bims-lysosi Biomed News
on Lysosomes and signaling
Issue of 2020‒10‒11
thirty-two papers selected by
Stephanie Fernandes
Max Planck Institute for Biology of Ageing


  1. Autophagy. 2020 Oct 04.
    Nowosad A, Besson A.
      The tumor suppressor CDKN1B/p27Kip1 binds to and inhibits cyclin-CDK complexes in the nucleus, inducing cell cycle arrest. However, when in the cytoplasm, CDKN1B may promote tumorigenesis. Notably, cytoplasmic CDKN1B was reported to promote macroautophagy/autophagy in response to nutrient shortage by a previously unknown mechanism. In our recent work, we found that during prolonged amino acid starvation, CDKN1B promotes autophagy via an MTORC1-dependent pathway. A fraction of CDKN1B translocates to lysosomes, where it interacts with the Ragulator subunit LAMTOR1, preventing Ragulator assembly, which is required for MTORC1 activation in response to amino acids. Therefore, CDKN1B represses MTORC1 activity, leading to nuclear translocation of the transcription factor TFEB and activation of lysosomal function, enhancing starvation-induced autophagy flux and apoptosis. In contrast, cells lacking CDKN1B survive starvation despite reduced autophagy, due to elevated MTORC1 activation. These findings reveal that, by directly repressing MTORC1 activity, CDKN1B couples the cell cycle and cell growth machineries during metabolic stress.
    DOI:  https://doi.org/10.1080/15548627.2020.1831217
  2. J Biochem. 2020 Oct 09. pii: mvaa111. [Epub ahead of print]
    Sakata N, Shirakawa R, Goto K, Trinh DA, Horiuchi H.
      Ykt6 is an evolutionarily conserved SNARE protein regulating Golgi membrane fusion and other diverse membrane trafficking pathways. Unlike most SNARE proteins, Ykt6 lacks a transmembrane domain but instead has a tandem cysteine motif at the C-terminus. Recently, we have demonstrated that Ykt6 undergoes double prenylation at the C-terminal two cysteines first by farnesyltransferase and then by a newly identified protein prenyltransferase named geranylgeranyltransferase type-III (GGTase-III). GGTase-III consists of a novel α subunit PTAR1 and the β subunit of RabGGTase. PTAR1 knockout (KO) cells, where Ykt6 is singly prenylated with a farnesyl moiety, exhibit structural and functional abnormalities in Golgi apparatus with delayed intra-Golgi trafficking and impaired protein glycosylation. It remains unclear whether the second prenylation of Ykt6 is required for proper trafficking of lysosomal hydrolases from Golgi to lysosomes. Here we show that lysosomal hydrolases, cathepsin D and β-hexosaminidase, were missorted at the trans-Golgi network and secreted into the extracellular space in PTAR1 KO cells. Moreover, maturation of these hydrolases was disturbed. LC3B, an autophagy marker, was accumulated in PTAR1 KO cells, suggesting defects in cellular degradation pathways. Thus, doubly prenylated Ykt6, but not singly prenylated Ykt6, is critical for the efficient sorting and trafficking of acid hydrolases to lysosomes.
    Keywords:  Golgi apparatus; SNARE; Ykt6; lysosomal hydrolase; protein prenylation
    DOI:  https://doi.org/10.1093/jb/mvaa111
  3. Trends Biochem Sci. 2020 Oct 01. pii: S0968-0004(20)30229-2. [Epub ahead of print]
    Saftig P, Puertollano R.
      Lysosomes are in the center of the cellular control of catabolic and anabolic processes. These membrane-surrounded acidic organelles contain around 70 hydrolases, 200 membrane proteins, and numerous accessory proteins associated with the cytosolic surface of lysosomes. Accessory and transmembrane proteins assemble in signaling complexes that sense and integrate multiple signals and transmit the information to the nucleus. This communication allows cells to respond to changes in multiple environmental conditions, including nutrient levels, pathogens, energy availability, and lysosomal damage, with the goal of restoring cellular homeostasis. This review summarizes our current understanding of the major molecular players and known pathways that are involved in control of metabolic and stress responses that either originate from lysosomes or regulate lysosomal functions.
    Keywords:  TFEB; autophagy; lysosomes; mTOR; nutrient sensing; transcription factors
    DOI:  https://doi.org/10.1016/j.tibs.2020.09.004
  4. Acta Neuropathol Commun. 2020 Oct 07. 8(1): 163
    Huang M, Modeste E, Dammer E, Merino P, Taylor G, Duong DM, Deng Q, Holler CJ, Gearing M, Dickson D, Seyfried NT, Kukar T.
      Heterozygous, loss-of-function mutations in the granulin gene (GRN) encoding progranulin (PGRN) are a common cause of frontotemporal dementia (FTD). Homozygous GRN mutations cause neuronal ceroid lipofuscinosis-11 (CLN11), a lysosome storage disease. PGRN is a secreted glycoprotein that can be proteolytically cleaved into seven bioactive 6 kDa granulins. However, it is unclear how deficiency of PGRN and granulins causes neurodegeneration. To gain insight into the mechanisms of FTD pathogenesis, we utilized Tandem Mass Tag isobaric labeling mass spectrometry to perform an unbiased quantitative proteomic analysis of whole-brain tissue from wild type (Grn+/+) and Grn knockout (Grn-/-) mice at 3- and 19-months of age. At 3-months lysosomal proteins (i.e. Gns, Scarb2, Hexb) are selectively increased indicating lysosomal dysfunction is an early consequence of PGRN deficiency. Additionally, proteins involved in lipid metabolism (Acly, Apoc3, Asah1, Gpld1, Ppt1, and Naaa) are decreased; suggesting lysosomal degradation of lipids may be impaired in the Grn-/- brain. Systems biology using weighted correlation network analysis (WGCNA) of the Grn-/- brain proteome identified 26 modules of highly co-expressed proteins. Three modules strongly correlated to Grn deficiency and were enriched with lysosomal proteins (Gpnmb, CtsD, CtsZ, and Tpp1) and inflammatory proteins (Lgals3, GFAP, CD44, S100a, and C1qa). We find that lysosomal dysregulation is exacerbated with age in the Grn-/- mouse brain leading to neuroinflammation, synaptic loss, and decreased markers of oligodendrocytes, myelin, and neurons. In particular, GPNMB and LGALS3 (galectin-3) were upregulated by microglia and elevated in FTD-GRN brain samples, indicating common pathogenic pathways are dysregulated in human FTD cases and Grn-/- mice. GPNMB levels were significantly increased in the cerebrospinal fluid of FTD-GRN patients, but not in MAPT or C9orf72 carriers, suggesting GPNMB could be a biomarker specific to FTD-GRN to monitor disease onset, progression, and drug response. Our findings support the idea that insufficiency of PGRN and granulins in humans causes neurodegeneration through lysosomal dysfunction, defects in autophagy, and neuroinflammation, which could be targeted to develop effective therapies.
    Keywords:  Frontotemporal dementia (FTD); Frontotemporal lobar degeneration (FTLD); GPNMB; Galectin-3; Inflammation; Lysosome; Neurodegeneration; Progranulin (PGRN); Proteomics
    DOI:  https://doi.org/10.1186/s40478-020-01037-x
  5. BMC Mol Cell Biol. 2020 Oct 07. 21(1): 70
    Morshed S, Tasnin MN, Ushimaru T.
      BACKGROUND: Microautophagy, which degrades cargos by direct lysosomal/vacuolar engulfment of cytoplasmic cargos, is promoted after nutrient starvation and the inactivation of target of rapamycin complex 1 (TORC1) protein kinase. In budding yeast, microautophagy has been commonly assessed using processing assays with green fluorescent protein (GFP)-tagged vacuolar membrane proteins, such as Vph1 and Pho8. The endosomal sorting complex required for transport (ESCRT) system is proposed to be required for microautophagy, because degradation of vacuolar membrane protein Vph1 was compromised in ESCRT-defective mutants. However, ESCRT is also critical for the vacuolar sorting of most vacuolar proteins, and hence reexamination of the involvement of ESCRT in microautophagic processes is required.RESULTS: Here, we show that the Vph1-GFP processing assay is unsuitable for estimating the involvement of ESCRT in microautophagy, because Vph1-GFP accumulated highly in the prevacuolar class E compartment in ESCRT mutants. In contrast, GFP-Pho8 and Sna4-GFP destined for vacuolar membranes via an alternative adaptor protein-3 (AP-3) pathway, were properly localized on vacuolar membranes in ESCRT-deficient cells. Nevertheless, microautophagic degradation of GFP-Pho8 and Sna4-GFP after TORC1 inactivation was hindered in ESCRT mutants, indicating that ESCRT is indeed required for microautophagy after nutrient starvation and TORC1 inactivation.
    CONCLUSIONS: These findings provide evidence for the direct role of ESCRT in microautophagy induction.
    Keywords:  AP-3 pathway; ESCRT; Microautophagy; Pho8; VPS pathway; Vph1
    DOI:  https://doi.org/10.1186/s12860-020-00314-w
  6. Cell Host Microbe. 2020 Sep 30. pii: S1931-3128(20)30505-9. [Epub ahead of print]
    Westman J, Walpole GFW, Kasper L, Xue BY, Elshafee O, Hube B, Grinstein S.
      Phagosomes must maintain membrane integrity to exert their microbicidal function. Some microorganisms, however, survive and grow within phagosomes. In such instances, phagosomes must expand to avoid rupture and microbial escape. We studied whether phagosomes regulate their size to preserve integrity during infection with the fungal pathogen Candida albicans. Phagosomes release calcium as C. albicans hyphae elongate, inducing lysosome recruitment and insertion, thereby increasing the phagosomal surface area. As hyphae grow, the expanding phagosome consumes the majority of free lysosomes. Simultaneously, lysosome biosynthesis is stimulated by activation of TFEB, a transcriptional regulator of lysosomal biogenesis. Preventing lysosomal insertion causes phagosomal rupture, NLRP3 inflammasome activation, IL-1β secretion and host-cell death. Whole-genome transcriptomic analysis demonstrate that stress responses elicited in C. albicans upon engulfment are reversed if phagosome expansion is prevented. Our findings reveal a mechanism whereby phagosomes maintain integrity while expanding, ensuring that growing pathogens remain entrapped within this microbicidal compartment.
    Keywords:  Candida albicans; NLRP3; calcium; fungi; hypha; inflammasome; lysosome; macrophage; phagocytosis; phagosome
    DOI:  https://doi.org/10.1016/j.chom.2020.09.004
  7. Biochem Biophys Res Commun. 2020 Sep 30. pii: S0006-291X(20)31867-2. [Epub ahead of print]
    Sakane H, Urabe J, Nakahira S, Hino K, Miyata N, Akasaki K.
      Lysosomal integral membrane protein-2 (LIMP-2) is a type III transmembrane protein that is highly glycosylated and mainly localized to the lysosomal membrane. The diverse functions of LIMP-2 are currently being uncovered; however, its participation in macroautophagy, usually described as autophagy, has not yet been well-investigated. To determine the possible involvement of LIMP-2 in autophagic activity, we examined the intracellular amount of microtubule-associated protein 1 light chain 3 (LC3)-II, which is well-correlated with autophagosome levels, in exogenous rat LIMP-2-expressing COS7 and HEK293 cells. Transient or stable expression of LIMP-2-myc significantly increased the levels of LC3-II. Conversely, knockdown of LIMP-2 decreased the LC3-II levels in NIH3T3 cells. Furthermore, approaches using lysosomal protease inhibitors and mCherry-GFP-LC3 fluorescence suggested that exogenous expression of LIMP-2 increased the biogenesis of autophagosomes rather than decreased the lysosomal turnover of LC3-II. Considering the results of the biochemical assay and the quantitative fluorescence assay together, it is suggested that LIMP-2 has a possible involvement in autophagic activity, especially autophagosome biogenesis.
    Keywords:  LC3-II; LIMP-2; Lysosomes; Macroautophagy
    DOI:  https://doi.org/10.1016/j.bbrc.2020.09.114
  8. Cell Rep. 2020 Oct 06. pii: S2211-1247(20)31219-5. [Epub ahead of print]33(1): 108230
    Moustafa-Kamal M, Kucharski TJ, El-Assaad W, Abbas YM, Gandin V, Nagar B, Pelletier J, Topisirovic I, Teodoro JG.
      mTOR is a serine/threonine kinase and a master regulator of cell growth and proliferation. Raptor, a scaffolding protein that recruits substrates to mTOR complex 1 (mTORC1), is known to be phosphorylated during mitosis, but the significance of this phosphorylation remains largely unknown. Here we show that raptor expression and mTORC1 activity are dramatically reduced in cells arrested in mitosis. Expression of a non-phosphorylatable raptor mutant reactivates mTORC1 and significantly reduces cytotoxicity of the mitotic poison Taxol. This effect is mediated via degradation of PDCD4, a tumor suppressor protein that inhibits eIF4A activity and is negatively regulated by the mTORC1/S6K pathway. Moreover, pharmacological inhibition of eIF4A is able to enhance the effects of Taxol and restore sensitivity in Taxol-resistant cancer cells. These findings indicate that the mTORC1/S6K/PDCD4/eIF4A axis has a pivotal role in the death versus slippage decision during mitotic arrest and may be exploited clinically to treat tumors resistant to anti-mitotic agents.
    Keywords:  PDCD4; S6K; Taxol; cell cycle; eIF4A; hippuristanol; mTORC1; mitosis; raptor
    DOI:  https://doi.org/10.1016/j.celrep.2020.108230
  9. Ideggyogy Sz. 2020 Sep 30. 73(9-10): 339-344
    Grosz Z, Várdi KV, Molnár JM.
      Pompe disease is a rare lysosomal storage disease inherited in a recessive manner resulting muscular dystrophy. Due to the lack of the enzyme alpha glucosidase, glycogen accumulates in the cells. In the infantile form of Pompe disease hypotonia and severe cardio-respiratory failure are common leading to death within 2 years if left untreated, while the late-onset form is characterized with limb-girdle and axial muscle weakness accompanied with respiratory dysfunction. Pompe disease has been treated with regular intake of the missing enzyme since 2006, which significantly improved the survival and severity of symptoms in patients of both subtypes. The enzyme replacement therapy (ERT) is safe and well tolerated. However, limited data are available on its use in pregnancy. Our goal is to share our experience and review the literature on the safety of enzyme replacement therapy for Pompe disease during pregnancy and post partum.
    Keywords:  Pompe disease; delivery; enzyme replacement treatment (ERT); lactation; pregnancy
    DOI:  https://doi.org/10.18071/isz.73.0339
  10. Dis Model Mech. 2020 Oct 06. pii: dmm.046425. [Epub ahead of print]
    Westermann LM, Fleischhauer L, Vogel J, Jenei-Lanzl Z, Floriano Ludwig N, Schau L, Morellini F, Baranowsky A, Yorgan TA, Di Lorenzo G, Schweizer M, de Souza Pinheiro B, Guarany NR, Sperb-Ludwig F, Visioli F, Oliveira Silva T, Soul J, Hendrickx G, Wiegert JS, Schwartz IVD, Clausen-Schaumann H, Zaucke F, Schinke T, Pohl S, Danyukova T.
      Mucolipidosis type III (MLIII) gamma is a rare inherited lysosomal storage disorder caused by mutations in GNPTG encoding the γ-subunit of GlcNAc-1-phosphotransferase, the key enzyme ensuring proper intracellular location of multiple lysosomal enzymes. Patients with MLIII gamma typically present with osteoarthritis and joint stiffness, suggesting cartilage involvement. Using Gnptg ko mice as a model of the human disease, we showed that missorting of a number of lysosomal enzymes is associated with intracellular accumulation of chondroitin sulfate in Gnptg ko chondrocytes and their impaired differentiation, as well as with an altered microstructure of the cartilage extracellular matrix (ECM). We also demonstrated distinct functional and structural properties of the Achilles tendons isolated from Gnptg ko and Gnptab ki mice, the latter displaying a more severe phenotype resembling mucolipidosis type II (MLII) in humans. Together with comparative analyses of joint mobility in MLII and MLIII patients, these findings provide a basis for better understanding of the molecular reasons leading to joint pathology in these patients. Our data suggest that lack of GlcNAc-1-phosphotransferase activity due to defects in the γ-subunit causes structural changes within the ECM of connective and mechanosensitive tissues, such as cartilage and tendon, and eventually results in functional joint abnormalities typically observed in MLIII gamma patients. This idea was supported by a deficit of the limb motor function in Gnptg ko mice challenged on a Rotarod under fatigue-associated conditions, suggesting that the impaired motor performance of Gnptg ko mice was caused by fatigue and/or pain at the joint.
    Keywords:  Cartilage; Extracellular matrix; Joints; Lysosomal enzymes; MLIII gamma; Tendon
    DOI:  https://doi.org/10.1242/dmm.046425
  11. J Biol Chem. 2020 Oct 07. pii: jbc.RA120.013428. [Epub ahead of print]
    Guiney SJ, Adlard PA, Lei P, Mawal CH, Bush AI, Finkelstein DI, Ayton S.
      Neurodegeneration in Parkinson's disease (PD) can be recapitulated in animals by administration of α-synuclein pre-formed fibrils (PFFs) into the brain. However, the mechanism by which these PFFs induce toxicity is unknown. Iron is implicated in PD pathophysiology, so we investigated whether α-synuclein PFFs induce ferroptosis, an iron-dependent cell death pathway. A range of ferroptosis inhibitors were added to a striatal neuron-derived cell line (STHdhQ7/7 cells), a dopaminergic neuron-derived cell line (SN4741 cells) and WT primary cortical neurons, all of which had been intoxicated with α-synuclein PFFs. Viability was not recovered by these inhibitors except for liproxstatin-1, a best-in-class ferroptosis inhibitor, when used at high doses. High dose liproxstatin-1 visibly enlarged the area of a cell that contained acidic vesicles, and elevated the expression of several proteins associated with the autophagy-lysosomal pathway similarly to the known lysosomal inhibitors, chloroquine and bafilomycin A1. Consistent with high dose liproxstatin-1 protecting via a lysosomal mechanism, we further demonstrated that loss of viability induced by α-synuclein PFFs was attenuated by chloroquine and bafilomycin A1 as well as the lysosomal cysteine protease inhibitors, leupeptin, E-64D and Ca-074-Me, but not other autophagy or lysosomal enzyme inhibitors. We confirmed using immunofluorescence microscopy that heparin prevented uptake of α-synuclein PFFs into cells, but that chloroquine did not stop α-synuclein uptake into lysosomes despite impairing lysosomal function and inhibiting α-synuclein toxicity. Together, these data suggested that α-synuclein PFFs are toxic in functional lysosomes in vitro. Therapeutic strategies that prevent α-synuclein fibril uptake into lysosomes may be of benefit in PD.
    Keywords:  Parkinson disease; alpha-synuclein (a-synuclein); cell death; iron; lysosome
    DOI:  https://doi.org/10.1074/jbc.RA120.013428
  12. Front Immunol. 2020 ;11 572960
    Fekete T, Ágics B, Bencze D, Bene K, Szántó A, Tarr T, Veréb Z, Bácsi A, Pázmándi K.
      To detect replicating viruses, dendritic cells (DCs) utilize cytoplasmic retinoic acid inducible gene-(RIG) I-like receptors (RLRs), which play an essential role in the subsequent activation of antiviral immune responses. In this study, we aimed to explore the role of the mammalian target of rapamycin (mTOR) in the regulation of RLR-triggered effector functions of human monocyte-derived DCs (moDCs) and plasmacytoid DCs (pDCs). Our results show that RLR stimulation increased the phosphorylation of the mTOR complex (mTORC) 1 and mTORC2 downstream targets p70S6 kinase and Akt, respectively, and this process was prevented by the mTORC1 inhibitor rapamycin as well as the dual mTORC1/C2 kinase inhibitor AZD8055 in both DC subtypes. Furthermore, inhibition of mTOR in moDCs impaired the RLR stimulation-triggered glycolytic switch, which was reflected by the inhibition of lactate production and downregulation of key glycolytic genes. Blockade of mTOR diminished the ability of RLR-stimulated moDCs and pDCs to secret type I interferons (IFNs) and pro-inflammatory cytokines, while it did not affect the phenotype of DCs. We also found that mTOR blockade decreased the phosphorylation of Tank-binding kinase 1 (TBK1), which mediates RLR-driven cytokine production. In addition, rapamycin abrogated the ability of both DC subtypes to promote the proliferation and differentiation of IFN-y and Granzyme B producing CD8 + T cells. Interestingly, AZD8055 was much weaker in its ability to decrease the T cell proliferation capacity of DCs and was unable to inhibit the DC-triggered production of IFN-y and Granyzme B by CD8 + T cells. Here we demonstrated for the first time that mTOR positively regulates the RLR-mediated antiviral activity of human DCs. Further, we show that only selective inhibition of mTORC1 but not dual mTORC1/C2 blockade suppresses effectively the T cell stimulatory capacity of DCs that should be considered in the development of new generation mTOR inhibitors and in the improvement of DC-based vaccines.
    Keywords:  RLR signaling; T cell stimulation; antiviral response; dendritic cell; mTOR
    DOI:  https://doi.org/10.3389/fimmu.2020.572960
  13. Genes Cells. 2020 Oct 05.
    Ohba K, Endo M, Sato S, Kashio-Yokota Y, Hirose T, Takahashi K.
      (Pro)renin receptor ((P)RR)/ ATP6AP2 (ATPase, H+ transporting, lysosomal accessory protein 2) functions as an essential accessory subunit of vacuolar H+ -ATPase (V-ATPase). V-ATPase is necessary for lysosome function and autophagy. Autophagy is related to cell proliferation, migration, and invasion of various cancer cells. In this study, we aim to clarify the relationship between (P)RR and autophagy in lung adenocarcinoma. Expression of (P)RR and Ki-67 (a proliferation marker) was studied in sixty-four adenocarcinoma cases by immunohistochemistry. Lung adenocarcinoma cell line, A549, was transfected with (P)RR-specific siRNA. Autophagy inhibitors, bafilomycin A1 and chloroquine, were used as positive controls. Cell proliferation and migration were measured by WST-8 assay and wound healing assay. Autophagosome markers, p62 and LC3, were analyzed by RT-qPCR, western blot, and immunocytochemistry. Immunohistochemistry showed that (P)RR was expressed in all adenocarcinoma tissues. The intensity of (P)RR immunoreactivity was significantly associated with Ki-67. Treatment of (P)RR-specific siRNA suppressed (P)RR expression, and significantly reduced cell proliferation and migration as did the autophagy inhibitors. Western blot and immunocytochemistry showed that (P)RR-specific siRNA, as well as the autophagy inhibitors, induced p62 and LC3 accumulation in cytoplasmic granules. These results suggest that (P)RR is involved in cell proliferation and progression of lung adenocarcinoma via regulating autophagy.
    Keywords:  (pro)renin receptor; autophagy; cancer; vacuolar H+-ATPase
    DOI:  https://doi.org/10.1111/gtc.12812
  14. Cells. 2020 Oct 01. pii: E2221. [Epub ahead of print]9(10):
    Mebratu YA, Negasi ZH, Dutta S, Rojas-Quintero J, Tesfaigzi Y.
      Protein degradation is important for proper cellular physiology as it removes malfunctioning proteins or can provide a source for energy. Proteasomes and lysosomes, through the regulatory particles or adaptor proteins, respectively, recognize proteins destined for degradation. These systems have developed mechanisms to allow adaptation to the everchanging environment of the cell. While the complex recognition of proteins to be degraded is somewhat understood, the mechanisms that help switch the proteasomal regulatory particles or lysosomal adaptor proteins to adjust to the changing landscape of degrons, during infections or inflammation, still need extensive exploration. Therefore, this review is focused on describing the protein degradation systems and the possible sensors that may trigger the rapid adaptation of the protein degradation machinery.
    Keywords:  aggresome; autophagy; core particle; endosome; protein degradation; regulatory particle
    DOI:  https://doi.org/10.3390/cells9102221
  15. EMBO Rep. 2020 Oct 07. e50733
    Gao J, Kurre R, Rose J, Walter S, Fröhlich F, Piehler J, Reggiori F, Ungermann C.
      The mechanism and regulation of fusion between autophagosomes and lysosomes/vacuoles are still only partially understood in both yeast and mammals. In yeast, this fusion step requires SNARE proteins, the homotypic vacuole fusion and protein sorting (HOPS) tethering complex, the RAB7 GTPase Ypt7, and its guanine nucleotide exchange factor (GEF) Mon1-Ccz1. We and others recently identified Ykt6 as the autophagosomal SNARE protein. However, it has not been resolved when and how lipid-anchored Ykt6 is recruited onto autophagosomes. Here, we show that Ykt6 is recruited at an early stage of the formation of these carriers through a mechanism that depends on endoplasmic reticulum (ER)-resident Dsl1 complex and COPII-coated vesicles. Importantly, Ykt6 activity on autophagosomes is regulated by the Atg1 kinase complex, which inhibits Ykt6 through direct phosphorylation. Thus, our findings indicate that the Ykt6 pool on autophagosomal membranes is kept inactive by Atg1 phosphorylation, and once an autophagosome is ready to fuse with vacuole, Ykt6 dephosphorylation allows its engagement in the fusion event.
    Keywords:   SNARE ; COPII vesicles; Dsl1 complex; Ykt6; autophagy
    DOI:  https://doi.org/10.15252/embr.202050733
  16. PLoS Comput Biol. 2020 Oct;16(10): e1007554
    Dubey V, Bozorg B, Wüstner D, Khandelia H.
      Lysosomal accumulation of cholesterol is a hallmark of Niemann Pick type C (NPC) disease caused by mutations primarily in the lysosomal membrane protein NPC1. NPC1 contains a transmembrane sterol-sensing domain (SSD), which is supposed to regulate protein activity upon cholesterol binding, but the mechanisms underlying this process are poorly understood. Using atomistic simulations, we show that in the absence of cholesterol in the SSD, the luminal domains of NPC1 are highly dynamic, resulting in the disengagement of the NTD from the rest of the protein. The disengaged NPC1 adopts a flexed conformation that approaches the lipid bilayer, and could represent a conformational state primed to receive a sterol molecule from the soluble lysosomal cholesterol carrier NPC2. The binding of cholesterol to the SSD of NPC1 allosterically suppresses the conformational dynamics of the luminal domains resulting in an upright NTD conformation. The presence of an additional 20% cholesterol in the membrane has negligible impact on this process. The additional presence of an NTD-bound cholesterol suppresses the flexing of the NTD. We propose that cholesterol acts as an allosteric effector, and the modulation of NTD dynamics by the SSD-bound cholesterol constitutes an allosteric feedback mechanism in NPC1 that controls cholesterol abundance in the lysosomal membrane.
    DOI:  https://doi.org/10.1371/journal.pcbi.1007554
  17. Biomater Sci. 2020 Oct 07.
    Mondal B, Pandey B, Parekh N, Panda S, Dutta T, Padhy A, Sen Gupta S.
      Receptors of carbohydrate mannose-6-phosphate (M6P) are overexpressed in specific cancer cells (such as breast cancer) and are also involved in the trafficking of mannose-6-phosphate labeled proteins exclusively onto lysosomes via cell surface M6P receptor (CI-MPR) mediated endocytosis. Herein, for the first time, mannose-6-phosphate glycopolypeptide (M6PGP)-based bioactive and stimuli-responsive nanocarriers are reported. They are selectively taken up via receptor-mediated endocytosis, and trafficked to lysosomes where they are subsequently degraded by pH or enzymes, leading to the release of the cargo inside the lysosomes. Two different amphiphilic M6P block copolymers M6PGP15-APPO44 and M6PGP15-(PCL25)2 were synthesized by click reaction of the alkyne end-functionalized M6PGP15 with pH-responsive biocompatible azide end-functionalized acetal PPO and azide end-functionalized branched PCL, respectively. In water, the amphiphilic M6P-glycopolypeptide block copolymers self-assembled into micellar nanostructures, as was evidenced by DLS, TEM, AFM, and fluorescence spectroscopy techniques. These micellar systems were competent to encapsulate the hydrophobic dye rhodamine-B-octadecyl ester, which was used as the model drug. They were stable at physiological pH but were found to disassemble at acidic pH (for M6PGP15-APPO44) or in the presence of esterase (for M6PGP15-(PCL25)2). These M6PGP based micellar nanoparticles can selectively target lysosomes in cancerous cells such as MCF-7 and MDA-MB-231. Finally, we demonstrate the clathrin-mediated endocytic pathway of the native FL-M6PGP polymer and RBOE loaded M6PGP micellar-nanocarriers, and selective trafficking of MCF-7 and MDA-MB-231 breast cancer cell lysosomes, demonstrating their potential applicability toward receptor-mediated lysosomal cargo delivery.
    DOI:  https://doi.org/10.1039/d0bm01469a
  18. Cell Calcium. 2020 Sep 22. pii: S0143-4160(20)30131-7. [Epub ahead of print]92 102289
    Patel S, Malmberg KJ.
      The mammalian two-pore channels TPC1 and TPC2 are patho-physiologically relevant endo-lysosomal cation channels regulated by the Ca2+ mobilising messenger NAADP and the phosphoinositide PI(3,5)P2. Recent work by Arlt et al shows that genetic or chemical inhibition of TPC1 in mice promotes anaphylaxis in vivo through a mechanism involving enhanced endoplasmic reticulum Ca2+ release and secretion in mast cells.
    Keywords:  Mast cells; NAADP; Secretion; TPC1
    DOI:  https://doi.org/10.1016/j.ceca.2020.102289
  19. Int J Mol Sci. 2020 Oct 07. pii: E7397. [Epub ahead of print]21(19):
    Braunstein H, Papazian M, Maor G, Lukas J, Rolfs A, Horowitz M.
      Fabry disease, an X-linked recessive lysosomal disease, results from mutations in the GLA gene encoding lysosomal α-galactosidase A (α-Gal A). Due to these mutations, there is accumulation of globotriaosylceramide (GL-3) in plasma and in a wide range of cells throughout the body. Like other lysosomal enzymes, α-Gal A is synthesized on endoplasmic reticulum (ER) bound polyribosomes, and upon entry into the ER it undergoes glycosylation and folding. It was previously suggested that α-Gal A variants are recognized as misfolded in the ER and undergo ER-associated degradation (ERAD). In the present study, we used Drosophila melanogaster to model misfolding of α-Gal A mutants. We did so by creating transgenic flies expressing mutant α-Gal A variants and assessing development of ER stress, activation of the ER stress response and their relief with a known α-Gal A chaperone, migalastat. Our results showed that the A156V and the A285D α-Gal A mutants underwent ER retention, which led to activation of unfolded protein response (UPR) and ERAD. UPR could be alleviated by migalastat. When expressed in the fly's dopaminergic cells, misfolding of α-Gal A and UPR activation led to death of these cells and to a shorter life span, which could be improved, in a mutation-dependent manner, by migalastat.
    Keywords:  ERAD 4; Fabry disease 1; UPR 3; migalastat 5; misfolding 2
    DOI:  https://doi.org/10.3390/ijms21197397
  20. Proc Natl Acad Sci U S A. 2020 Oct 05. pii: 202003724. [Epub ahead of print]
    Ullate-Agote A, Burgelin I, Debry A, Langrez C, Montange F, Peraldi R, Daraspe J, Kaessmann H, Milinkovitch MC, Tzika AC.
      Reptiles exhibit a spectacular diversity of skin colors and patterns brought about by the interactions among three chromatophore types: black melanophores with melanin-packed melanosomes, red and yellow xanthophores with pteridine- and/or carotenoid-containing vesicles, and iridophores filled with light-reflecting platelets generating structural colors. Whereas the melanosome, the only color-producing endosome in mammals and birds, has been documented as a lysosome-related organelle, the maturation paths of xanthosomes and iridosomes are unknown. Here, we first use 10x Genomics linked-reads and optical mapping to assemble and annotate a nearly chromosome-quality genome of the corn snake Pantherophis guttatus The assembly is 1.71 Gb long, with an N50 of 16.8 Mb and L50 of 24. Second, we perform mapping-by-sequencing analyses and identify a 3.9-Mb genomic interval where the lavender variant resides. The lavender color morph in corn snakes is characterized by gray, rather than red, blotches on a pink, instead of orange, background. Third, our sequencing analyses reveal a single nucleotide polymorphism introducing a premature stop codon in the lysosomal trafficking regulator gene (LYST) that shortens the corresponding protein by 603 amino acids and removes evolutionary-conserved domains. Fourth, we use light and transmission electron microscopy comparative analyses of wild type versus lavender corn snakes and show that the color-producing endosomes of all chromatophores are substantially affected in the LYST mutant. Our work provides evidence characterizing xanthosomes in xanthophores and iridosomes in iridophores as lysosome-related organelles.
    Keywords:  LYST; chromatophores; corn snake; lysosome-related organelles; pigmentation
    DOI:  https://doi.org/10.1073/pnas.2003724117
  21. J Cell Sci. 2020 Oct 08. pii: jcs234930. [Epub ahead of print]133(19):
    Smith SF, Collins SE, Charest PG.
      The Ras oncogene is notoriously difficult to target with specific therapeutics. Consequently, there is interest to better understand the Ras signaling pathways to identify potential targetable effectors. Recently, the mechanistic target of rapamycin complex 2 (mTORC2) was identified as an evolutionarily conserved Ras effector. mTORC2 regulates essential cellular processes, including metabolism, survival, growth, proliferation and migration. Moreover, increasing evidence implicate mTORC2 in oncogenesis. Little is known about the regulation of mTORC2 activity, but proposed mechanisms include a role for phosphatidylinositol (3,4,5)-trisphosphate - which is produced by class I phosphatidylinositol 3-kinases (PI3Ks), well-characterized Ras effectors. Therefore, the relationship between Ras, PI3K and mTORC2, in both normal physiology and cancer is unclear; moreover, seemingly conflicting observations have been reported. Here, we review the evidence on potential links between Ras, PI3K and mTORC2. Interestingly, data suggest that Ras and PI3K are both direct regulators of mTORC2 but that they act on distinct pools of mTORC2: Ras activates mTORC2 at the plasma membrane, whereas PI3K activates mTORC2 at intracellular compartments. Consequently, we propose a model to explain how Ras and PI3K can differentially regulate mTORC2, and highlight the diversity in the mechanisms of mTORC2 regulation, which appear to be determined by the stimulus, cell type, and the molecularly and spatially distinct mTORC2 pools.
    Keywords:  Mechanistic target of rapamycin complex 2; Phosphatidylinositol 3-kinase; Ras GTPase
    DOI:  https://doi.org/10.1242/jcs.234930
  22. Case Rep Nephrol. 2020 ;2020 8899703
    Vanga AR, Schrier Vergano SA, Kowalewska J, McCune TR.
      Fabry disease is an X-linked lysosomal storage genetic disorder associated with over 1000 mutations in the alpha-galactosidase-A gene region. We report here a 69-year-old male who underwent a kidney biopsy to evaluate progressive renal failure. He was found to have zebra bodies in visceral epithelial cells on biopsy, with electron microscopy showing inclusions within the cytoplasm of multiple podocytes consistent with Fabry disease. An alpha-galactosidase level was found to be 21 nm/hr/mg (normal range 50-150 nm/hr/mg). Genetic studies revealed a missense variant in the GLA gene with alanine replaced by cysteine at position 682 (c.682 A > C, p.N228H) that had not been previously associated with Fabry disease. The same variant was detected in two additional family members. The pathologic findings, clinical features, and low alpha-galactosidase level suggest that the c.682 A > C variant is associated with Fabry disease.
    DOI:  https://doi.org/10.1155/2020/8899703
  23. Signal Transduct Target Ther. 2020 Oct 09. 5(1): 214
    Yao N, Wang CR, Liu MQ, Li YJ, Chen WM, Li ZQ, Qi Q, Lu JJ, Fan CL, Chen MF, Qi M, Li XB, Hong J, Zhang DM, Ye WC.
      Epidermal growth factor receptor (EGFR) activation plays a pivotal role in EGFR-driven non-small cell lung cancer (NSCLC) and is considered as a key target of molecular targeted therapy. EGFR tyrosine kinase inhibitors (TKIs) have been canonically used in NSCLC treatment. However, prevalent innate and acquired resistances and EGFR kinase-independent pro-survival properties limit the clinical efficacy of EGFR TKIs. Therefore, the discovery of novel EGFR degraders is a promising approach towards improving therapeutic efficacy and overcoming drug resistance. Here, we identified a 23-hydroxybetulinic acid derivative, namely DPBA, as a novel EGFR small-molecule ligand. It exerted potent in vitro and in vivo anticancer activity in both EGFR wild type and mutant NSCLC by degrading EGFR. Mechanistic studies disclosed that DPBA binds to the EGFR extracellular domain at sites differing from those of EGF and EGFR. DPBA did not induce EGFR dimerization, phosphorylation, and ubiquitination, but it significantly promoted EGFR degradation and repressed downstream survival pathways. Further analyses showed that DPBA induced clathrin-independent EGFR endocytosis mediated by flotillin-dependent lipid rafts and unaffected by EGFR TKIs. Activation of the early and late endosome markers rab5 and rab7 but not the recycling endosome marker rab11 was involved in DPBA-induced EGFR lysosomal degradation. The present study offers a new EGFR ligand for EGFR pharmacological degradation and proposes it as a potential treatment for EGFR-positive NSCLC, particularly NSCLC with innate or acquired EGFR TKI resistance. DPBA can also serve as a chemical probe in the studies on EGFR trafficking and degradation.
    DOI:  https://doi.org/10.1038/s41392-020-00251-2
  24. Physiol Rep. 2020 Oct;8(19): e14599
    Miyazaki M, Moriya N, Takemasa T.
      The regulation of cellular protein synthesis is a critical determinant of skeletal muscle growth and hypertrophy in response to an increased workload such as resistance exercise. The mechanistic target of rapamycin complex 1 (mTORC1) and its upstream protein kinase Akt1 have been implicated as a central signaling pathway that regulates protein synthesis in the skeletal muscle; however, the precise molecular regulation of mTORC1 activity is largely unknown. This study employed germline Akt1 knockout (KO) mice to examine whether upstream Akt1 regulation is necessary for the acute activation of mTORC1 signaling in the plantaris muscle following mechanical overload. The phosphorylation states of S6 kinase 1, ribosomal protein S6, and eukaryotic translation initiation factor 4E-binding protein 1 which show the functional activity of mTORC1 signaling, were significantly increased in the skeletal muscle of both wildtype and Akt1 KO mice following an acute bout (3 and 12 hr) of mechanical overload. Akt1 deficiency did not affect load-induced alteration of insulin-like growth factor-1 (IGF-1)/IGF receptor mRNA expression. Also, no effect of Akt1 deficiency was observed on the overload-induced increase in the gene expressions of pax7 and myogenic regulatory factor of myogenin. These observations show that the upstream IGF-1/Akt1 regulation is dispensable for the acute activation of mTORC1 signaling and regulation of satellite cells in response to mechanical overload.
    Keywords:  Akt1; mechanistic target of rapamycin; protein synthesis; satellite cells
    DOI:  https://doi.org/10.14814/phy2.14599
  25. Mol Pharmacol. 2020 Oct 08. pii: MOLPHARM-AR-2020-000070. [Epub ahead of print]
    Kato Y, Kunimasa K, Takahashi M, Harada A, Nagasawa I, Osawa M, Sugimoto Y, Tomida A.
      Eukaryotic initiation factor 2α kinase general control non-derepressible 2 (GCN2) drives cellular adaptation to amino acid limitation by activating the integrated stress response that induces activating transcription factor 4 (ATF4). Here, we found that a multi-kinase inhibitor, GZD824, which we identified using a cell-based assay with ATF4 immunostaining, inhibited the GCN2 pathway in cancer cells. Indeed, GZD824 suppressed GCN2 activation, eIF2α phosphorylation, and ATF4 induction during amino acid starvation stress. However, at lower non-suppressive concentrations, GZD824 paradoxically stimulated eIF2α phosphorylation and ATF4 expression in a GCN2-dependent manner under unstressed conditions. Such dual properties conceivably arose from a direct effect on GCN2, as also observed in a cell-free GCN2 kinase assay and shared by a selective GCN2 inhibitor. Consistent with the GCN2 pathway inhibition, GZD824 sensitized certain cancer cells to amino acid starvation stress similarly to ATF4 knockdown. These results establish GZD824 as a multi-kinase GCN2 inhibitor and may enhance its utility as a drug under development. Significance Statement GZD824, as a direct GCN2 inhibitor, suppresses activation of the integrated stress response during amino acid limitation, while it paradoxically stimulates this stress-signaling pathway at lower non-suppressive concentrations. The pharmacological activity, we identified herein, will provide the basis for the use of GZD824 to elucidate the regulatory mechanisms of GCN2 and to evaluate the potential of the GCN2-ATF4 pathway as a target for cancer therapy.
    Keywords:  amino acid; anticancer; cancer; cancer chemotherapy; molecular drug targeting
    DOI:  https://doi.org/10.1124/molpharm.120.000070
  26. Mol Genet Genomic Med. 2020 Oct 05. e1502
    Sawada T, Kido J, Sugawara K, Matsumoto S, Takada F, Tsuboi K, Ohtake A, Endo F, Nakamura K.
      BACKGROUND: In Japan, newborn and high-risk screening for Fabry disease (FD), an inherited X-linked disorder caused by GLA mutations, using dried blood spots was initiated in 2006. In newborn screening, 599,711 newborns were screened by December 2018, and 57 newborns from 54 families with 26 FD-associated variants were detected. In high-risk screening, 18,235 individuals who had symptoms and/or a family history of FD were screened by March 2019, and 236 individuals from 143 families with 101 FD-associated variants were detected. Totally 3, 116 variants were detected; 41 of these were not registered in Fabry-database.org or ClinVar and 33 were definitely novel. Herein, we report the clinical outcomes and discuss the pathogenicity of the 41 variants.METHODS: We traced nine newborns and 46 individuals with the 33 novel variants, and nine newborns and 10 individuals with eight other variants not registered in the FD database, and analyzed the information on symptoms, treatments, and outcomes.
    RESULTS: Thirty-eight of the 46 individuals with the 33 novel variants showed symptoms and received enzyme-replacement therapy and/or chaperone treatment.
    CONCLUSION: Delayed diagnosis should be avoided in patients with FD. Our results will help clinicians diagnose FD and determine the appropriate treatment for patients with these variants.
    Keywords:  Fabry disease; high-risk screening; novel variant; pathogenicity; α-galactosidase A
    DOI:  https://doi.org/10.1002/mgg3.1502
  27. Oncogene. 2020 Oct 09.
    Shen H, Wang GC, Li X, Ge X, Wang M, Shi ZM, Bhardwaj V, Wang ZX, Zinner RG, Peiper SC, Aplin AE, Jiang BH, He J.
      The development of resistance to EGFR Tyrosine kinase inhibitors (TKIs) in NSCLC with activating EGFR mutations is a critical limitation of this therapy. In addition to genetic alterations such as EGFR secondary mutation causing EGFR-TKI resistance, compensatory activation of signaling pathways without interruption of genome integrity remains to be defined. In this study, we identified S6K1/MDM2 signaling axis as a novel bypass mechanism for the development of EGFR-TKI resistance. The observation of S6K1 as a candidate mechanism for resistance to EGFR TKI therapy was investigated by interrogation of public databases and a clinical cohort to establish S6K1 expression as a prognostic/predictive biomarker. The role of S6K1 in TKI resistance was determined in in vitro gain-and-loss of function studies and confirmed in subcutaneous and orthotopic mouse lung cancer models. Blockade of S6K1 by a specific inhibitor PF-4708671 synergistically enhanced the efficacy of TKI without showing toxicity. The mechanistic study showed the inhibition of EGFR caused nuclear translocation of S6K1 for binding with MDM2 in resistant cells. MDM2 is a downstream effector of S6K1-mediated TKI resistance. Taken together, we present evidence for the reversal of resistance to EGFR TKI by the addition of small molecule S6K1/MDM2 antagonists that could have clinical benefit.
    DOI:  https://doi.org/10.1038/s41388-020-01497-4
  28. Oncogenesis. 2020 Oct 05. 9(10): 87
    Wang W, Kansakar U, Markovic V, Wang B, Sossey-Alaoui K.
      Both TGF-β and the PI3K-AKT signaling pathways are known activators of various intracellular pathways that regulate critical cellular functions, including cancer cell survival and proliferation. The interplay between these two oncogenic pathways plays a major role in promoting the initiation, growth, and progression of tumors, including breast cancers. The molecular underpinning of the inter-relationship between these pathways is, however, not fully understood, as is the role of WAVE3 phosphorylation in the regulation of tumor growth and progression. WAVE3 has been established as a major driver of the invasion-metastasis cascade in breast cancer and other tumors of epithelial origin. WAVE3 phosphorylation downstream of PI3K was also shown to regulate cell migration. Here we show that, in addition to PI3K, WAVE3 tyrosine phosphorylation can also be achieved downstream of TGF-β and EGF and that WAVE3 tyrosine phosphorylation is required for its oncogenic activity. Our in vitro analyses found loss of WAVE3 phosphorylation to significantly inhibit cell migration, as well as tumorsphere growth and invasion. In mouse models for breast cancer, loss of WAVE3 phosphorylation inhibited tumor growth of two aggressive breast cancer cell lines of triple-negative subtype. More importantly, we found that WAVE3 phosphorylation is also required for the activation of PI3K, TGF-β, and EGF signaling and their respective downstream effectors. Therefore, our study identified a novel function for WAVE3 in the regulation of breast cancer development and progression through the modulation of a positive feedback loop between WAVE3 and PI3K-TGF-β-EGF signaling pathways.
    DOI:  https://doi.org/10.1038/s41389-020-00272-0
  29. Autophagy. 2020 Oct 04.
    Banerjee A, Guardia CM, Christenson ET, Zhou W, Tan XF, Lian T, Faraldo-Gómez JD, Bonifacino JS, Jiang J.
      ATG9, the only transmembrane protein in the core macroautophagy/autophagy machinery, is a key player in the early stages of autophagosome formation. Yet, the lack of a high-resolution structure of ATG9 was a major impediment in understanding its three-dimensional organization and function. We recently solved a high-resolution cryoEM structure of the ubiquitously expressed human ATG9A isoform. The structure revealed that ATG9A is a domain-swapped homotrimer with a unique fold, and has an internal network of branched cavities. In cellulo analyses demonstrated the functional importance of the cavity-lining residues. These cavities could serve as conduits for transport of hydrophilic moieties, such as lipid headgroups, across the bilayer. Finally, structure-guided molecular dynamics predicted that ATG9A has membrane-bending properties, which is consistent with its localization to highly curved membranes.
    Keywords:  ATG9A; autophagosome; cryo-EM; membrane curvature; molecular dynamics; transmembrane protein
    DOI:  https://doi.org/10.1080/15548627.2020.1830522
  30. Nat Commun. 2020 10 06. 11(1): 5003
    Wang J, Wang J, Shin BS, Kim JR, Dever TE, Puglisi JD, Fernández IS.
      Recognition of a start codon by the initiator aminoacyl-tRNA determines the reading frame of messenger RNA (mRNA) translation by the ribosome. In eukaryotes, the GTPase eIF5B collaborates in the correct positioning of the initiator Met-tRNAiMet on the ribosome in the later stages of translation initiation, gating entrance into elongation. Leveraging the long residence time of eIF5B on the ribosome recently identified by single-molecule fluorescence measurements, we determine the cryoEM structure of the naturally long-lived ribosome complex with eIF5B and Met-tRNAiMet immediately before transition into elongation. The structure uncovers an unexpected, eukaryotic specific and dynamic fidelity checkpoint implemented by eIF5B in concert with components of the large ribosomal subunit.
    DOI:  https://doi.org/10.1038/s41467-020-18829-3
  31. Nature. 2020 Oct 07.
    Sharma V, Sood R, Khlaifia A, Eslamizade MJ, Hung TY, Lou D, Asgarihafshejani A, Lalzar M, Kiniry SJ, Stokes MP, Cohen N, Nelson AJ, Abell K, Possemato AP, Gal-Ben-Ari S, Truong VT, Wang P, Yiannakas A, Saffarzadeh F, Cuello AC, Nader K, Kaufman RJ, Costa-Mattioli M, Baranov PV, Quintana A, Sanz E, Khoutorsky A, Lacaille JC, Rosenblum K, Sonenberg N.
      An important tenet of learning and memory is the notion of a molecular switch that promotes the formation of long-term memory1-4. The regulation of proteostasis is a critical and rate-limiting step in the consolidation of new memories5-10. One of the most effective and prevalent ways to enhance memory is by regulating the synthesis of proteins controlled by the translation initiation factor eIF211. Phosphorylation of the α-subunit of eIF2 (p-eIF2α), the central component of the integrated stress response (ISR), impairs long-term memory formation in rodents and birds11-13. By contrast, inhibiting the ISR by mutating the eIF2α phosphorylation site, genetically11 and pharmacologically inhibiting the ISR kinases14-17, or mimicking reduced p-eIF2α with the ISR inhibitor ISRIB11, enhances long-term memory in health and disease18. Here we used molecular genetics to dissect the neuronal circuits by which the ISR gates cognitive processing. We found that learning reduces eIF2α phosphorylation in hippocampal excitatory neurons and a subset of hippocampal inhibitory neurons (those that express somatostatin, but not parvalbumin). Moreover, ablation of p-eIF2α in either excitatory or somatostatin-expressing (but not parvalbumin-expressing) inhibitory neurons increased general mRNA translation, bolstered synaptic plasticity and enhanced long-term memory. Thus, eIF2α-dependent mRNA translation controls memory consolidation via autonomous mechanisms in excitatory and somatostatin-expressing inhibitory neurons.
    DOI:  https://doi.org/10.1038/s41586-020-2805-8
  32. Cell Rep. 2020 Oct 06. pii: S2211-1247(20)31212-2. [Epub ahead of print]33(1): 108223
    Hsiao WY, Jung SM, Tang Y, Haley JA, Li R, Li H, Calejman CM, Sanchez-Gurmaches J, Hung CM, Luciano AK, DeMambro V, Wellen KE, Rosen CJ, Zhu LJ, Guertin DA.
      Overweight and obesity are associated with type 2 diabetes, non-alcoholic fatty liver disease, cardiovascular disease and cancer, but all fat is not equal, as storing excess lipid in subcutaneous white adipose tissue (SWAT) is more metabolically favorable than in visceral fat. Here, we uncover a critical role for mTORC2 in setting SWAT lipid handling capacity. We find that subcutaneous white preadipocytes differentiating without the essential mTORC2 subunit Rictor upregulate mature adipocyte markers but develop a striking lipid storage defect resulting in smaller adipocytes, reduced tissue size, lipid re-distribution to visceral and brown fat, and sex-distinct effects on systemic metabolic fitness. Mechanistically, mTORC2 promotes transcriptional upregulation of select lipid metabolism genes controlled by PPARγ and ChREBP, including genes that control lipid uptake, synthesis, and degradation pathways as well as Akt2, which encodes a major mTORC2 substrate and insulin effector. Further exploring this pathway may uncover new strategies to improve insulin sensitivity.
    Keywords:  AKT; ChREBP; PPAR-gamma; adipocyte; adipose tissue; lipid metabolism; mTORC2; obesity; type 2 diabetes
    DOI:  https://doi.org/10.1016/j.celrep.2020.108223