bims-instec Biomed News
on Intestinal stem cells and chemoresistance in colon cancer and intestinal regeneration
Issue of 2022‒06‒12
nine papers selected by
Maria-Virginia Giolito

  1. Nat Commun. 2022 Jun 03. 13(1): 3117
      Intestinal stem cells (ISCs) at the crypt base contribute to intestinal homeostasis through a balance between self-renewal and differentiation. However, the molecular mechanisms regulating this homeostatic balance remain elusive. Here we show that the matricellular protein CCN1/CYR61 coordinately regulates ISC proliferation and differentiation through distinct pathways emanating from CCN1 interaction with integrins αvβ3/αvβ5. Mice that delete Ccn1 in Lgr5 + ISCs or express mutant CCN1 unable to bind integrins αvβ3/αvβ5 exhibited exuberant ISC expansion and enhanced differentiation into secretory cells at the expense of absorptive enterocytes in the small intestine, leading to nutrient malabsorption. Analysis of crypt organoids revealed that through integrins αvβ3/αvβ5, CCN1 induces NF-κB-dependent Jag1 expression to regulate Notch activation for differentiation and promotes Src-mediated YAP activation and Dkk1 expression to control Wnt signaling for proliferation. Moreover, CCN1 and YAP amplify the activities of each other in a regulatory loop. These findings establish CCN1 as a niche factor in the intestinal crypts, providing insights into how matrix signaling exerts overarching control of ISC homeostasis.
  2. Clin Exp Pharmacol Physiol. 2022 Jun 07.
      Colorectal cancer (CRC) constitutes a major public health problem due to the high rate of morbidity and mortality. Chemotherapy and immunotherapy are the major and promising strategies for cancer patients including CRC; nevertheless, chemoresistance and immune escape limit the final efficacy of above approaches. FERMT3 has been proved to exert the critical role in immune system and contradictive effects on cancer progression. In this study, bioinformatics database analysis and clinical specimen detection both corroborated the down-regulation of FERMT3 in CRC tissues and cells. Of interest, overexpression of FERMT3 suppressed CRC cell invasion and sensitized cells to 5-fluorouracil (5-FU) by reducing cell viability and increasing cell apoptosis and caspase-3 activity. Noticeably, FERMT3 up-regulation enhanced natural killer (NK) cells activation by increasing secretions of IFN-γ and TNF-α when NK cells were co-cultured with CRC cells. Importantly, up-regulation of FERMT3 promoted NK cell-mediated killing of CRC cells. Mechanically, FERMT3 inhibited the aberrant activation of Wnt/β-catenin signaling and the subsequent PD-L1 expression in CRC cells. Moreover, targeting PD-L1 suppressed CRC cell invasion, 5-FU resistance and NK cells-mediated tumor killing. Additionally, reactivating the Wnt/β-catenin signaling with a specific WNT agonist CAS 853220-52-7 overturned the efficacy of FERMT3 overexpression against CRC cell invasion, 5-FU chemoresistance and cell susceptibility to NK cell-mediated cytotoxicity. Thus, the current findings substantiate that FERMT3 elevation may attenuate CRC cell chemoresistance and NK cell-mediated immune response to tumor cells by inhibiting Wnt/β-catenin-PD-L1 signaling. Therefore, FERMT3 elevation may be a promising therapeutic approach to overcome chemoresistance and immune evasion in CRC. This article is protected by copyright. All rights reserved.
    Keywords:  Colorectal cancer; FERMT3; NK cells; Wnt/β-catenin-PD-L1; chemoresistance
  3. Int J Mol Sci. 2022 May 25. pii: 5929. [Epub ahead of print]23(11):
      Radiotherapy or accidental exposure to high-dose radiation can cause severe damage to healthy organs. The gastrointestinal (GI) tract is a radiation-sensitive organ of the body. The intestinal barrier is the first line of defense in the GI tract, and consists of mucus secreted by goblet cells and a monolayer of epithelium. Intestinal stem cells (ISCs) help in barrier maintenance and intestinal function after injury by regulating efficient regeneration of the epithelium. The Wnt/β-catenin pathway plays a critical role in maintaining the intestinal epithelium and regulates ISC self-renewal. Metformin is the most widely used antidiabetic drug in clinical practice, and its anti-inflammatory, antioxidative, and antiapoptotic effects have also been widely studied. In this study, we investigated whether metformin alleviated radiation-induced enteropathy by focusing on its role in protecting the epithelial barrier. We found that metformin alleviated radiation-induced enteropathy, with increased villi length and crypt numbers, and restored the intestinal barrier function in the irradiated intestine. In a radiation-induced enteropathy mouse model, metformin treatment increased tight-junction expression in the epithelium and inhibited bacterial translocation to mesenteric lymph nodes. Metformin increased the number of ISCs from radiation toxicity and enhanced epithelial repair by activating Wnt/β-catenin signaling. These data suggested that metformin may be a potential therapeutic agent for radiation-induced enteropathy.
    Keywords:  goblet cells; intestinal barrier; intestinal stem cells; metformin; radiation-induced enteropathy
  4. Theranostics. 2022 ;12(9): 4386-4398
      Rationale: Oxaliplatin is a widely used chemotherapy drug for advanced colorectal cancer (CRC) and its resistance is a major challenge for disease treatment. However, the molecular mechanism underlying oxaliplatin resistance remains largely elusive. Methods: An integrative analysis was performed to determine differentially expressed genes involved in oxaliplatin resistance. Loss- and gain-of-function studies were employed to investigate the roles of type Iγ phosphatidylinositol phosphate kinase (PIPKIγ) on oxaliplatin resistance in CRC cells. Exosomes derived from CRC cell lines were assessed for PD-L1 level and the ability to promote oxaliplatin resistance. Quantitative real-time PCR, immunofluorescence, luciferase reporter assay, Western blotting and other techniques were conducted to decipher the molecular mechanism. Results: PIPKIγ was identified as a critical gene related to oxaliplatin resistance in CRC. Genetic manipulation studies revealed that PIPKIγ profoundly facilitated oxaliplatin resistance and affected the expression of DNA damage repair proteins. Mechanistically, PIPKIγ promoted the expression of the immune checkpoint molecule PD-L1 via activation of NF-κB signaling pathway. Genetic silencing of PD-L1 did not affect CRC cell proliferation but significantly sensitized CRC cells to oxaliplatin. Notably, PD-L1 was revealed to be encapsulated in the exosomes, and the addition of exosomal PD-L1 to sh-PD-L1 CRC cells restored oxaliplatin resistance. Pharmacological hijacking PIPKIγ-exosomal PD-L1 axis largely reduced oxaliplatin resistance in CRC cells. In vivo experiments showed that PD-L1 loss significantly blocked oxaliplatin resistance and the addition of PD-L1-enriched exosomes promoted tumor growth and reduced mouse survival time. Conclusion: Our findings reveal a previous unprecedented role of PIPKIγ in oxaliplatin resistance and provide a key mechanism of exosomal PD-L1 in CRC with potential therapeutics.
    Keywords:  CD274; Chemotherapy resistance; DNA damage; Exosome; PIP5K1C; Phosphatidylinositol kinase
  5. Nat Commun. 2022 Jun 06. 13(1): 3135
      Patient-derived organoids resemble the biology of tissues and tumors, enabling ex vivo modeling of human diseases. They have heterogeneous morphologies with unclear biological causes and relationship to treatment response. Here, we use high-throughput, image-based profiling to quantify phenotypes of over 5 million individual colorectal cancer organoids after treatment with >500 small molecules. Integration of data using multi-omics modeling identifies axes of morphological variation across organoids: Organoid size is linked to IGF1 receptor signaling, and cystic vs. solid organoid architecture is associated with LGR5 + stemness. Treatment-induced organoid morphology reflects organoid viability, drug mechanism of action, and is biologically interpretable. Inhibition of MEK leads to cystic reorganization of organoids and increases expression of LGR5, while inhibition of mTOR induces IGF1 receptor signaling. In conclusion, we identify shared axes of variation for colorectal cancer organoid morphology, their underlying biological mechanisms, and pharmacological interventions with the ability to move organoids along them.
  6. Stem Cell Res Ther. 2022 Jun 09. 13(1): 244
      BACKGROUND: It is generally accepted that colorectal cancer (CRC) originates from cancer stem cells (CSCs), which are responsible for CRC progression, metastasis and therapy resistance. The high heterogeneity of CSCs has precluded clinical application of CSC-targeting therapy. Here, we aimed to characterize the stemness landscapes and screen for certain patients more responsive to immunotherapy.METHODS: Twenty-six stem cell gene sets were acquired from StemChecker database. Consensus clustering algorithm was applied for stemness subtypes identification on 1,467 CRC samples from TCGA and GEO databases. The differences in prognosis, tumor microenvironment (TME) components, therapy responses were evaluated among subtypes. Then, the stemness-risk model was constructed by weighted gene correlation network analysis (WGCNA), Cox regression and random survival forest analyses, and the most important marker was experimentally verified.
    RESULTS: Based on single-sample gene set enrichment analysis (ssGSEA) enrichments scores, CRC patients were classified into three subtypes (C1, C2 and C3). C3 subtype exhibited the worst prognosis, highest macrophages M0 and M2 infiltrations, immune and stromal scores, and minimum sensitivity to immunotherapies, but was more sensitive to drugs like Bosutinib, Docetaxel, Elesclomol, Gefitinib, Lenalidomide, Methotrexate and Sunitinib. The turquoise module was identified by WGCNA that it was most positively correlated with C3 but most negatively with C2, and five hub genes in turquoise module were identified for stemness model construction. CRC patients with higher stemness scores exhibited worse prognosis, more immunosuppressive components in TME and lower immunotherapeutic responses. Additionally, the model's immunotherapeutic prediction efficacy was further confirmed from two immunotherapy cohorts (anti-PD-L1 in IMvigor210 cohort and anti-PD-1 in GSE78220 cohort). Mechanistically, Gene Set Enrichment Analysis (GSEA) results revealed high stemness score group was enriched in interferon gamma response, interferon alpha response, P53 pathway, coagulation, apoptosis, KRAS signaling upregulation, complement, epithelial-mesenchymal transition (EMT) and IL6-mediated JAK-STAT signaling gene sets.
    CONCLUSIONS: Our study characterized three stemness-related subtypes with distinct prognosis and TME patterns in CRC patients, and a 5-gene stemness-risk model was constructed by comprehensive bioinformatic analyses. We suggest our stemness model has prospective clinical implications for prognosis evaluation and might facilitate physicians selecting prospective responders for preferential use of current immune checkpoint inhibitors.
    Keywords:  Bioinformatics; Colorectal cancer; Immunotherapy; Stemness; Tumor microenvironment
  7. Front Oncol. 2022 ;12 867658
      Background: Immune checkpoint inhibitors (ICIs) are quickly becoming key instruments in the treatment of mismatch repair-deficient (dMMR) colorectal cancers (CRCs). Despite their clinical value, ICIs have several limitations associated with their use. Only approximately 15% of all CRCs have a dMMR status, and the overall response rate of ICIs is approximately 40%. The mechanism of ICI resistance is not clear, and its study is limited by the lack of information available on the characterization of the immune microenvironment during the progression from early- to advanced-stage dMMR CRC.Methods: We used multiplex immunohistochemistry (mIHC) with two panels, each containing five markers, to simultaneously analyze the proportions of immune microenvironment constituents in 59 patients with advanced-stage dMMR CRC and 24 patients with early-stage dMMR CRC. We detected immune cell-associated signatures in the epithelial and stromal regions and evaluated the predictive value of these immune molecules. Student's t-tests, Mann-Whitney U tests, Cox proportional hazards regression modeling, univariate Cox modeling, and Kaplan-Meier estimation were used to analyze immune cell proportions and survival data.
    Results: We observed significantly higher proportions of CD8+ cytotoxic T cells (CD8+) (p = 0.001), CD8+ memory T cells (CD8+CD45RO+) (p = 0.032), and CD4+ regulatory T cells (CD4+FOXP3+) (p = 0.011) in the advanced-stage dMMR CRCs than in the early-stage dMMR CRCs. Furthermore, CD3+ T cells with PD-L1 colocalization (CD3+PD-L1+) (p = 0.043) and CD8+ T cells with PD-L1 colocalization (CD8+PD-L1+) (p = 0.005) were consistently more numerous in patients in the advanced stage than those in the early stage. Our analyses revealed that a high proportion of CD3+PD-1+ T cells was an independent prognostic factor of overall survival (OS) [hazard ratios (HR) = 9.6, p < 0.001] and disease-free survival (DFS) (HR = 3.7, p = 0.010) in patients in the advanced stage.
    Conclusion: High numbers of CD8+ cytotoxic T cells and CD8+ memory T cells, which usually represent a cytotoxic function of the adaptive immune system and possibly enhanced inhibition factors, such as CD4+ regulatory T cells and PD-L1 colocalized T cells, were associated with the transformation of the immune microenvironment from the early stage to the advanced stage in dMMR CRCs. Furthermore, CD3+PD-1+ T cells are a prognostic factor for patients with dMMR.
    Keywords:  PD-L1 co-localization; colorectal cancer; mismatch repair-deficient; multiplex immunohistochemistry; tumor microenvironment; tumor progression
  8. Cancer Lett. 2022 Jun 07. pii: S0304-3835(22)00251-8. [Epub ahead of print] 215767
      Recurrence of tumor cells following local and systemic therapy is a significant hurdle in cancer. Most patients with metastatic colorectal cancer (mCRC) will relapse, despite resection of the metastatic lesions. A better understanding of the evolutionary history of recurrent lesions is required to identify the spatial and temporal patterns of metastatic progression and expose the genetic and evolutionary determinants of therapeutic resistance. With this goal in mind, here we leveraged a unique single-cell whole-genome sequencing dataset from recurrent hepatic lesions of an mCRC patient. Our phylogenetic analysis confirms that the treatment induced a severe demographic bottleneck in the liver metastasis but also that a previously diverged lineage survived this surgery, possibly after migration to a different site in the liver. This lineage evolved very slowly for two years under adjuvant drug therapy and diversified again in a very short period. We identified several non-silent mutations specific to this lineage and inferred a substantial contribution of chemotherapy to the overall, genome-wide mutational burden. All in all, our study suggests that mCRC subclones can migrate locally and evade resection, keep evolving despite rounds of chemotherapy, and re-expand explosively.
    Keywords:  Cancer evolution; Chemotherapy; Mutational signatures; Phylogenetics; Single-cell genomics
  9. Int J Mol Sci. 2022 May 31. pii: 6175. [Epub ahead of print]23(11):
      Our recent findings indicate that Nrf2 transcriptional activity is essential in maintaining the proper large intestinal structure in adult mice. Here, we aimed to verify whether Nrf2-related intestine abnormalities stemmed from the early weaning or gestational periods. Therefore, we analyzed 4-day-old pups and embryos devoid of Nrf2 transcriptional activity (tKO) and their wild-type counterparts. We found significant changes in the intestinal structure of 4-day-old Nrf2 tKO pups including a longer colon, altered crypt distribution, and enlargement of the goblet cells with a markedly higher level of mucin 2. Tracing back the origin of these alterations, we observed that they appeared as early as day 14.5 of embryonic development, independently of sex. Importantly, in this period, we observed a significant increase in the Nrf2 level and a distinctive, untimely pattern of expression of the proliferation factor Ki67. At the latest stage of embryonic development, we detected a premature drop in the differentiation factor Notch1. We suspect that intestine abnormalities in mice lacking Nrf2 transcriptional activity stem from sex-independent disturbed intestinal cell proliferation and could be further exacerbated by altered differentiation. Summing up, we identified Nrf2 transcriptional activity as an important regulator of intestinal formation. It influences the hindgut cell proliferation and differentiation at different stages of embryonic development.
    Keywords:  Nrf2; Nrf2 transcriptional activity; gestation; hindgut; intestine