bims-istrec Biomed News
on Integrated stress response in cancer
Issue of 2022‒07‒31
ten papers selected by
the Vincenzo Ciminale lab
Istituto Oncologico Veneto

  1. BMB Rep. 2022 Jul 26. pii: 5587. [Epub ahead of print]
      Advanced hepatocellular carcinoma (HCC) is among the most challenging cancers to overcome, and there is a need for better therapeutic strategies. Among the different cancer drugs that have been used in clinics, sorafenib is considered the standard first-line drug for advanced HCC. Here, to identify a chemical compound displaying a synergistic effect with sorafenib in HCC, we screened a focused chemical library and found that MG149, a histone acetyltransferase inhibitor targeting the MYST family, exhibited the most synergistic anticancer effect with sorafenib on HCC cells. The combination of sorafenib and MG149 exerted a synergistic anti-proliferation effect on HCC cells by inducing apoptotic cell death. We revealed that cotreatment with sorafenib and MG149 aggravated endoplasmic reticulum (ER) stress to promote the death of HCC cells rather than adaptive cell survival. In addition, combined treatment with sorafenib and MG149 significantly increased the intracellular levels of unfolded proteins and reactive oxygen species, which upregulated ER stress. Collectively, these results suggest that MG149 has the potential to improve the efficacy of sorafenib in advanced HCC via the upregulation of cytotoxic ER stress.
  2. Cell Death Dis. 2022 Jul 27. 13(7): 652
      Endoplasmic reticulum (ER) stress is widely involved in the drug resistance of hepatocellular carcinoma (HCC), but the mechanism of ER stress-induced drug resistance involves multiple signaling pathways that cannot be fully explained. Exploring genes associated with ER stress could yield a novel therapeutic target for ER stress-induced drug resistance. By analyzing RNA-sequencing, ATAC-sequencing, and Chip-sequencing data of Tunicamycin (TM)-treated or untreated HCC cells, we found that Rho guanine nucleotide exchange factor 2 (ARHGEF2) is upregulated in HCC cells with ER stress. ARHGEF2 plays an active role in tumor malignant progression. Notwithstanding, no research has been done on the link between ER stress and ARHGEF2. The function of ARHGEF2 as a novel downstream effector of ER stress in the angiogenesis and treatment resistance of HCC was revealed in this work. ARHGEF2 overexpression was linked to malignant development and a poor prognosis in HCC. ER stress stimulates the expression of ARHGEF2 through upregulation of ZNF263. Elevated ARHGEF2 accelerates HCC angiogenesis via the EDN1 pathway, enhances HCC cell proliferation and tumor growth both in vitro and in vivo, and contributes to ER stress-related treatment resistance. HCC cell growth was more inhibited when ARHGEF2 knockdown was paired with targeted medicines. Collectively, we uncovered a previously hidden mechanism where ARHGEF2/EDN1 pathway promotes angiogenesis and participates in ER stress-related drug resistance in HCC.
  3. Front Pharmacol. 2022 ;13 949001
      Cancer is one of the leading causes of death worldwide due to high morbidity and mortality. Many attempts and efforts have been devoted to fighting cancer. Owing to the significant role of the endoplasmic reticulum (ER) in cell function, inducing ER stress can be promising for cancer treatment. However, the sustained activation of cytoprotective unfolded protein response (UPR) presents a tremendous obstacle for drugs in inducing unsolved ER stress in tumor cells, especially small-molecule drugs with poor bioavailability. Therefore, many emerging nanodrugs inducing and amplifying ER stress have been developed for efficient cancer treatment. More importantly, the novel discovery of ER stress in immunogenic cell death (ICD) makes it possible to repurpose antitumor drugs for immunotherapy through nanodrug-based strategies amplifying ER stress. Therefore, this mini-review aims to provide a comprehensive summary of the latest developments of the strategies underlying nanodrugs in the treatment of cancer via manipulating ER stress. Meanwhile, the prospects of ER stress-inducing nanodrugs for cancer treatment are systematically discussed, which provide a sound platform for novel therapeutic insights and inspiration for the design of nanodrugs in treating cancer.
    Keywords:  endoplasmic reticulum stress; immunogenic cell death; nanodrugs; photodynamic therapy; tumor
  4. Cancers (Basel). 2022 Jul 08. pii: 3326. [Epub ahead of print]14(14):
      Recently, endoplasmic reticulum (ER) stress has been shown to influence tumor progression and immune cell function in the tumor microenvironment (TME). However, the underlying role of ER stress-related gene patterns in colorectal cancer (CRC) development remains unclear. We analyzed the ER stress-related gene patterns in 884 patients with CRC from the Gene Expression Omnibus database and evaluated the cell-infiltrating patterns in the TME. Two ER stress-related patterns were identified in patients with CRC that had distinct cell-infiltrating patterns in the TME and clinical characteristics. A risk score and nomogram based on 14 screened prognosis-correlated genes was built and validated to predict patient survival. Patients with a higher risk score were shown to have an unfavorable prognosis, and the risk score was associated with cell infiltration and drug sensitivity. Furthermore, spatial transcriptomics data were utilized to explore ER stress-related gene patterns in CRC tissues, and it was shown that ER stress phenotype involves in the formation of the immunosuppressive TME. This study demonstrated that ER stress-related gene patterns play a role in influencing the TME and predicting prognosis. These analyses of ER stress in the TME of CRC might deepen our understanding of CRC progression and immune escape and provide novel insights into therapeutic strategies.
    Keywords:  ER stress; colorectal cancer; prognostic model; spatial transcriptomics; tumor microenvironment
  5. Cell Death Dis. 2022 Jul 28. 13(7): 655
      X-linked inhibitor of apoptosis-associated factor-1 (XAF1) is a stress-inducible tumor suppressor that is commonly inactivated in many human cancers. Despite accumulating evidence for the pro-apoptotic role for XAF1 under various stressful conditions, its involvement in endoplasmic reticulum (ER) stress response remains undefined. Here, we report that XAF1 increases cell sensitivity to ER stress and acts as a molecular switch in unfolded protein response (UPR)-mediated cell-fate decisions favoring apoptosis over adaptive autophagy. Mechanistically, XAF1 interacts with and destabilizes ER stress sensor GRP78 through the assembly of zinc finger protein 313 (ZNF313)-mediated destruction complex. Moreover, XAF1 expression is activated through PERK-Nrf2 signaling and destabilizes C-terminus of Hsc70-interacting protein (CHIP) ubiquitin E3 ligase, thereby blocking CHIP-mediated K63-linked ubiquitination and subsequent phosphorylation of inositol-required enzyme-1α (IRE1α) that is involved in in the adaptive ER stress response. In tumor xenograft assays, XAF1-/- tumors display substantially lower regression compared to XAF1+/+ tumors in response to cytotoxic dose of ER stress inducer. XAF1 and GRP78 expression show an inverse correlation in human cancer cell lines and primary breast carcinomas. Collectively this study uncovers an important role for XAF1 as a linchpin to govern the sensitivity to ER stress and the outcomes of UPR signaling, illuminating the mechanistic consequence of XAF1 inactivation in tumorigenesis.
  6. Molecules. 2022 Jul 06. pii: 4327. [Epub ahead of print]27(14):
      Different pathological conditions, including viral infections and cancer, can have a massive impact on the endoplasmic reticulum (ER), causing severe damage to the cell and exacerbating the disease. In particular, coronavirus infections, including SARS coronavirus-2 (SARS-CoV-2), responsible for COVID-19, cause ER stress as a consequence of the enormous amounts of viral glycoproteins synthesized, the perturbation of ER homeostasis and the modification of ER membranes. Therefore, ER has a central role in the viral life cycle, thus representing one of the Achilles' heels on which to focus therapeutic intervention. On the other hand, prolonged ER stress has been demonstrated to promote many pro-tumoral attributes in cancer cells, having a key role in tumor growth, metastasis and response to therapies. In this report, adopting a repurposing approach of approved drugs, we identified the antiplatelet agent ticlopidine as an interferent of the unfolded protein response (UPR) via sigma receptors (SRs) modulation. The promising results obtained suggest the potential use of ticlopidine to counteract ER stress induced by viral infections, such as COVID-19, and cancer.
    Keywords:  COVID-19; ER stress; P2Y12 inhibitors; cancer; endoplasmic reticulum (ER); sigma 1 receptor (S1R); terminal UPR; ticlopidine
  7. Int J Mol Sci. 2022 Jul 25. pii: 8184. [Epub ahead of print]23(15):
      Prostate cancer is the most common cancer in men, and it is primarily driven by androgen steroid hormones. The glycosylation enzyme EDEM3 is controlled by androgen signalling and is important for prostate cancer viability. EDEM3 is a mannosidase that trims mannose from mis-folded glycoproteins, tagging them for degradation through endoplasmic reticulum-associated degradation. Here, we find that EDEM3 is upregulated in prostate cancer, and this is linked to poorer disease-free survival. Depletion of EDEM3 from prostate cancer cells induces an ER stress transcriptomic signature, and EDEM3 overexpression is cyto-protective against ER stressors. EDEM3 expression also positively correlates with genes involved in the unfolded protein response in prostate cancer patients, and its expression can be induced through exposure to radiation. Importantly, the overexpression of EDEM3 promotes radio-resistance in prostate cancer cells and radio-resistance can be reduced through depletion of EDEM3. Our data thus implicate increased levels of EDEM3 with a role in prostate cancer pathology and reveal a new therapeutic opportunity to sensitise prostate tumours to radiotherapy.
    Keywords:  EDEM; ER-stress; N-glycosylation; prostate cancer; radiotherapy
  8. Biotechnol Genet Eng Rev. 2022 Jul 29. 1-23
      Glioblastoma (GBM) is presented with a poor prognosis. The endoplasmic reticulum stress (ERS) has been implicated as a major contributor to disease progression and chemoresistance in GBM. Triggering ERS by chemical agents or genetic modulations is identified as some of the reasons for regulating gene expression and the pathogenesis of GBM. ERS initiates unfolded protein response (UPR), an integrated system useful in restoring homeostasis or inducing apoptosis. Modulation of UPR might have positive outcomes in GBM treatment as UPR inducers have been shown to alter cell survival and migration. In the current review, we have utilized GSE7806, a publicly available dataset from Gene Expression Omnibus (GEO), to evaluate the genes expressed during 6.5 hr and 18 hr, which can be comparable to the early and late-onset of the disease. Subsequently, we have elucidated the prognosis and survival information whilst the expression of these genes in the GBM was noted in previous studies. This is the first of its kind review summarizing the most recent gene information correlating UPR and GBM.
    Keywords:  ER stress; Glioblastoma; prognosis; survival; unfolded protein response
  9. Drug Resist Updat. 2022 Jul 08. pii: S1368-7646(22)00052-8. [Epub ahead of print]64 100853
      Protein biogenesis, maturation and degradation are tightly regulated processes that are governed by a complex network of signaling pathways. The endoplasmic reticulum (ER) is responsible for biosynthesis and maturation of secretory proteins. Circumstances that alter cellular protein homeostasis, determine accumulation of misfolded and unfolded proteins in the ER, a condition defined as ER stress. In case of stress, the ER activates an adaptive response called unfolded protein response (UPR), a series of pathways of major relevance for cancer biology. The UPR plays a preeminent role in adaptation of tumor cells to the harsh conditions that they experience, due to high rates of proliferation, metabolic abnormalities and hostile environment scarce in oxygen and nutrients. Furthermore, the UPR is among the main adaptive cell stress responses contributing to the development of resistance to drugs and chemotherapy. Clinical management of Acute Myeloid Leukemia (AML) has improved significantly in the last decade, thanks to development of molecular targeted therapies. However, the emergence of treatment-resistant clones renders the rate of AML cure dismal. Moreover, different cell populations that constitute the bone marrow niche recently emerged as a main determinant leading to drug resistance. Herein we summarize the most relevant literature regarding the role played by the UPR in expansion of AML and ability to develop drug resistance and we discuss different possible modalities to overturn this adaptive response against leukemia. To this aim, we also describe the interconnection of the UPR with other cellular stress responses regulating protein homeostasis. Finally, we review the newest findings about the crosstalk between AML cells and cells of the bone marrow niche, under physiological conditions and in response to therapies, discussing in particular the importance of the niche in supporting survival of AML cells by favoring protein homeostasis.
    Keywords:  Acute myeloid leukemia; Bone marrow niche; ER stress; FLT3-ITD; IRS; Molecular target therapy; Oxidative stress; Proteostasis; UPR
  10. Cells. 2022 Jul 07. pii: 2136. [Epub ahead of print]11(14):
      Cancer cell survival, function and fate strongly depend on endoplasmic reticulum (ER) proteostasis. Although previous studies have implicated the ER stress signaling network in all stages of cancer development, its role in cancer metastasis remains to be elucidated. In this study, we investigated the role of Gremlin-1 (GREM1), a secreted protein, in the invasion and metastasis of colorectal cancer (CRC) cells in vitro and in vivo. Firstly, public datasets showed a positive correlation between high expression of GREM1 and a poor prognosis for CRC. Secondly, GREM1 enhanced motility and invasion of CRC cells by epithelial-mesenchymal transition (EMT). Thirdly, GREM1 upregulated expression of activating transcription factor 6 (ATF6) and downregulated that of ATF4, and modulation of the two key players of the unfolded protein response (UPR) was possibly through activation of PI3K/AKT/mTOR and antagonization of BMP2 signaling pathways, respectively. Taken together, our results demonstrate that GREM1 is an invasion-promoting factor via regulation of ATF6 and ATF4 expression in CRC cells, suggesting GREM1 may be a potential pharmacological target for colorectal cancer treatment.
    Keywords:  ATF4; ATF6; Gremlin-1; colorectal cancer; epithelial–mesenchymal transition