kinase in the phosphatidylinositol 3-kinase (PI3K)-related kinases (PIKK) family, is dysregulated in a number of human diseases, including tuberous sclerosis complex (TSC) and epilepsy. In cell models of epilepsy and TSC, rapamycin, an mTOR inhibitor, has been shown to decrease seizure frequency and duration, and positively affect cell growth and morphology. Rapamycin has also been shown to prevent or improve epilepsy and prolong survival in animal models of TSC. To date, clinical studies looking at the effects of mTOR inhibitors on the reduction of seizures have mainly focused on patients with TSC. Everolimus (Novartis Pharmaceuticals), a chemically modified rapamycin derivative, has been shown to reduce seizure frequency with reasonable safety and tolerability. Mutations in mTOR or the mTOR pathway have been found in hemimegalencephaly (HME) and focal cortical dysplasias (FCDs), both of which are highly correlated with medically refractory epilepsy. Given the evidence to date, a logical next step is to investigate the role of mTOR inhibitors in the treatment of children with medically refractory non-TSC epilepsy, particularly those children who have also failed resective surgery.
    Keywords:  cortical dysplasia; hemimegalencephaly; mTOR; non-tuberous sclerosis complex-related epilepsy; pediatric epilepsy
    DOI:  https://doi.org/10.3389/fneur.2021.639319
  28. Bio Protoc. 2020 Oct 20. 10(20): e3794
      Endocytic trafficking and recycling are fundamental cellular processes that control essential functions such as signaling protein complexes transport and membrane identity. The small GTPase Rabs are indispensable component of the endosomal recycling machinery. The Rabs bind to effectors to mediate their functions, such as protein sorting and degradation, membrane tethering or lipid modification, and organelle motility. Due to the complex and dynamic nature of endosomal compartments and tracking route, detailed multiparametric analyses of three-dimensional data by quantitative methods are challenging. Here, we describe a detailed time-lapse imaging protocol designed for the quantitative tracking of single endosomal vesicles, using GFP-Rab4-positive recycling endosomes. This method permits automated tracking of single endocytic vesicles in three-dimensional live cell imaging, allowing the study of multiple parameters such as abundance, speed, directionality, and subcellular localization, as well as protein colocalization. This protocol can be broadly used in any kind of cellular models, under various contexts, including growth factors stimulation, gene knockdowns, drug treatments, and is suitable for high throughput screens.
    Keywords:  Confocal microscopy; Endocytosis; GFP-Rab4; Rab GTPase; Single-vesicle 3D tracking
    DOI:  https://doi.org/10.21769/BioProtoc.3794
  29. Commun Biol. 2021 Mar 05. 4(1): 291
      Pivotal to the maintenance of cellular homeostasis, macroautophagy (hereafter autophagy) is an evolutionarily conserved degradation system that involves sequestration of cytoplasmic material into the double-membrane autophagosome and targeting of this transport vesicle to the lysosome/late endosome for degradation. EPG5 is a large-sized metazoan protein proposed to serve as a tethering factor to enforce autophagosome-lysosome/late endosome fusion specificity, and its deficiency causes a severe multisystem disorder known as Vici syndrome. Here, we show that human EPG5 (hEPG5) adopts an extended "shepherd's staff" architecture. We find that hEPG5 binds preferentially to members of the GABARAP subfamily of human ATG8 proteins critical to autophagosome-lysosome fusion. The hEPG5-GABARAPs interaction, which is mediated by tandem LIR motifs that exhibit differential affinities, is required for hEPG5 recruitment to mitochondria during PINK1/Parkin-dependent mitophagy. Lastly, we find that the Vici syndrome mutation Gln336Arg does not affect the hEPG5's overall stability nor its ability to engage in interaction with the GABARAPs. Collectively, results from our studies reveal new insights into how hEPG5 recognizes mature autophagosome and establish a platform for examining the molecular effects of Vici syndrome disease mutations on hEPG5.
    DOI:  https://doi.org/10.1038/s42003-021-01830-x
  30. Small GTPases. 2021 Mar 05. 1-21
      The hexanucleotide repeat (GGGGCC) expansion in C9orf72 is accounted for a large proportion of the genetic amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The hypotheses of how the massive G4C2 repeats in C9orf72 destroy the neurons and lead to ALS/FTD are raised and improving. As a multirole player, C9orf72 exerts critical roles in many cellular processes, including autophagy, membrane trafficking, immune response, and so on. Notably, the partners of C9orf72, through which C9orf72 participates in the cell activities, have been identified. Notably, the structures of the C9orf72-SMCR8-WDR41 complex shed light on its activity as GTPase activating proteins (GAP). In this manuscript, we reviewed the latest research progress in the C9orf72-mediated ALS/FTD, the physiological functions of C9orf72, and the putative function models of C9orf72/C9orf72-containing complex.
    Keywords:  C9orf72; DENN domain; GAP; GEF; SMCR8; WDR41; autophagy; lysosome; mTOR; membrane trafficking; neurodegenerative
    DOI:  https://doi.org/10.1080/21541248.2021.1892443
  31. J Inherit Metab Dis. 2021 Mar 04.
      Fabry disease (FD) is an X-linked lysosomal storage disorder. Deficiency of the lysosomal enzyme alpha-galactosidase (GLA) leads to accumulation of potentially toxic globotriaosylceramide (Gb3) on a multisystem level. Cardiac and cerebrovascular abnormalities as well as progressive renal failure are severe, life-threatening long-term complications. The complete pathophysiology of chronic kidney disease (CKD) in FD and the role of tubular involvement for its progression are unclear. We established human renal tubular epithelial cell lines from the urine of male FD patients and male controls. The renal tubular system is rich in mitochondria and involved in transport processes at high energy costs. Our studies revealed fragmented mitochondria with disrupted cristae structure in FD patient cells. Oxidative stress levels were elevated and oxidative phosphorylation was up-regulated in FD pointing at enhanced energetic needs. Mitochondrial homeostasis and energy metabolism revealed major changes as evidenced by differences in mitochondrial number, energy production and fuel consumption. The changes were accompanied by activation of the autophagy machinery in FD. Sirtuin1, an important sensor of (renal) metabolic stress and modifier of different defense pathways, was highly expressed in FD. Our data show that lysosomal FD impairs mitochondrial function and results in severe disturbance of mitochondrial energy metabolism in renal cells. This insight on a tissue-specific level points to new therapeutic targets which might enhance treatment efficacy. This article is protected by copyright. All rights reserved.
    DOI:  https://doi.org/10.1002/jimd.12373
  32. iScience. 2021 Mar 19. 24(3): 102154
      We show the successful application of ancestral sequence reconstruction to enhance the activity of iduronate-2-sulfatase (IDS), thereby increasing its therapeutic potential for the treatment of Hunter syndrome-a lysosomal storage disease caused by impaired function of IDS. Current treatment, enzyme replacement therapy with recombinant human IDS, does not alleviate all symptoms, and an unmet medical need remains. We reconstructed putative ancestral sequences of mammalian IDS and compared them with extant IDS. Some ancestral variants displayed up to 2-fold higher activity than human IDS in in vitro assays and cleared more substrate in ex vivo experiments in patient fibroblasts. This could potentially allow for lower dosage or enhanced therapeutic effect in enzyme replacement therapy, thereby improving treatment outcomes and cost efficiency, as well as reducing treatment burden. In summary, we showed that ancestral sequence reconstruction can be applied to lysosomal enzymes that function in concert with modern enzymes and receptors in cells.
    Keywords:  Biochemistry; Structural Biology
    DOI:  https://doi.org/10.1016/j.isci.2021.102154
  33. Proc Natl Acad Sci U S A. 2021 Mar 09. pii: e2009469118. [Epub ahead of print]118(10):
      Charcot-Marie-Tooth type 4B1 (CMT4B1) is a severe autosomal recessive demyelinating neuropathy with childhood onset, caused by loss-of-function mutations in the myotubularin-related 2 (MTMR2) gene. MTMR2 is a ubiquitously expressed catalytically active 3-phosphatase, which in vitro dephosphorylates the 3-phosphoinositides PtdIns3P and PtdIns(3,5)P 2, with a preference for PtdIns(3,5)P 2 A hallmark of CMT4B1 neuropathy are redundant loops of myelin in the nerve termed myelin outfoldings, which can be considered the consequence of altered growth of myelinated fibers during postnatal development. How MTMR2 loss and the resulting imbalance of 3'-phosphoinositides cause CMT4B1 is unknown. Here we show that MTMR2 by regulating PtdIns(3,5)P 2 levels coordinates mTORC1-dependent myelin synthesis and RhoA/myosin II-dependent cytoskeletal dynamics to promote myelin membrane expansion and longitudinal myelin growth. Consistent with this, pharmacological inhibition of PtdIns(3,5)P 2 synthesis or mTORC1/RhoA signaling ameliorates CMT4B1 phenotypes. Our data reveal a crucial role for MTMR2-regulated lipid turnover to titrate mTORC1 and RhoA signaling thereby controlling myelin growth.
    Keywords:  Charcot-Marie-Tooth neuropathies; Schwann cells; myelin; myotubularin; phosphoinositides
    DOI:  https://doi.org/10.1073/pnas.2009469118
  34. Diagnostics (Basel). 2021 Feb 16. pii: 320. [Epub ahead of print]11(2):
      Increased activity of dipeptidyl peptidase IV (DPP-IV) was reported earlier in patients with different types of mucopolysaccharidoses. DPP-IV (also known as CD26 lymphocyte T surface antigen) is a transmembrane protein showing protease activity. This enzyme displays various functions in the organism and plays an important role in multiple processes like glucose metabolism, nociception, cell-adhesion, psychoneuroendocrine regulation, immune response and cardiovascular adaptation. In order to evaluate DPP-IV in lysosomal storage diseases (LSD), we examined its activity in plasma samples from 307 patients affected with 24 different LSDs and in 75 control persons. Our results revealed elevated DPP-IV activity especially in individuals affected with mucolipidosis II/III, alpha-mannosidosis, and mucopolysaccharidoses types III, II, and I (p < 0.05). In other LSDs the DPP-IV activity was still significantly increased, but to a lesser extent. In patients with Gaucher disease, ceroid lipofuscinosis type 1 (CLN1), Niemann-Pick disease type C and A, Krabbe and Pompe diseases, gangliosidosis GM2 and metachromatic leukodystrophy discreet or no changes in DPP-IV activity were observed. DPP-IV may serve as a first-tier diagnostic procedure or additional biochemical analysis in recognizing patients with some LSDs. DPP-IV may become an object of basic research for a better understanding of LSDs.
    Keywords:  DPP-IV; alpha-mannosidosis; diagnosis; lysosomal diseases; mucolipidosis II/III; mucopolysaccharidoses; screening
    DOI:  https://doi.org/10.3390/diagnostics11020320
  35. Cell Metab. 2021 Feb 23. pii: S1550-4131(21)00061-9. [Epub ahead of print]
      Forward genetic screens across hundreds of cancer cell lines have started to define the genetic dependencies of proliferating human cells and how these vary by genotype and lineage. Most screens, however, have been carried out in culture media that poorly reflect metabolite availability in human blood. Here, we performed CRISPR-based screens in traditional versus human plasma-like medium (HPLM). Sets of conditionally essential genes in human cancer cell lines span several cellular processes and vary with both natural cell-intrinsic diversity and the combination of basal and serum components that comprise typical media. Notably, we traced the causes for each of three conditional CRISPR phenotypes to the availability of metabolites uniquely defined in HPLM versus conventional media. Our findings reveal the profound impact of medium composition on gene essentiality in human cells, and also suggest general strategies for using genetic screens in HPLM to uncover new cancer vulnerabilities and gene-nutrient interactions.
    Keywords:  CRISPR; HPLM; conditional gene essentiality; gene-nutrient interaction; genetic screen; physiologic medium
    DOI:  https://doi.org/10.1016/j.cmet.2021.02.005
  36. J Clin Invest. 2021 Mar 04. pii: 94229. [Epub ahead of print]
      Autophagy modulates lipid turnover, cell survival, inflammation and atherogenesis. Scavenger receptor class B type I (SR-BI) plays a crucial role in lysosome function. Here, we demonstrate that SR-BI regulates autophagy in atherosclerosis. SR-BI deletion attenuated lipid-induced expression of autophagy mediators in macrophages and atherosclerotic aortas. Consequently, SR-BI deletion resulted in 1.8- and 2.5-fold increases in foam cell formation and apoptosis, respectively, and increased oxidized LDL-induced inflammatory cytokine expression. Pharmacological activation of autophagy failed to reduce lipid content or apoptosis in Sr-b1-/- macrophages. SR-BI deletion reduced both basal and inducible levels of transcription factor EB (TFEB), a master regulator of autophagy, causing decreased expression of autophagy genes encoding VPS34 and Beclin-1. Notably, SR-BI regulated Tfeb expression by enhancing PPARα activation. Moreover, intracellular macrophage SR-BI localized to autophagosomes, where it formed cholesterol domains resulting in enhanced association of Barkor and recruitment of the VPS34/Beclin-1 complex. Thus, SR-BI deficiency led to lower VPS34 activity in macrophages and in atherosclerotic aortic tissues. Overexpression of Tfeb or Vps34 rescues the defective autophagy in Sr-b1-/- macrophages. Taken together, macrophage SR-BI regulates autophagy via Tfeb expression and recruitment of the VPS34/Beclin-1 complex, thus identifying previously unrecognized roles for SR-BI and novel targets for the treatment of atherosclerosis.
    Keywords:  Atherosclerosis; Autophagy; Cardiology; Macrophages; Vascular Biology
    DOI:  https://doi.org/10.1172/JCI94229
  37. Bio Protoc. 2020 Apr 05. 10(7): e3572
      Glucocerebrosidase (GCase) is an important enzyme for the metabolism of glycolipids. GCase enzyme deficiency is implicated in human disease and the efficient measurement of GCase activity is important for evaluating the efficacy of therapeutics targeting this enzyme. Existing approaches to measure GCase activity include whole blood mass spectrometry-based assays, where an internal standard is used to measure the accumulation of ceramide following metabolism of the synthetic substrate C12-glucocerebroside, and the utilisation of fluorescent probes that bind active GCase and/or release fluorescent metabolites upon cleavage by GCase. Here, we describe the application of a fluorescence-activated cell sorter-based assay to efficiently quantitate GCase enzyme activity in the monocyte population of human peripheral blood mononuclear cells. The cell-permeable GCase substrate 5-(Pentafluorobenzoylamino) Fluorescein Di-beta-D-Glucopyranoside (PFB-FDGlu) provides a means to measure GCase activity, whereby enzymatic cleavage yields the green-fluorescent PFB-F dye, detectable in the FL-1 channel of a flow cytometer. An inhibitor of lysosomal GCase activity, conduritol B-epoxide, is employed to ensure specificity. This protocol provides an advantageous approach for measuring GCase activity in living individual cells.
    Keywords:  Enzyme; Flow cytometry; GBA; Glucocerebrosidase; Lipid; Monocyte
    DOI:  https://doi.org/10.21769/BioProtoc.3572
  38. Proc Natl Acad Sci U S A. 2021 Mar 09. pii: e2003014118. [Epub ahead of print]118(10):
      Pancreatic ductal adenocarcinoma (PDA) is a lethal, therapy-resistant cancer that thrives in a highly desmoplastic, nutrient-deprived microenvironment. Several studies investigated the effects of depriving PDA of either glucose or glutamine alone. However, the consequences on PDA growth and metabolism of limiting both preferred nutrients have remained largely unknown. Here, we report the selection for clonal human PDA cells that survive and adapt to limiting levels of both glucose and glutamine. We find that adapted clones exhibit increased growth in vitro and enhanced tumor-forming capacity in vivo. Mechanistically, adapted clones share common transcriptional and metabolic programs, including amino acid use for de novo glutamine and nucleotide synthesis. They also display enhanced mTORC1 activity that prevents the proteasomal degradation of glutamine synthetase (GS), the rate-limiting enzyme for glutamine synthesis. This phenotype is notably reversible, with PDA cells acquiring alterations in open chromatin upon adaptation. Silencing of GS suppresses the enhanced growth of adapted cells and mitigates tumor growth. These findings identify nongenetic adaptations to nutrient deprivation in PDA and highlight GS as a dependency that could be targeted therapeutically in pancreatic cancer patients.
    Keywords:  epigenetics; glutamine synthetase; mTORC1; nutrient deprivation; pancreatic cancer
    DOI:  https://doi.org/10.1073/pnas.2003014118
  39. Cell Metab. 2021 Feb 20. pii: S1550-4131(21)00017-6. [Epub ahead of print]
      The protein leverage hypothesis predicts that low dietary protein should increase energy intake and cause adiposity. We designed 10 diets varying from 1% to 20% protein combined with either 60% or 20% fat, contrasting the expectation that very low protein did not cause increased food intake. Although these mice had activated hunger signaling, they ate less food, resulting in decreased body weight and improved glucose tolerance but not increased frailty, even under 60% fat. Moreover, they did not show hyperphagia when returned to a 20% protein diet, which could be mimicked by treatment with rapamycin. Intracerebroventricular injection of AAV-S6K1 significantly blunted the decrease in both food intake and body weight in mice fed 1% protein, an effect not observed with inhibition of eIF2a, TRPML1, and Fgf21 signaling. Hence, the 1% protein diet induced decreased food intake and body weight via a mechanism partially dependent on hypothalamic mTOR signaling.
    Keywords:  energy expenditure; energy intake; hunger; low protein; mTOR signaling; obesity
    DOI:  https://doi.org/10.1016/j.cmet.2021.01.017
  40. Cancers (Basel). 2021 Feb 28. pii: 1007. [Epub ahead of print]13(5):
      (1) Background: metastatic relapse following a prolonged period of disease-free survival is a common cause of mortality for many cancer patients. Disseminated dormant cancer cells (DDCCs) lie below the radar before waking up years, or even decades, after the removal of the primary tumor. This implies that they are able to survive in a latent state in a foreign environment for an extended period of time supported by intrinsic and extrinsic factors still to be elucidated. (2) Methods: we employed a coculture of DDCCs with lung epithelial cells together with RNA sequencing analysis to understand the overlap in gene transcription between in vivo and cocultured DDCCs. (3) Results: we found a significant overlap between the processes activated in DDCCs from lungs and in the coculture, as well as in alveolar type I cells in vivo and in coculture. We identified the transcription factor EB (TFEB)-lysosomal axis as a relevant process activated in DDCCs upon dissemination to the lung and confirmed the results in our lung coculture. Interestingly, breast cancer patients with a higher expression of TFEB targets show increased likelihood of developing relapses. (4) Conclusions: we propose that lysosomal accumulation following TFEB activation is an important feature of breast cancer DDCCs that might be exploited for future therapeutic interventions.
    Keywords:  TFEB; dormancy; in vitro models; lysosomes; organotypic systems; tumor microenvironment
    DOI:  https://doi.org/10.3390/cancers13051007
  41. Nature. 2021 Mar 03.
      The evolutionarily conserved target of rapamycin (TOR) kinase acts as a master regulator that coordinates cell proliferation and growth by integrating nutrient, energy, hormone and stress signals in all eukaryotes1,2. Research has focused mainly on TOR-regulated translation, but how TOR orchestrates the global transcriptional network remains unclear. Here we identify ethylene-insensitive protein 2 (EIN2), a central integrator3-5 that shuttles between the cytoplasm and the nucleus, as a direct substrate of TOR in Arabidopsis thaliana. Glucose-activated TOR kinase directly phosphorylates EIN2 to prevent its nuclear localization. Notably, the rapid global transcriptional reprogramming that is directed by glucose-TOR signalling is largely compromised in the ein2-5 mutant, and EIN2 negatively regulates the expression of a wide range of target genes of glucose-activated TOR that are involved in DNA replication, cell wall and lipid synthesis and various secondary metabolic pathways. Chemical, cellular and genetic analyses reveal that cell elongation and proliferation processes that are controlled by the glucose-TOR-EIN2 axis are decoupled from canonical ethylene-CTR1-EIN2 signalling, and mediated by different phosphorylation sites. Our findings reveal a molecular mechanism by which a central signalling hub is shared but differentially modulated by diverse signalling pathways using distinct phosphorylation codes that can be specified by upstream protein kinases.
    DOI:  https://doi.org/10.1038/s41586-021-03310-y
  42. Exp Mol Med. 2021 Mar 02.
      Unc-51-like autophagy activating kinase 1 (ULK1), a mammalian homolog of the yeast kinase Atg1, has an essential role in autophagy induction. In nutrient and growth factor signaling, ULK1 activity is regulated by various posttranslational modifications, including phosphorylation, acetylation, and ubiquitination. We previously identified glycogen synthase kinase 3 beta (GSK3B) as an upstream regulator of insulin withdrawal-induced autophagy in adult hippocampal neural stem cells. Here, we report that following insulin withdrawal, GSK3B directly interacted with and activated ULK1 via phosphorylation of S405 and S415 within the GABARAP-interacting region. Phosphorylation of these residues facilitated the interaction of ULK1 with MAP1LC3B and GABARAPL1, while phosphorylation-defective mutants of ULK1 failed to do so and could not induce autophagy flux. Furthermore, high phosphorylation levels of ULK1 at S405 and S415 were observed in human pancreatic cancer cell lines, all of which are known to exhibit high levels of autophagy. Our results reveal the importance of GSK3B-mediated phosphorylation for ULK1 regulation and autophagy induction and potentially for tumorigenesis.
    DOI:  https://doi.org/10.1038/s12276-021-00570-6
  43. STAR Protoc. 2021 Mar 19. 2(1): 100350
      Vesicular- or vacuolar-type adenosine triphosphatases (V-ATPases) are multi-component, ATP-driven proton pumps, which play important roles in many physiological processes by acidifying intracellular vesicles, organelles, and the extracellular milieu. Long-standing challenges in purifying mammalian V-ATPases have limited the biochemical and structural study of mammalian V-ATPase. Here, we provide a protocol for purifying milligrams of human V-ATPase and detail procedures for the reconstruction of its structure by cryo-EM. Our method can be applied to any biochemical and biophysical study of human V-ATPase. For complete details on the use and execution of this protocol, please refer to Wang et al. (2020).
    Keywords:  Biophysics; Cryo-EM; Molecular biology; Protein biochemistry; Protein expression and purification; Structural biology
    DOI:  https://doi.org/10.1016/j.xpro.2021.100350
  44. Proc Natl Acad Sci U S A. 2021 Mar 09. pii: e2005894118. [Epub ahead of print]118(10):
      Mutations that activate LRRK2 protein kinase cause Parkinson's disease. We showed previously that Rab10 phosphorylation by LRRK2 enhances its binding to RILPL1, and together, these proteins block cilia formation in a variety of cell types, including patient derived iPS cells. We have used live-cell fluorescence microscopy to identify, more precisely, the effect of LRRK2 kinase activity on both the formation of cilia triggered by serum starvation and the loss of cilia seen upon serum readdition. LRRK2 activity decreases the overall probability of ciliation without changing the rates of cilia formation in R1441C LRRK2 MEF cells. Cilia loss in these cells is accompanied by ciliary decapitation, and kinase activity does not change the timing or frequency of decapitation or the rate of cilia loss but increases the percent of cilia that are lost upon serum addition. LRRK2 activity, or overexpression of RILPL1 protein, blocks release of CP110 from the mother centriole, a step normally required for early ciliogenesis; LRRK2 blockade of CP110 uncapping requires Rab10 and RILPL1 proteins and is due to failure to recruit TTBK2, a kinase needed for CP110 release. In contrast, deciliation probability does not change in cells lacking Rab10 or RILPL1 and relies on a distinct LRRK2 pathway. These experiments provide critical detail to our understanding of the cellular consequences of pathogenic LRRK2 mutation and indicate that LRRK2 blocks ciliogenesis upstream of TTBK2 and enhances the deciliation process in response to serum addition.
    Keywords:  LRRK2 kinase; Parkinson’s disease; Rab GTPase; primary cilia
    DOI:  https://doi.org/10.1073/pnas.2005894118
  45. Brain Res. 2021 Mar 01. pii: S0006-8993(21)00119-0. [Epub ahead of print] 147394
      Parkinson's disease (PD) represents the second most common neurodegenerative disorder, characterized clinically by bradykinesia, resting tremor, rigidity and postural instability, and a variety of non-motor features. The etiology of PD is unknown, however genetic, environmental and inflammatory factors may influence disease onset and progression. Genetic variability in leucine-rich repeat kinase 2 confers significant genotypic and population-attributable risk for LRRK2-parkinsonism that is clinically indistinguishable from idiopathic PD. Nevertheless, the age-associated midbrain pathology observed post-mortem in LRRK2-parkinsonism may involve the abnormal accumulation of either α-synuclein or tau, or just the loss of dopaminergic neurons and gliosis. While diverse biological functions have been described for this multi-domain protein in many cell types, evidence suggests LRRK2 may sense endosomal trafficking to orchestrate dynamic changes in vesicular flux and cytoskeletal architecture. This review posits the long-held belief that synaptic-axonal dysfunction and terminal degeneration may precede dopaminergic cell loss, and provocatively questions how facets of LRRK2 biology may influence this molecular pathogenesis.
    Keywords:  Leucine-rich repeat kinase 2 (LRRK2); Parkinson''s'' disease; dopaminergic; lysosome; synaptic endocytosis; tauopathy; α-synucleinopathy
    DOI:  https://doi.org/10.1016/j.brainres.2021.147394
  46. Int J Mol Sci. 2021 Feb 23. pii: 2215. [Epub ahead of print]22(4):
      Heterozygous mutations in the GBA gene, encoding the lysosomal enzyme glucocerebrosidase (GCase), are the strongest known genetic risk factor for Parkinson's disease (PD). The molecular mechanisms underlying the increased PD risk and the variable phenotypes observed in carriers of different GBA mutations are not yet fully elucidated. Extracellular vesicles (EVs) have gained increasing importance in neurodegenerative diseases since they can vehiculate pathological molecules potentially promoting disease propagation. Accumulating evidence showed that perturbations of the endosomal-lysosomal pathway can affect EV release and composition. Here, we investigate the impact of GCase deficiency on EV release and their effect in recipient cells. EVs were purified by ultracentrifugation from the supernatant of fibroblast cell lines derived from PD patients with or without GBA mutations and quantified by nanoparticle tracking analysis. SH-SY5Y cells over-expressing alpha-synuclein (α-syn) were used to assess the ability of patient-derived small EVs to affect α-syn expression. We observed that defective GCase activity promotes the release of EVs, independently of mutation severity. Moreover, small EVs released from PD fibroblasts carrying severe mutations increased the intra-cellular levels of phosphorylated α-syn. In summary, our work shows that the dysregulation of small EV trafficking and alpha-synuclein mishandling may play a role in GBA-associated PD.
    Keywords:  GBA mutations; Parkinson’s disease; alpha-synuclein; extracellular vesicles; fibroblasts; glucocerebrosidase; lipids
    DOI:  https://doi.org/10.3390/ijms22042215