bims-lypmec Biomed News
on Lysosomal positioning and metabolism in cardiomyocytes
Issue of 2023‒09‒24
ten papers selected by
Satoru Kobayashi, New York Institute of Technology



  1. Anal Chem. 2023 Sep 19.
      Discriminatively visualizing mitochondrial and lysosomal dysfunction is crucial for an in-depth understanding of cell apoptosis regulation and relative biology. However, fluorescent probes for the separate visualization of lysosomal and mitochondria damages have not been reported yet. Herein, we have constructed a fluorescent probe [2-(4-hydroxystyryl)-1,3,3-trimethyl-3H-indol-1-ium iodide (HBSI)] for labeling mitochondria and lysosomes in dual emission colors and discriminatively imaging mitochondrial and lysosomal damage in two different sets of fluorescent signals. In living cells, HBSI targeted both lysosomes and mitochondria to give green and red emission, respectively. During mitochondrial damages, HBSI immigrated into lysosomes, and the red emission decreased. During lysosomal damage, HBSI immigrated into mitochondria, and the green emission decreased. With the robust probe, the different damaging sequences of mitochondria and lysosomes under different amounts of H2O2 and chloral hydrate have been revealed. The sequential damage of lysosomes and mitochondria during cell apoptosis induced by rotenone, paclitaxel, and colchicine has been discovered. Furthermore, the regulation of mitochondria, lysosome, and their interplay during autophagy was also observed with the probe.
    DOI:  https://doi.org/10.1021/acs.analchem.3c03024
  2. Autophagy. 2023 Sep 18. 1-2
      Omega-shaped domains of the endoplasmic reticulum, known as omegasomes, have been suggested to contribute to autophagosome biogenesis, although their exact function is not known. Omegasomes are characterized by the presence of the double FYVE domain containing protein ZFYVE1/DFCP1, but it has remained a paradox that depletion of ZFYVE1 does not prevent bulk macroautophagy/autophagy. We recently showed that ZFYVE1 contains an N-terminal ATPase domain which dimerizes upon ATP binding. Mutations in the ATPase domain that inhibit ATP binding or hydrolysis do not prevent omegasome expansion and maturation. However, omegasome constriction is inhibited by these mutations, which results in an increased lifetime and thereby higher number of omegasomes. Interestingly, whereas ZFYVE1 knockout or mutations do not significantly affect bulk autophagy, selective autophagy of mitochondria, protein aggregates and micronuclei is inhibited. We propose that ATP binding and hydrolysis control the di- or multimerization state of ZFYVE1 which could provide the mechanochemical energy to drive large omegasome constriction and autophagosome completion.
    Keywords:  Aggrephagy; Atpase; autophagosome; micronucleophagy; mitophagy; omegasome
    DOI:  https://doi.org/10.1080/15548627.2023.2255967
  3. Nat Commun. 2023 Sep 21. 14(1): 5888
      Tumour-associated macrophages (TAMs), as one of the most abundant tumour-infiltrating immune cells, play a pivotal role in tumour antigen clearance and immune suppression. M2-like TAMs present a heightened lysosomal acidity and protease activity, limiting an effective antigen cross-presentation. How to selectively reprogram M2-like TAMs to reinvigorate anti-tumour immune responses is challenging. Here, we report a pH-gated nanoadjuvant (PGN) that selectively targets the lysosomes of M2-like TAMs in tumours rather than the corresponding organelles from macrophages in healthy tissues. Enabled by the PGN nanotechnology, M2-like TAMs are specifically switched to a M1-like phenotype with attenuated lysosomal acidity and cathepsin activity for improved antigen cross-presentation, thus eliciting adaptive immune response and sustained tumour regression in tumour-bearing female mice. Our findings provide insights into how to specifically regulate lysosomal function of TAMs for efficient cancer immunotherapy.
    DOI:  https://doi.org/10.1038/s41467-023-41592-0
  4. Biomaterials. 2023 Sep 11. pii: S0142-9612(23)00324-1. [Epub ahead of print]302 122316
      Intracortical microelectrodes that can record and stimulate brain activity have become a valuable technique for basic science research and clinical applications. However, long-term implantation of these microelectrodes can lead to progressive neurodegeneration in the surrounding microenvironment, characterized by elevation in disease-associated markers. Dysregulation of autophagy-lysosomal degradation, a major intracellular waste removal process, is considered a key factor in the onset and progression of neurodegenerative diseases. It is plausible that similar dysfunctions in autophagy-lysosomal degradation contribute to tissue degeneration following implantation-induced focal brain injury, ultimately impacting recording performance. To understand how the focal, persistent brain injury caused by long-term microelectrode implantation impairs autophagy-lysosomal pathway, we employed two-photon microscopy and immunohistology. This investigation focused on the spatiotemporal characterization of autophagy-lysosomal activity near the chronically implanted microelectrode. We observed an aberrant accumulation of immature autophagy vesicles near the microelectrode over the chronic implantation period. Additionally, we found deficits in autophagy-lysosomal clearance proximal to the chronic implant, which was associated with an accumulation of autophagy cargo and a reduction in lysosomal protease level during the chronic period. Furthermore, our evidence demonstrates reactive astrocytes have myelin-containing lysosomes near the microelectrode, suggesting its role of myelin engulfment during acute implantation period. Together, this study sheds light on the process of brain tissue degeneration caused by long-term microelectrode implantation, with a specific focus on impaired intracellular waste degradation.
    Keywords:  Brain-computer interface; Glial reactivity; Neuron survival; Tissue homeostasis; brain metabolism
    DOI:  https://doi.org/10.1016/j.biomaterials.2023.122316
  5. Mol Cell. 2023 Sep 21. pii: S1097-2765(23)00652-4. [Epub ahead of print]83(18): 3333-3346.e5
      The proteasome is responsible for removal of ubiquitinated proteins. Although several aspects of its regulation (e.g., assembly, composition, and post-translational modifications) have been unraveled, studying its adaptive compartmentalization in response to stress is just starting to emerge. We found that following amino acid starvation, the proteasome is translocated from its large nuclear pool to the cytoplasm-a response regulated by newly identified mTOR-agonistic amino acids-Tyr, Trp, and Phe (YWF). YWF relay their signal upstream of mTOR through Sestrin3 by disrupting its interaction with the GATOR2 complex. The triad activates mTOR toward its downstream substrates p62 and transcription factor EB (TFEB), affecting both proteasomal and autophagic activities. Proteasome translocation stimulates cytosolic proteolysis which replenishes amino acids, thus enabling cell survival. In contrast, nuclear sequestration of the proteasome following mTOR activation by YWF inhibits this proteolytic adaptive mechanism, leading to cell death, which establishes this newly identified pathway as a key stress-coping mechanism.
    Keywords:  UPS; aromatic amino acids; mTOR; proteasome dynamics; protein quality control; proteolysis; stress response
    DOI:  https://doi.org/10.1016/j.molcel.2023.08.016
  6. EMBO Rep. 2023 Sep 20. e57574
      Transcription factor EB (TFEB) is a basic helix-loop-helix leucine zipper transcription factor that acts as a master regulator of lysosomal biogenesis, lysosomal exocytosis, and macro-autophagy. TFEB contributes to a wide range of physiological functions, including mitochondrial biogenesis and innate and adaptive immunity. As such, TFEB is an essential component of cellular adaptation to stressors, ranging from nutrient deprivation to pathogenic invasion. The activity of TFEB depends on its subcellular localisation, turnover, and DNA-binding capacity, all of which are regulated at the post-translational level. Pathological states are characterised by a specific set of stressors, which elicit post-translational modifications that promote gain or loss of TFEB function in the affected tissue. In turn, the resulting increase or decrease in survival of the tissue in which TFEB is more or less active, respectively, may either benefit or harm the organism as a whole. In this way, the post-translational modifications of TFEB account for its otherwise paradoxical protective and deleterious effects on organismal fitness in diseases ranging from neurodegeneration to cancer. In this review, we describe how the intracellular environment characteristic of different diseases alters the post-translational modification profile of TFEB, enabling cellular adaptation to a particular pathological state.
    Keywords:  TFEB; autophagy; lysosome; mitochondria; post-translational modification
    DOI:  https://doi.org/10.15252/embr.202357574
  7. Autophagy. 2023 Sep 21.
      Crizotinib, a small-molecule tyrosine kinase inhibitor targeting ALK, MET and ROS1, is the first-line drug for ALK-positive metastatic non-small cell lung cancer and is associated with severe, sometimes fatal, cases of cardiac failure, which increases the risk of mortality. However, the underlying mechanism remains unclear, which causes the lack of therapeutic strategy. We established in vitro and in vivo models for crizotinib-induced cardiotoxicity and found that crizotinib caused left ventricular dysfunction, myocardial injury and pathological remodeling in mice and induced cardiomyocyte apoptosis and mitochondrial injury. In addition, we found that crizotinib prevented the degradation of MET protein by interrupting autophagosome-lysosome fusion and silence of MET or re-activating macroautophagy/autophagy flux rescued the cardiomyocytes death and mitochondrial injury caused by crizotinib, suggesting that impaired autophagy activity is the key reason for crizotinib-induced cardiotoxicity. We further confirmed that recovering the phosphorylation of PRKAA/AMPK (Ser485/491) by metformin re-activated autophagy flux in cardiomyocytes and metformin rescued crizotinib-induced cardiomyocyte injury and cardiac complications. In summary, we revealed a novel mechanism for crizotinib-induced cardiotoxicity, wherein the crizotinib-impaired autophagy process causes cardiomyocyte death and cardiac injury by inhibiting the degradation of MET protein, demonstrated a new function of impeded autophagosome-lysosome fusion in drugs-induced cardiotoxicity, pointed out the essential role of the phosphorylation of PRKAA (Ser485/491) in autophagosome-lysosome fusion and confirmed metformin as a potential therapeutic strategy for crizotinib-induced cardiotoxicity.
    Keywords:  Autophagosome-lysosome fusion; PRKAA/AMPK; autophagy; cardiotoxicity; crizotinib; metformin
    DOI:  https://doi.org/10.1080/15548627.2023.2259216
  8. Toxicol Appl Pharmacol. 2023 Sep 20. pii: S0041-008X(23)00333-2. [Epub ahead of print] 116694
      Oxidative stress and insulin resistance are two key mechanisms for the development of diabetic cardiomyopathy (DCM, cardiac remodeling and dysfunction). In this review, we discussed how zinc and metallothionein (MT) protect the heart from type 1 or type 2 diabetes (T1D or T2D) through its anti-oxidative function and insulin-mediated PI3K/Akt signaling activation. Both T1D and T2D-induced DCM, shown by cardiac structural remodeling and dysfunction, in wild-type mice, but not in cardiomyocyte-specific overexpressing MT mice. In contrast, mice with global MT gene deletion were more susceptible to the development of DCM. When we used zinc to treat mice with either T1D or T2D, cardiac remodeling and dysfunction were significantly prevented along with increased cardiac MT expression. To support the role of zinc homeostasis in insulin signaling pathways, treatment of diabetic mice with zinc showed the preservation of phosphorylation levels of insulin-mediated glucose metabolism-related Akt2 and GSK-3β and even rescued cardiac pathogenesis induced by global deletion of Akt2 gene in a MT-dependent manner. These results suggest the protection by zinc from DCM is through both the induction of MT and sensitization of insulin signaling. Combined our own and other works, this review comprehensively summarized the roles of zinc homeostasis in the development and progression of DCM and its therapeutic implications. At the end, we provided pre-clinical and clinical evidence for the preventive and therapeutic potential of zinc supplementation through its anti-oxidative stress and sensitizing insulin signaling actions. Understanding the intricate connections between zinc and DCM provides insights for the future interventional approaches.
    Keywords:  Cardiac dysfunction; Diabetic cardiomyopathy; Diabetic heart; Heart failure; Trace metals; Zinc
    DOI:  https://doi.org/10.1016/j.taap.2023.116694
  9. iScience. 2023 Oct 20. 26(10): 107759
      Diabetes is associated with a significantly elevated risk of heart failure. However, despite extensive efforts to characterize the phenotype of the diabetic heart, the molecular and cellular protagonists that underpin cardiac pathological remodeling in diabetes remain unclear, with a notable paucity of data regarding the impact of diabetes on non-myocytes within the heart. Here we aimed to define key differences in cardiac non-myocytes between spontaneously type-2 diabetic (db/db) and healthy control (db/h) mouse hearts. Single-cell transcriptomic analysis revealed a concerted diabetes-induced cellular response contributing to cardiac remodeling. These included cell-specific activation of gene programs relating to fibroblast hyperplasia and cell migration, and dysregulation of pathways involving vascular homeostasis and protein folding. This work offers a new perspective for understanding the cellular mediators of diabetes-induced cardiac pathology, and pathways that may be targeted to address the cardiac complications associated with diabetes.
    Keywords:  Cell biology; Molecular biology; Omics; Transcriptomics
    DOI:  https://doi.org/10.1016/j.isci.2023.107759
  10. Nat Commun. 2023 09 19. 14(1): 5815
      In autophagy, a membrane cisterna called the isolation membrane expands, bends, becomes spherical, and closes to sequester cytoplasmic constituents into the resulting double-membrane vesicle autophagosome for lysosomal/vacuolar degradation. Here, we discover a mechanism that allows the isolation membrane to expand with a large opening to ensure non-selective cytoplasm sequestration within the autophagosome. A sorting nexin complex that localizes to the opening edge of the isolation membrane plays a critical role in this process. Without the complex, the isolation membrane expands with a small opening that prevents the entry of particles larger than about 25 nm, including ribosomes and proteasomes, although autophagosomes of nearly normal size eventually form. This study sheds light on membrane morphogenesis during autophagosome formation and selectivity in autophagic degradation.
    DOI:  https://doi.org/10.1038/s41467-023-41525-x