bims-lymeca Biomed News
on Lysosome metabolism in cancer
Issue of 2023‒05‒21
three papers selected by
Harilaos Filippakis
University of New England


  1. Cell Calcium. 2023 May 05. pii: S0143-4160(23)00063-5. [Epub ahead of print]113 102751
      Calcium is a crucial messenger of intracellular and extracellular signals, regulating a great variety of cellular processes such as cell death, proliferation, and metabolism. Inside the cell, calcium signaling is one of the main interorganelle communication mediators, with central functional roles at the endoplasmic reticulum (ER), mitochondria, Golgi complex, and lysosomes. Lysosomal function is highly dependent on lumenal calcium and most of the lysosomal membrane-localised ion channels regulate several lysosomal functions and properties such as lumenal pH. One of these functions configures a specific type of cell death involving lysosomes, named lysosome-dependent cell death (LDCD), which contributes to maintenance of tissue homeostasis, development and pathology when deregulated. Here, we cover the fundamental aspects of LDCD with a special focus on recent advances in calcium signaling in LDCD.
    Keywords:  Calcium; Lysosome; Lysosome membrane permeabilization; Lysosome-dependent cell death
    DOI:  https://doi.org/10.1016/j.ceca.2023.102751
  2. Cell Death Discov. 2023 May 19. 9(1): 172
      Glioblastomas are a highly aggressive cancer type which respond poorly to current pharmaceutical treatments, thus novel therapeutic approaches need to be investigated. One such approach involves the use of the bioactive natural product Tanshinone IIA (T2A) derived from the Chinese herb Danshen, where mechanistic insight for this anti-cancer agent is needed to validate its use. Here, we employ a tractable model system, Dictyostelium discoideum, to provide this insight. T2A potently inhibits cellular proliferation of Dictyostelium, suggesting molecular targets in this model. We show that T2A rapidly reduces phosphoinositide 3 kinase (PI3K) and protein kinase B (PKB) activity, but surprisingly, the downstream complex mechanistic target of rapamycin complex 1 (mTORC1) is only inhibited following chronic treatment. Investigating regulators of mTORC1, including PKB, tuberous sclerosis complex (TSC), and AMP-activated protein kinase (AMPK), suggests these enzymes were not responsible for this effect, implicating an additional molecular mechanism of T2A. We identify this mechanism as the increased expression of sestrin, a negative regulator of mTORC1. We further show that combinatory treatment using a PI3K inhibitor and T2A gives rise to a synergistic inhibition of cell proliferation. We then translate our findings to human and mouse-derived glioblastoma cell lines, where both a PI3K inhibitor (Paxalisib) and T2A reduces glioblastoma proliferation in monolayer cultures and in spheroid expansion, with combinatory treatment significantly enhancing this effect. Thus, we propose a new approach for cancer treatment, including glioblastomas, through combinatory treatment with PI3K inhibitors and T2A.
    DOI:  https://doi.org/10.1038/s41420-023-01462-6
  3. Int J Mol Sci. 2023 May 07. pii: 8391. [Epub ahead of print]24(9):
      Renal cell carcinoma (RCC) represents 85-95% of kidney cancers and is the most frequent type of renal cancer in adult patients. It accounts for 3% of all cancer cases and is in 7th place among the most frequent histological types of cancer. Clear cell renal cell carcinoma (ccRCC), accounts for 75% of RCCs and has the most kidney cancer-related deaths. One-third of the patients with ccRCC develop metastases. Renal cancer presents cellular alterations in sugars, lipids, amino acids, and nucleic acid metabolism. RCC is characterized by several metabolic dysregulations including oxygen sensing (VHL/HIF pathway), glucose transporters (GLUT 1 and GLUT 4) energy sensing, and energy nutrient sensing cascade. Metabolic reprogramming represents an important characteristic of the cancer cells to survive in nutrient and oxygen-deprived environments, to proliferate and metastasize in different body sites. The phosphoinositide 3-kinase-AKT-mammalian target of the rapamycin (PI3K/AKT/mTOR) signaling pathway is usually dysregulated in various cancer types including renal cancer. This molecular pathway is frequently correlated with tumor growth and survival. The main aim of this review is to present renal cancer types, dysregulation of PI3K/AKT/mTOR signaling pathway members, crosstalk with VHL/HIF axis, and carbohydrates, lipids, and amino acid alterations.
    Keywords:  PI3K/AKT/mTOR; VHL/HIF axis; metabolism; renal cancer
    DOI:  https://doi.org/10.3390/ijms24098391