bims-kracam Biomed News
on K-Ras in cancer metabolism
Issue of 2021‒07‒11
sixteen papers selected by
Yasmin Elkabani
Egyptian Foundation for Research and Community Development

  1. Dis Model Mech. 2021 Jul 01. 14(7): 1-17
      Cancer cells constantly reprogram their metabolism as the disease progresses. However, our understanding of the metabolic complexity of cancer remains incomplete. Extensive research in the fruit fly Drosophila has established numerous tumor models ranging from hyperplasia to neoplasia. These fly tumor models exhibit a broad range of metabolic profiles and varying nutrient sensitivity. Genetic studies show that fly tumors can use various alternative strategies, such as feedback circuits and nutrient-sensing machinery, to acquire and consolidate distinct metabolic profiles. These studies not only provide fresh insights into the causes and functional relevance of metabolic reprogramming but also identify metabolic vulnerabilities as potential targets for cancer therapy. Here, we review the conceptual advances in cancer metabolism derived from comparing and contrasting the metabolic profiles of fly tumor models, with a particular focus on the Warburg effect, mitochondrial metabolism, and the links between diet and cancer.
    Keywords:   Drosophila cancer models; Aerobic glycolysis; Metabolic reprogramming; Mitochondria
  2. FEBS J. 2021 Jul 06.
      Oncogenic mutations in the KRAS gene are found in 30-50% of colorectal cancers (CRC) and recent findings have demonstrated independent and non-redundant roles for wild-type and mutant KRAS alleles in governing signaling and metabolism. Here, we quantify proteomic changes manifested by KRAS mutation and KRAS allele loss in isogenic cell lines. We show that expression of KRASG13D upregulates aspartate metabolizing proteins including PCK1, PCK2, ASNS and ASS1. Furthermore, differential expression analyses of transcript-level data from CRC tumors identified the upregulation of urea cycle enzymes in CRC. We find that expression of ASS1, supports colorectal cancer cell proliferation and promotes tumor formation in vitro. We show that loss of ASS1 can be rescued with high levels of several metabolites.
    Keywords:  Quantitative proteomics; aspartate; colorectal cancer; metabolomics; mutant KRAS; urea cycle
  3. J Cancer. 2021 ;12(16): 4841-4848
      Despite the significant progress in diagnosis and treatment over the past years in the understanding of breast cancer pathophysiology, it remains one of the leading causes of mortality worldwide among females. Novel technologies are needed to improve better diagnostic and therapeutic approaches, and to better understand the role of tumor-environment microbiome players involved in the progression of this disease. The gut environment is enriched with over 100 trillion microorganisms, which participate in metabolic diseases, obesity, and inflammation, and influence the response to therapy. In addition to the direct metabolic effects of the gut microbiome, accumulating evidence has revealed that a microbiome also exists in the breast and in breast cancer tissue. This microbiome enriched in the breast environment and the tumor microenvironment may modulate effects potentially associated with carcinogenesis and therapeutic interventions in breast tissue, which to date have not been properly acknowledged. Herein, we review the most recent works associated with the population dynamics of breast microbes and explore the significance of the microbiome on diagnosis, tumor development, response to chemotherapy, endocrine therapy, and immunotherapy. To overcome the low reproducibility of evaluations of tumor-related microbiome, sequencing technical escalation and machine deep learning algorithms may be valid for standardization of assessment for breast-related microbiome and their applications as powerful biomarkers for prognosis and predictive response in the future.
    Keywords:  breast cancer; diversity; gut microbiota; microbiome
  4. Curr Cancer Drug Targets. 2021 Mar 22.
      The interplay between cancer and obesity is multifactorial and complex with the increased risk of cancer development in obese individuals posing a significant threat. Obesity leads to the upregulation or hyperactivation of several oncogenic pathways in cancer cells, which drives them towards a deleterious phenotype. The cross-talk between cancer and obesity is considered a large contributing factor in the development of chemotherapeutic drug resistance and the resistance to radiotherapy. The link between obesity and the development of cancer is so strong that a medication that demonstrates effectiveness against both conditions would serve as an essential step. In this context, anti-obesity medications provide a worthy list of candidates based on their chemo-preventive potential and chemotherapeutic properties. The current study focuses on exploring the potential of anti-obesity medicines as dual anticancer drugs. These medications target several key signaling pathways (e.g., AMPK, PI3K/Akt/mTOR, MAPK, NF-κB, JNK/ERK), which prove to be crucial for both cancer growth and metastases. Some of these drugs also play an important role in attenuating the signaling and cellular events which incite cancer-obesity cross-talk and demonstrate efficient counteraction of neoplastic transformation. Thus, this review highlights a comprehensive view of the potential use of anti-obesity medicines to treat both cancer and obesity for patients exhibiting both comorbities.
    Keywords:  Obesity; anti-obesity medicines; cancer; metastasis; phytochemicals; signaling pathways
  5. Cell Mol Immunol. 2021 Jul 08.
      In 2011, Hanahan and Weinberg added "Deregulating Cellular Energetics" and "Avoiding Immune Destruction" to the six previous hallmarks of cancer. Since this seminal paper, there has been a growing consensus that these new hallmarks are not mutually exclusive but rather interdependent. The following review summarizes how founding genetic events for tumorigenesis ultimately increase tumor cell glycolysis, which not only supports the metabolic demands of malignancy but also provides an immunoprotective niche, promoting malignant cell proliferation, maintenance and progression. The mechanisms by which altered metabolism contributes to immune impairment are multifactorial: (1) the metabolic demands of proliferating tumor cells and activated immune cells are similar, thus creating a situation where immune cells may be in competition for key nutrients; (2) the metabolic byproducts of aerobic glycolysis directly inhibit antitumor immunity while promoting a regulatory immune phenotype; and (3) the gene programs associated with the upregulation of glycolysis also result in the generation of immunosuppressive cytokines and metabolites. From this perspective, we shed light on important considerations for the development of new classes of agents targeting cancer metabolism. These types of therapies can impair tumor growth but also pose a significant risk of stifling antitumor immunity.
    Keywords:  cancer; glycolysis; immunology; metabolism
  6. Front Oncol. 2021 ;11 696402
      We have only recently begun to understand how cancer metabolism affects antitumor responses and immunotherapy outcomes. Certain immunometabolic targets have been actively pursued in other tumor types, however, glioblastoma research has been slow to exploit the therapeutic vulnerabilities of immunometabolism. In this review, we highlight the pathways that are most relevant to glioblastoma and focus on how these immunometabolic pathways influence tumor growth and immune suppression. We discuss hypoxia, glycolysis, tryptophan metabolism, arginine metabolism, 2-Hydroxyglutarate (2HG) metabolism, adenosine metabolism, and altered phospholipid metabolism, in order to provide an analysis and overview of the field of glioblastoma immunometabolism.
    Keywords:  2HG; adenosine; arginine; glioblastoma; immunometabolism; immunotherapy; metabolism; tryptophan
  7. Front Oncol. 2021 ;11 612952
      Patients with advanced stomach adenocarcinoma (STAD) commonly show high mortality and poor prognosis. Increasing evidence has suggested that basic metabolic changes may promote the growth and aggressiveness of STAD; therefore, identification of metabolic prognostic signatures in STAD would be meaningful. An integrative analysis was performed with 407 samples from The Cancer Genome Atlas (TCGA) and 433 samples from Gene Expression Omnibus (GEO) to develop a metabolic prognostic signature associated with clinical and immune features in STAD using Cox regression analysis and least absolute shrinkage and selection operator (LASSO). The different proportions of immune cells and differentially expressed immune-related genes (DEIRGs) between high- and low-risk score groups based on the metabolic prognostic signature were evaluated to describe the association of cancer metabolism and immune response in STAD. A total of 883 metabolism-related genes in both TCGA and GEO databases were analyzed to obtain 184 differentially expressed metabolism-related genes (DEMRGs) between tumor and normal tissues. A 13-gene metabolic signature (GSTA2, POLD3, GLA, GGT5, DCK, CKMT2, ASAH1, OPLAH, ME1, ACYP1, NNMT, POLR1A, and RDH12) was constructed for prognostic prediction of STAD. Sixteen survival-related DEMRGs were significantly related to the overall survival of STAD and the immune landscape in the tumor microenvironment. Univariate and multiple Cox regression analyses and the nomogram proved that a metabolism-based prognostic risk score (MPRS) could be an independent risk factor. More importantly, the results were mutually verified using TCGA and GEO data. This study provided a metabolism-related gene signature for prognostic prediction of STAD and explored the association between metabolism and the immune microenvironment for future research, thereby furthering the understanding of the crosstalk between different molecular mechanisms in human STAD. Some prognosis-related metabolic pathways have been revealed, and the survival of STAD patients could be predicted by a risk model based on these pathways, which could serve as prognostic markers in clinical practice.
    Keywords:  biomarker; clinical characteristics; metabolism-based prognostic signature; stomach adenocarcinoma; tumor microenvironment
  8. Front Genet. 2021 ;12 689585
      Previous studies reported that pyruvate dehydrogenase kinase 4 (PDK4) is closely related to diabetes, heart disease, and carcinomas. Nevertheless, the role of PDK4 in gastric cancer (GC) occurrence and development is yet poorly understood. Our experiments were taken to evaluate PDK4's function in GC. The Cancer Genome Atlas tumor genome map database was employed to validate the levels of PDK family in different grades and stages of GC. The survival ratio of PDK families in GC was detected by the Kaplan-Meier plotter database. The links existing in the expression of PDK family and the level of tumor-infiltrating immune cells were investigated by tumor immunity assessment resource (TIMER). PDK4-associated signal pathways in GC were analyzed by the Kyoto Encyclopedia of Genes and Genomes pathway analysis. PDK4 mRNA level in the GC cells was measured by qRT-PCR. Cell counting kit-8 and Transwell assays were separately carried out to evaluate PDK4-induced influence on GC cell proliferation, migration, and invasion. Our data suggested that GC cells highly expressed PDK4, and PDK4 expression presented a significant relation with the staging, grade, and survival rate of GC. PDK4 expression presented a positive correlation with the types of different infiltrating immune cells, comprising B cells, CD4+ T cells, and dendritic cells. Meanwhile, PDK4 expression exhibited a strong association with macrophages. Survival analysis revealed that the expression of PDK4 displayed a relationship with the prognosis of patients. Therefore, PDK4 was liable to be a biomarker for prognosis. Our results further displayed that PDK4 might modulate the glycolysis level in GC cells, and its expression was associated with GC cell proliferation, migration, and invasion. These data may provide insights into designing a new treatment strategy for GC.
    Keywords:  PDK4; biomarker; gastric cancer; glucose metabolism; prognosis; tumor-infiltrating immune cells
  9. Cancer Cell Int. 2021 Jul 03. 21(1): 339
      Fatty acid oxidation (FAO) is the emerging hallmark of cancer metabolism because certain tumor cells preferentially utilize fatty acids for energy. Lymph node metastasis, the most common way of tumor metastasis, is much indispensable for grasping tumor progression, formulating therapy measure and evaluating tumor prognosis. There is a plethora of studies showing different ways how tumor cells metastasize to the lymph nodes, but the role of FAO in lymph node metastasis remains largely unknown. Here, we summarize recent findings and update the current understanding that FAO may enable lymph node metastasis formation. Afterward, it will open innovative possibilities to present a distinct therapy of targeting FAO, the metabolic rewiring of cancer to terminal cancer patients.
    Keywords:  Fatty acid oxidation; Immune suppression; Lymph node metastasis; Lymph node pre-metastatic niche; Metabolic reprogramming; Prognosis; YAP
  10. Redox Biol. 2021 Jun 23. pii: S2213-2317(21)00215-9. [Epub ahead of print]45 102056
      Ferroptosis is primarily triggered by a failure of the glutathione (GSH)-glutathione peroxidase 4 (GPX4) reductive system and associated overwhelming lipid peroxidation, in which enzymes regulating polyunsaturated fatty acid (PUFA) metabolism, and in particular acyl-CoA synthetase long chain family member 4 (ACSL4), are central. Here, we found that exogenous oxygen radicals generated by photodynamic therapy (PDT) can directly peroxidize PUFAs and initiate lipid autoxidation, coinciding with cellular GSH depletion. Different from canonical ferroptosis induced by RSL3 or erastin, PDT-initiated lipid peroxidation and ferroptotis-like cell death is independent of lipoxygenase (ALOXs) and ACSL4. Especially, this form of cell death modality can be triggered in malignant cells insensitive to or acquired resistance to canonical ferroptosis inducers. We also observed a distinct iron metabolism pathway in this PDT-triggered cell death modality, in which cytosolic labile iron is decreased probably due to its relocation to mitochondria. Inhibition of the mitochondrial Ca2+ and Fe2+ uniporter (MCU) effectively prevented PDT-triggered lipid peroxidation and subsequent cell death. Therefore, we tentatively term this distinct ferroptosis-like cell death as liperoptosis. Moreover, using the clinically approved photosensitizer Verteporfin, PDT inhibited tumor growth through inducing prevailing ferroptosis-like cell death in a mouse xenograft model. With its site-specific advantages, these findings highlight the value of using PDT to trigger lipid peroxidation and ferroptosis-like cell death in vivo, and will benefit exploring the exact molecular mechanism of immunological effects of PDT in cancer treatment.
    Keywords:  Cell death; Ferroptosis; Liperoptosis; Lipid peroxidation; PDT
  11. Front Cell Dev Biol. 2021 ;9 686906
      Ferroptosis is a newly identified form of regulated cell death that is associated with iron metabolism and oxidative stress. As a physiological mechanism, ferroptosis selectively removes cancer cells by regulating the expression of vital chemical molecules. Current findings on regulation of ferroptosis have largely focused on the function of non-coding RNAs (ncRNAs), especially microRNAs (miRNAs), in mediating ferroptotic cell death, while the sponging effect of circular RNAs (circRNAs) has not been widely studied. In this review, we discuss the molecular regulation of ferroptosis and highlight the value of circRNAs in controlling ferroptosis and carcinogenesis. Herein, we deliberate future role of this emerging form of regulated cell death in cancer therapeutics and predict the progression and prognosis of oncogenesis in future clinical therapy.
    Keywords:  cancer therapy; circRNAs; ferroptosis; lipid peroxidation; miRNAs; multiple drug resistance
  12. J Food Biochem. 2021 Jul 05. e13824
      Advanced knowledge about the role of tumor microenvironment (TME) in cancer progression has opened various ways to target the vast signaling pathways for cancer treatment. Failures of the currently used drugs have raised out the need to look for novel drugs which can target various crucial aspects of cancer progression (e.g., angiogenesis, uncontrolled cell division, and metastasis). Phytochemicals behaving as potent anticancer agents shows promise as therapeutics. Various phytochemicals, such as curcumin, Epigallocatechin Gallate (EGCG), resveratrol, plumbagin, genistein, and others, have been identified with modulatory effect on TME. These phytochemicals often target the molecular pathways that reside in the tumor vicinity associated with endothelial cells, cancer-associated fibroblasts, immune cells, mesenchymal stem cells, other cell types, vascular and lymphatic networks, and extracellular matrix which are important for tumor progression and development. Some phytochemicals also target the internal signaling pathways, including STAT3, NF-қB, ERK-1/2, and PI3K/Akt signaling of noncancer cell, residing in the microenvironment, and thus inhibiting the supportive effect from these cells in tumor development. However, much information needs to be acquired before using these phytochemicals in cancer treatment. The primary objective of this review is to provide a better knowledge about the role of TME in cancer progression and development, focusing on the different targets which can be used for therapeutic approach, and then to give a brief account on some known phytochemicals to date, which have shown remarkable TME modulatory effects. PRACTICAL APPLICATIONS: For the use of phytochemicals as therapeutics, it is highly recommended that their precise target should be known; therefore studies should be encouraged such that the effects of these phytochemicals can be evaluated on the individual cellular level like how the phytochemical is targeting the tumor-associated macrophage, or any other cell residing in the tumor microenvironment (TME), and the compound should target a specific component of TME to avoid off target effects.
    Keywords:  cancer; phytochemicals; signaling; stromal cells; tumor microenvironment
  13. Anticancer Agents Med Chem. 2021 Jul 08.
      Lung cancer is the second most common cancer and the primary cause of cancer-related death in both men and women worldwide. Due to diagnosis at an advanced stage, it is associated with high mortality in the majority of patients. At present, various treatment approaches are available such as chemotherapy, surgery, and radiotherapy. However, all these approaches usually cause serious side effects like degeneration of normal cells, bone marrow depression, alopecia, extensive vomiting, etc. To overcome the aforementioned problems, researchers have focused on the alternative therapeutic approach in which various natural compounds are reported, which possessed anti-lung cancer activity. Phytocompounds exhibit their anti-lung cancer activity via targeting various cell-signaling pathways, apoptosis, cell cycle arrest, and regulating antioxidant status and detoxification. Apart from the excellent anti-cancer activity, clinical administration of phytocompounds is confined because of their high lipophilicity and low bioavailability. Therefore, researchers show their concern in the development of a stable, safe, and effective approach of treatment with minimal side effects by the development of nanoparticle-based delivery of these phytocompounds to the target site. Targeted delivery of phytocompound through nanoparticles overcomes the aforementioned problems. In this article, the molecular mechanism of phytocompounds, their emerging combination therapy, and their nanoparticles-based delivery systems in the treatment of lung cancer have been discussed.
    Keywords:  drug delivery; lung cancer; molecular mechanism; nanoparticles; phytocompounds; therapeutic efficacy
  14. Front Oncol. 2021 ;11 705903
      Epigenetics, including DNA methylation, histone modification, and noncoding RNA regulation, are physiological regulatory changes that affect gene expression without modifying the DNA sequence. Although epigenetic disorders are considered a sign of cell carcinogenesis and malignant events that affect tumor progression and drug resistance, in view of the reversible nature of epigenetic modifications, clinicians believe that associated mechanisms can be a key target for cancer prevention and treatment. In contrast, epidemiological and preclinical studies indicated that the epigenome is constantly reprogrammed by intake of natural organic compounds and the environment, suggesting the possibility of utilizing natural compounds to influence epigenetics in cancer therapy. Flavonoids, although not synthesized in the human body, can be consumed daily and are common in medicinal plants, vegetables, fruits, and tea. Recently, numerous reports provided evidence for the regulation of cancer epigenetics by flavonoids. Considering their origin in natural and food sources, few side effects, and remarkable biological activity, the epigenetic antitumor effects of flavonoids warrant further investigation. In this article, we summarized and analyzed the multi-dimensional epigenetic effects of all 6 subtypes of flavonoids (including flavonols, flavones, isoflavones, flavanones, flavanols, and anthocyanidin) in different cancer types. Additionally, our report also provides new insights and a promising direction for future research and development of flavonoids in tumor prevention and treatment via epigenetic modification, in order to realize their potential as cancer therapeutic agents.
    Keywords:  DNMT; HDAC; cancer; epigenetic; epigenome; flavonoids; natural compounds; phytochemicals
  15. Onco Targets Ther. 2021 ;14 4005-4021
      Circular RNAs (circRNAs) were originally thought to result from RNA splicing errors. However, it has been shown that circRNAs can regulate cancer onset and progression in various ways. They can regulate cancer cell proliferation, differentiation, invasion, and metastasis. Moreover, they modulate glucose metabolism in cancer cells through different mechanisms such as directly regulating glycolytic enzymes and glucose transporter (GLUT) or indirectly regulating signal transduction pathways. In this review, we elucidate on the role of circRNAs in regulating glucose metabolism in cancer cells, which partly explains the pathogenesis of malignant tumors, and provides new therapeutic targets or new diagnostic and prognostic markers for human cancers.
    Keywords:  Warburg effect; circRNAs; glucose metabolism; signaling pathway; targeted therapy
  16. Life Sci. 2021 Jul 05. pii: S0024-3205(21)00789-X. [Epub ahead of print] 119803
      Sirtuins are Class III protein deacetylases with seven conserved isoforms. In general, Sirtuins are highly activated under cellular stress conditions in which NAD+ levels are increased. Nevertheless, regulation of Sirtuins extends far beyond the influences of cellular NAD+/NADH ratio and a rapidly expanding body of evidence currently suggests that their expression and catalytic activity are highly kept under control at multiple levels by various factors and processes. Owing to their intrinsic ability to enzymatically target various intracellular proteins, Sirtuins are prominently involved in the regulation of fundamental biological processes including inflammation, metabolism, redox homeostasis, DNA repair and cell proliferation and senescence. In fact, Sirtuins are well established to regulate and reprogram different redox and metabolic pathways under both pathological and physiological conditions. Therefore, alterations in Sirtuin levels can be a pivotal intermediary step in the pathogenesis of several disorders. This review first highlights the mechanisms involved in the regulation of Sirtuins and further summarizes the current findings on the major functions of Sirtuins in cellular redox homeostasis and bioenergetics (glucose and lipid metabolism).
    Keywords:  Antioxidant defense; Metabolism; Oxidative stress; Post-translational modification; Sirtuins; Transcriptional regulation