bims-istrec Biomed News
on Integrated stress response in cancer
Issue of 2022‒02‒27
five papers selected by
Vincenzo Ciminale’s Lab
Istituto Oncologico Veneto

  1. Mar Drugs. 2022 Jan 29. pii: 109. [Epub ahead of print]20(2):
      Liver cancers, such as hepatocellular carcinoma (HCC), are a highly prevalent cause of cancer-related deaths. Current treatments to combat liver cancer are limited. (-)-Agelasidine A, a compound isolated from the methanol extract of Agelasnakamurai, a sesquiterpene guanidine derived from sea sponge, has antibacterial activity. We demonstrated its anticancer capabilities by researching the associated mechanism of (-)-agelasidine A in human liver cancer cells. We found that (-)-agelasidine A significantly reduced viability in Hep3B and HepG2 cells, and we determined that apoptosis was involved in the (-)-agelasidine A-induced Hep3B cell deaths. (-)-Agelasidine A activated caspases 9, 8, and 3, as well as PARP. This effect was reversed by caspase inhibitors, suggesting caspase-mediated apoptosis in the (-)-agelasidine A-treated Hep3B cells. Moreover, the reduced mitochondrial membrane potential (MMP) and the release of cytochrome c indicated that the (-)-agelasidine A-mediated mitochondrial apoptosis was mechanistic. (-)-Agelasidine A also increased apoptosis-associated proteins (DR4, DR5, FAS), which are related to extrinsic pathways. These events were accompanied by an increase in Bim and Bax, proteins that promote apoptosis, and a decrease in the antiapoptotic protein, Bcl-2. Furthermore, our results presented that (-)-agelasidine A treatment bridged the intrinsic and extrinsic apoptotic pathways. Western blot analysis of Hep3B cells treated with (-)-agelasidine A showed that endoplasmic reticulum (ER) stress-related proteins (GRP78, phosphorylated PERK, phosphorylated eIF2α, ATF4, truncated ATF6, and CHOP) were upregulated. Moreover, 4-PBA, an ER stress inhibitor, could also abrogate (-)-agelasidine A-induced cell viability reduction, annexin V+ apoptosis, death receptor (DR4, DR5, FAS) expression, mitochondrial dysfunction, and cytochrome c release. In conclusion, by activating ER stress, (-)-agelasidine A induced the extrinsic and intrinsic apoptotic pathways of human HCC.
    Keywords:  (−)-agelasidine A; apoptosis; caspase; death receptor; endoplasmic reticulum stress; hepatocellular carcinoma (HCC); mitochondrial membrane potential
  2. Cells. 2022 Feb 11. pii: 632. [Epub ahead of print]11(4):
      Hepatocellular carcinoma (HCC) is one of the most common and deadly cancers worldwide. It is usually diagnosed in an advanced stage and is characterized by a high intrinsic drug resistance, leading to limited chemotherapeutic efficacy and relapse after treatment. There is therefore a vast need for understanding underlying mechanisms that contribute to drug resistance and for developing therapeutic strategies that would overcome this. The rapid proliferation of tumor cells, in combination with a highly inflammatory microenvironment, causes a chronic increase of protein synthesis in different hepatic cell populations. This leads to an intensified demand of protein folding, which inevitably causes an accumulation of misfolded or unfolded proteins in the lumen of the endoplasmic reticulum (ER). This process is called ER stress and triggers the unfolded protein response (UPR) in order to restore protein synthesis or-in the case of severe or prolonged ER stress-to induce cell death. Interestingly, the three different arms of the ER stress signaling pathways have been shown to drive chemoresistance in several tumors and could therefore form a promising therapeutic target. This review provides an overview of how ER stress and activation of the UPR contributes to drug resistance in HCC.
    Keywords:  anthracyclins; drug resistance; endoplasmic reticulum stress; liver cancer; transarterial chemoembolization; tumor microenvironment; unfolded protein response
  3. Antioxidants (Basel). 2022 Feb 09. pii: 341. [Epub ahead of print]11(2):
      Despite the initial success in treatment of localized prostate cancer (PCa) using surgery, radiation or hormonal therapy, recurrence of aggressive tumors dictates morbidity and mortality. Focused ultrasound (FUS) is being tested as a targeted, noninvasive approach to eliminate the localized PCa foci, and strategies to enhance the anticancer potential of FUS have a high translational value. Since aggressive cancer cells utilize oxidative stress (Ox-stress) and endoplasmic reticulum stress (ER-stress) pathways for their survival and recurrence, we hypothesized that pre-treatment with drugs that disrupt stress-signaling pathways in tumor cells may increase FUS efficacy. Using four different PCa cell lines, i.e., LNCaP, C4-2B, 22Rv1 and DU145, we tested the in vitro effects of FUS, alone and in combination with two clinically tested drugs that increase Ox-stress (i.e., CDDO-me) or ER-stress (i.e., nelfinavir). As compared to standalone FUS, significant (p < 0.05) suppressions in both survival and recurrence of PCa cells were observed following pre-sensitization with low-dose CDDO-me (100 nM) and/or nelfinavir (2 µM). In drug pre-sensitized cells, significant anticancer effects were evident at a FUS intensity of as low as 0.7 kW/cm2. This combined mechanochemical disruption (MCD) approach decreased cell proliferation, migration and clonogenic ability and increased apoptosis/necrosis and reactive oxygen species (ROS) production. Furthermore, although activated in cells that survived standalone FUS, pre-sensitization with CDDO-me and/or nelfinavir suppressed both total and activated (phosphorylated) NF-κB and Akt protein levels. Thus, a combined MCD therapy may be a safe and effective approach towards the targeted elimination of aggressive PCa cells.
    Keywords:  CDDO-me; ER-stress; aggressive phenotype; combined mechanochemical disruption; focused ultrasound; nelfinavir; oxidative stress; prostate cancer
  4. Discov Oncol. 2021 Nov 30. 12(1): 57
      Osteosarcoma (OS) is the most common primary malignant bone tumor. However, the therapeutic results of the advanced cases at the first visit were still extremely poor. Therefore, more effective therapeutic options based on molecular profiling of OS are needed. In this study, we investigated the functions of endoplasmic reticulum (ER) stress activities in OS and elucidated whether ER stress inhibitors could exert antitumor effects. The expression of 84 key genes associated with unfolded protein response (UPR) was assessed in four OS cells (143B, MG63, U2OS and KHOS) by RT2 Profiler PCR Arrays. Based on results, we performed both siRNA and inhibitor assays focusing on IRE1α-XBP1 and PERK pathways. All OS cell lines showed resistance to PERK inhibitors. Furthermore, ATF4 and EIF2A inhibition by siRNA did not affect the survival of OS cell lines. On the other hand, IRE1α-XBP1 inhibition by toyocamycin suppressed OS cell growth (IC50: < 0.075 μM) and cell viability was suppressed in all OS cell lines by silencing XBP1 expression. The expression of XBP1s and XBP1u in OS cell lines and OS surgical samples were confirmed using qPCR. In MG63 and U2OS, toyocamycin decreased the expression level of XBP1s induced by tunicamycin. On the other hand, in 143B and KHOS, stimulation by toyocamycin did not clearly change the expression level of XBP1s induced by tunicamycin. However, morphological apoptotic changes and caspase activation were observed in these two cell lines. Inhibition of the IRE1α-XBP1s pathway is expected to be a promising new target for OS.
    Keywords:  ER stress; IRE1α-XBP1 pathway; Osteosarcoma
  5. J Ethnopharmacol. 2022 Feb 22. pii: S0378-8741(22)00167-2. [Epub ahead of print] 115129
      ETHNOPHARMACOLOGICAL RELEVANCE: Leonurus japonicus Houttuyn is a medicinal ingredient in more than 300 prescriptions in traditional Korean medicine. It is especially important for women's health and blood-related diseases. Recent research revealed that Leonurus japonicus Houttuyn extracts have antioxidative, anticancer, analgesic, anti-inflammatory, and neuroprotective properties.AIM OF THE STUDY: However, its underlying anti-cancerous mechanisms remain unclear. This study elucidated the anticancer mechanism of Leonurus japonicus Houttuyn in U937 and THP-1 cancer cells.
    MATERIALS AND METHODS: High-performance liquid chromatography (HPLC) was used for detecting main compound of Leonurus japonicus Houttuyn, rutin. EZ-Cytox cell viability assay, Western blot analysis, live and dead cell assay, 2', 7' dichlorofluorescin diacetate (DCFDA) assay, quantitative real-time PCR (qRT-PCR) analysis, and microRNA (miR) mimic transfection assay were applied to further investigate anti-cancer efficacies and underlying mechanism in U937 and THP-1 cells.
    RESULTS: The main compound of Leonurus japonicus Houttuyn, rutin was detected using HPLC. The cytotoxic effect of Leonurus japonicus Houttuyn was exerted in U937 and THP-1 cancer cells but not in MDBK and IEC-6 normal cells. Leonurus japonicus Houttuyn decreased mitochondria membrane potential (ΔΨm). Consistently, Leonurus japonicus Houttuyn reduced the expression of survivin and cleaved caspase-9, caspase-3, and poly (ADP-ribose) polymerase (PARP). Cell death was increased in Leonurus japonicus Houttuyn treated groups. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and CCAAT-enhancer-binding protein homologous protein (CHOP) was increased and phosphatidylinositol-3-kinase (PI3K) and Protein kinase B (AKT) were decreased by Leonurus japonicus Houttuyn. Reactive oxygen speices generation was elevated by Leonurus japonicus Houttuyn and its cytotoxicity was reversed by N-acetyl-l-cysteine (NAC) pretreatment. Moreover, onco-microRNA (miR), miR-19a-3p was suppressed by Leonurus japonicus Houttuyn and transfection of miR-19a-3p mimic reversed the regulated PTEN, p-AKT, CHOP expression, attenuating Leonurus japonicus Houttuyn induced apoptosis.
    CONCLUSIONS: These findings indicated that Leonurus japonicus Houttuyn has anti-cancer effects by regulation of PTEN/PI3K/AKT signal pathway and ROS-related ER stress-induced apoptosis via regulation of miR-19a-3p. Leonurus japonicus Houttuyn may be an effective candidate for triggering PTEN-dependent apoptosis of cancer cells related to acute myeloid leukemia.
    Keywords:  Cancer; Leonurus japonicus Houttuyn; Mitochondrial membrane potential; PTEN; Reactive oxygen species; miR-19a-3p