bims-instec Biomed News
on Intestinal stem cells and chemoresistance in colon cancer and intestinal regeneration
Issue of 2021‒08‒08
twenty-five papers selected by
Maria-Virginia Giolito
IRFAC/UMR-S1113 INSERM


  1. Cell Stem Cell. 2021 Aug 05. pii: S1934-5909(21)00293-9. [Epub ahead of print]28(8): 1340-1342
      Mutant oncogenes could enable clonal dominance by cell-intrinsic means or by suppressing nearby wild-type stem cells. Reporting recently in Nature, three groups demonstrate potent neighborhood effects, both within intestinal crypts (Flanagan et al., 2021; van Neerven et al., 2021) and across crypts through intermediary sub-epithelial trophocytes (Yum et al., 2021).
    DOI:  https://doi.org/10.1016/j.stem.2021.07.008
  2. Int J Mol Sci. 2021 Aug 03. pii: 8337. [Epub ahead of print]22(15):
      Enhancers regulate multiple genes via higher-order chromatin structures, and they further affect cancer progression. Epigenetic changes in cancer cells activate several cancer-specific enhancers that are silenced in normal cells. These cancer-specific enhancers are potential therapeutic targets of cancer. However, the functions and regulation networks of colorectal-cancer-specific enhancers are still unknown. In this study, we profile colorectal-cancer-specific enhancers and reveal their regulation network through the analysis of HiChIP data that were derived from a colorectal cancer cell line and Hi-C and RNA-seq data that were derived from tissue samples by in silico analysis and in vitro experiments. Enhancer-promoter loops in colorectal cancer cells containing colorectal-cancer-specific enhancers are involved in more than 50% of the topological associated domains (TADs) changed in colorectal cancer cells compared to normal colon cells. In addition, colorectal-cancer-specific enhancers interact with 152 genes that are significantly and highly expressed in colorectal cancer cells. These colorectal-cancer-specific enhancer target genes include ITGB4, RECQL4, MSLN, and GDF15. We propose that the regulation network of colorectal-cancer-specific enhancers plays an important role in the progression of colorectal cancer.
    Keywords:  Hi-C; HiChIP; TAD; colorectal-cancer-specific enhancer; long-range interaction
    DOI:  https://doi.org/10.3390/ijms22158337
  3. Elife. 2021 Aug 03. pii: e67750. [Epub ahead of print]10
      Colorectal cancer (CRC) remains a leading cause of cancer death, and its mortality is associated with metastasis and chemoresistance. We demonstrate that oxaliplatin-resistant CRC cells are sensitized to TRAIL-mediated apoptosis. Oxaliplatin-resistant cells exhibited transcriptional downregulation of caspase-10, but this had minimal effects on TRAIL sensitivity following CRISPR-Cas9 deletion of caspase-10 in parental cells. Sensitization effects in oxaliplatin-resistant cells were found to be a result of increased DR4, as well as significantly enhanced DR4 palmitoylation and translocation into lipid rafts. Raft perturbation via nystatin and resveratrol significantly altered DR4/raft colocalization and TRAIL sensitivity. Blood samples from metastatic CRC patients were treated with TRAIL liposomes, and a 57% reduction of viable circulating tumor cells (CTCs) was observed. Increased DR4/lipid raft colocalization in CTCs was found to correspond with increased oxaliplatin resistance and increased efficacy of TRAIL liposomes. To our knowledge, this is the first study to investigate the role of lipid rafts in primary CTCs.
    Keywords:  TRAIL; cancer biology; death receptors; human; lipid rafts; metastasis; palmitoylation; physics of living systems
    DOI:  https://doi.org/10.7554/eLife.67750
  4. Front Oncol. 2021 ;11 691347
      Purpose: Ubiquitin D (UBD) is a member of the ubiquitin-like modifier (UBL) family and is highly expressed in a variety of cancers including colorectal cancer (CRC). However, the mechanisms of its regulatory roles in CRC are largely elusive. In this study, we revealed the effect of UBD on the proliferation of CRC.Methods: The expression of UBD in clinical tissue samples of CRC and seven CRC cell lines was detected using qRT-PCR, immunohistochemistry (IHC) and Western blotting. CCK-8, colony formation, EdU and flow cytometry assays were used to detect the functional changes of CRC cells transfected with UBD stable expression plasmids in vitro. A xenograft model was constructed to assess the effect of UBD on the growth of CRC cells in vivo. The connection between UBD and p53 was analyzed using Western blotting, immunoprecipitation, proteasome inhibition assay and Cycloheximide (CHX) chase assay.
    Results: UBD was overexpressed in CRC tumor tissues compared with nontumor tissues, and its overexpression was positively associated with the tumor size and TNM stage of CRC patients. Functionally, UBD significantly accelerated CRC cell viability and proliferation in vitro and promoted tumorigenesis in vivo. Mechanistically, UBD interacted with p53 in CRC cells, downregulated the expression of p53 by regulating its degradation, shortened the p53 half-life, thereby further affecting the decrease in p21 and the increase in Cyclin D1, Cyclin E, CDK2, CDK4 and CDK6. Moreover, in vivo experiments showed that UBD-induced tumor growth in nude mice was dependent on a decrease in p53.
    Conclusions: Our study proved that UBD mediates the degradation of p53, thereby facilitating the growth of CRC cells and ultimately promoting the progression of CRC. Therefore, UBD may be a potential therapeutic target and a promising prognostic biomarker for CRC.
    Keywords:  UBD; colorectal cancer; degradation; p53; proliferation
    DOI:  https://doi.org/10.3389/fonc.2021.691347
  5. Oncogene. 2021 Aug 03.
      RING finger proteins (RNFs) play a critical role in cancer initiation and progression. RNF141 is a member of RNFs family; however, its clinical significance, roles, and mechanism in colorectal cancer (CRC) remain poorly understood. Here, we examined the expression of RNF141 in 64 pairs of CRC and adjacent normal tissues by real-time PCR, Western blot, and immunohistochemical analysis. We found that there was more expression of RNF141 in CRC tissue compared with its adjacent normal tissue and high RNF141 expression associated with T stage. In vivo and in vitro functional experiments were conducted and revealed the oncogenic role of RNF141 in CRC. RNF141 knockdown suppressed proliferation, arrested the cell cycle in the G1 phase, inhibited migration, invasion and HUVEC tube formation but promoted apoptosis, whereas RNF141 overexpression exerted the opposite effects in CRC cells. The subcutaneous xenograft models showed that RNF141 knockdown reduced tumor growth, but its overexpression promoted tumor growth. Mechanistically, liquid chromatography-tandem mass spectrometry indicated RNF141 interacted with KRAS, which was confirmed by Co-immunoprecipitation, Immunofluorescence assay. Further analysis with bimolecular fluorescence complementation (BiFC) and Glutathione-S-transferase (GST) pull-down assays showed that RNF141 could directly bind to KRAS. Importantly, the upregulation of RNF141 increased GTP-bound KRAS, but its knockdown resulted in a reduction accordingly. Next, we demonstrated that RNF141 induced KRAS activation via increasing its enrichment on the plasma membrane not altering total KRAS expression, which was facilitated by the interaction with LYPLA1. Moreover, KRAS silencing partially abolished the effect of RNF141 on cell proliferation and apoptosis. In addition, our findings presented that RNF141 functioned as an oncogene by upregulating KRAS activity in a manner of promoting KRAS enrichment on the plasma membrane in CRC.
    DOI:  https://doi.org/10.1038/s41388-021-01877-4
  6. Oncogene. 2021 Aug 04.
      Although the role of isocitrate dehydrogenase (IDH) mutation in promoting cancer development has been well-characterized, the impact of wild-type IDH on cancer cells remains unclear. Here we show that the wild-type isocitrate dehydrogenase 2 (IDH2) is highly expressed in colorectal cancer (CRC) cells, and plays an unexpected role in protecting the cancer cells from oxidative damage. Genetic abrogation of IDH2 in CRC cells leads to reactive oxygen species (ROS)-mediated DNA damage and an accumulation of 8-oxoguanine with DNA strand breaks, which activates DNA damage response (DDR) with elevated γH2AX and phosphorylation of ataxia telangiectasia-mutated (ATM) protein, leading to a partial cell cycle arrest and eventually cell senescence. Mechanistically, the suppression of IDH2 results in a reduction of the tricarboxylic acid (TCA) cycle activity due to a decrease in the conversion of isocitrate to α-ketoglutarate (α-KG) with a concurrent decrease in NADPH production, leading to ROS accumulation and oxidative DNA damage. Importantly, abrogation of IDH2 inhibits CRC cell growth in vitro and in vivo, and renders CRC cells more vulnerable to DNA-damaging drugs. Screening of an FDA-approved drug library has identified oxaliplatin as a compound highly effective against CRC cells when IDH2 was suppressed. Our study has uncovered an important role of the wild-type IDH2 in protecting DNA from oxidative damage, and provides a novel biochemical basis for developing metabolic intervention strategy for cancer treatment.
    DOI:  https://doi.org/10.1038/s41388-021-01968-2
  7. Cells. 2021 Jul 15. pii: 1792. [Epub ahead of print]10(7):
      Intestinal epithelial self-renewal is tightly regulated by signaling pathways controlling stem cell proliferation, determination and differentiation. In particular, Wnt/β-catenin signaling controls intestinal crypt cell division, survival and maintenance of the stem cell niche. Most colorectal cancers are initiated by mutations activating the Wnt/β-catenin pathway. Wnt signals are transduced through Frizzled receptors and LRP5/LRP6 coreceptors to downregulate GSK3β activity, resulting in increased nuclear β-catenin. Herein, we explored if LRP6 expression is required for maintenance of intestinal homeostasis, regeneration and oncogenesis. Mice with an intestinal epithelial cell-specific deletion of Lrp6 (Lrp6IEC-KO) were generated and their phenotype analyzed. No difference in intestinal architecture nor in proliferative and stem cell numbers was found in Lrp6IEC-KO mice in comparison to controls. Nevertheless, using ex vivo intestinal organoid cultures, we found that LRP6 expression was critical for crypt cell proliferation and stem cell maintenance. When exposed to dextran sodium sulfate, Lrp6IEC-KO mice developed more severe colitis than control mice. However, loss of LRP6 did not affect tumorigenesis in ApcMin/+ mice nor growth of human colorectal cancer cells. By contrast, Lrp6 silencing diminished anchorage-independent growth of BRafV600E-transformed intestinal epithelial cells (IEC). Thus, LRP6 controls intestinal stem cell functionality and is necessary for BRAF-induced IEC oncogenesis.
    Keywords:  LRP6; colorectal cancer; inflammation; intestine; regeneration; stem cells
    DOI:  https://doi.org/10.3390/cells10071792
  8. Front Oncol. 2021 ;11 683589
      Ferroptosis, a newly discovered form of programmed cell death characterized by lipid peroxidation, crafts a new perspective on cancer treatment. Serine and arginine rich splicing factor 9 (SFRS9) is frequently described as a proto-oncogene in cervical and bladder cancer. However, the role of SFRS9 in colorectal cancer (CRC) and whether SFRS9 exerts its function associated with ferroptosis is largely unknown. Herein, we found that the expression of SFRS9 mRNA and protein in the CRC tissues was obviously higher than that in the paracancerous tissues. Function assays revealed that SFRS9 overexpression (SFRS9-OE) significantly promoted cell viability, cell cycle progression and colony formation of CRC cells. While SFRS9 knockdown by shRNAs transfection inhibited these progressions. Furthermore, cell death and lipid peroxidation induced by ferroptosis inducers erastin and sorafenib were suppressed by SFRS9-OE. Bioinformatics analysis indicated that SFRS9 can bind to peroxidase 4 (GPX4) mRNA which is a central regulator of ferroptosis. Western blot showed that GPX4 protein expression was clearly elevated upon SFRS9-OE, while it was decreased in SFRS9-inhibited CRC cells. RNA immunoprecipitation experiment was carried out in HCT116 cells to confirm the binding of SFRS9 and GPX4 mRNA specifically. SiGPX4 transfection reversed the inhibitory effects of SFRS9-OE on the erastin and sorafenib-induced ferroptosis. Consistent with our in vitro observations, SFRS9 promoted the growth of tumors while SFRS9 knockdown significantly inhibited tumor growth in nude mice. In conclusion, SFRS9 represents an obstructive factor to ferroptosis by upregulating GPX4 protein expression, and knocking down SFRS9 might be an effective treatment for CRC.
    Keywords:  colorectal cancer; ferroptosis; glutathione peroxidase 4; progression; serine and arginine rich splicing factor 9
    DOI:  https://doi.org/10.3389/fonc.2021.683589
  9. Cancers (Basel). 2021 Jul 28. pii: 3805. [Epub ahead of print]13(15):
      Colorectal cancer (CRC) is a heterogeneous disease showing significant variability in clinical aggressiveness. Primary and acquired resistance limits the efficacy of available treatments, and identification of effective drug combinations is needed to further improve patients' outcomes. We previously found that the NEDD8-activating enzyme inhibitor pevonedistat induced tumor stabilization in preclinical models of poorly differentiated, clinically aggressive CRC resistant to available therapies. To identify drugs that can be effectively combined with pevonedistat, we performed a "drop-out" loss-of-function synthetic lethality screening with an shRNA library covering 200 drug-target genes in four different CRC cell lines. Multiple screening hits were found to be involved in the EGFR signaling pathway, suggesting that, rather than inhibition of a specific gene, interference with the EGFR pathway at any level could be effectively leveraged for combination therapies based on pevonedistat. Exploiting both BRAF-mutant and RAS/RAF wild-type CRC models, we validated the therapeutic relevance of our findings by showing that combined blockade of NEDD8 and EGFR pathways led to increased growth arrest and apoptosis both in vitro and in vivo. Pathway modulation analysis showed that compensatory feedback loops induced by single treatments were blunted by the combinations. These results unveil possible therapeutic opportunities in specific CRC clinical settings.
    Keywords:  CRC; EGFR pathway; NEDD8; pevonedistat; synthetic lethality screening
    DOI:  https://doi.org/10.3390/cancers13153805
  10. Metabolites. 2021 Jul 15. pii: 456. [Epub ahead of print]11(7):
      The human gut microbiota plays a dual key role in maintaining human health or inducing disorders, for example, obesity, type 2 diabetes, and cancers such as colorectal cancer (CRC). High-throughput data analysis, such as metagenomics and metabolomics, have shown the diverse effects of alterations in dynamic bacterial populations on the initiation and progression of colorectal cancer. However, it is well established that microbiome and human cells constantly influence each other, so it is not appropriate to study them independently. Genome-scale metabolic modeling is a well-established mathematical framework that describes the dynamic behavior of these two axes at the system level. In this study, we created community microbiome models of three conditions during colorectal cancer progression, including carcinoma, adenoma and health status, and showed how changes in the microbial population influence intestinal secretions. Conclusively, our findings showed that alterations in the gut microbiome might provoke mutations and transform adenomas into carcinomas. These alterations include the secretion of mutagenic metabolites such as H2S, NO compounds, spermidine and TMA (trimethylamine), as well as the reduction of butyrate. Furthermore, we found that the colorectal cancer microbiome can promote inflammation, cancer progression (e.g., angiogenesis) and cancer prevention (e.g., apoptosis) by increasing and decreasing certain metabolites such as histamine, glutamine and pyruvate. Thus, modulating the gut microbiome could be a promising strategy for the prevention and treatment of CRC.
    Keywords:  colorectal cancer; community metabolic modeling; genome-scale metabolic model; microbiome
    DOI:  https://doi.org/10.3390/metabo11070456
  11. Cancer Med. 2021 Aug 01.
      INTRODUCTION: The AURKA gene encodes a protein kinase involved in cell cycle regulation and plays an oncogenic role in many cancers. The main objective of this study is to analyze AURKA expression in 13 common cancers and its role in prognostic and drug resistance.METHOD: Using the cancer genome atlas (TCGA) as well as CCLE and GDSC data, the level of AURKA gene expression and its role in prognosis and its association with drug resistance were evaluated, respectively. In addition, the expression level of AURKA was assessed in colorectal cancer (CRC) and gastric cancer (GC) samples. Besides, using Gene Expression Omnibus (GEO) data, drugs that could affect the expression level of this gene were also identified.
    RESULTS: The results indicated that the expression level of AURKA gene in 13 common cancers increased significantly compared to normal samples or it survived poorly (HR >1, p < 0.01) in lung, prostate, kidney, bladder, and uterine cancers. Also, the gene expression data showed increased expression in CRC and GC samples compared to normal ones. The level of AURKA was significantly associated with the resistance to SB 505124, NU-7441, and irinotecan drugs (p < 0.01). Eventually, GEO data showed that JQ1, actinomycin D1, and camptothecin could reduce the expression of AURKA gene in different cancer cell lines (logFC < 1, p < 0.01).
    CONCLUSION: Increased expression of AURKA is observed in prevalent cancers and associated with poor prognostic and the development of drug resistance. In addition, some chemotherapy drugs can reduce the expression of this gene.
    Keywords:   AURKA ; biomarker; cancer; drug resistance; prognosis
    DOI:  https://doi.org/10.1002/cam4.4161
  12. Cells. 2021 Jul 09. pii: 1738. [Epub ahead of print]10(7):
      Colorectal cancer (CRC) is among the major threatening diseases worldwide, being the third most common cancer, and a leading cause of death, with a global incidence expected to increase in the coming years. Enhanced adiposity, particularly visceral fat, is a major risk factor for the development of several tumours, including CRC, and represents an important indicator of incidence, survival, prognosis, recurrence rates, and response to therapy. The obesity-associated low-grade chronic inflammation is thought to be a key determinant in CRC development, with the adipocytes and the adipose tissue (AT) playing a significant role in the integration of diet-related endocrine, metabolic, and inflammatory signals. Furthermore, AT infiltrating immune cells contribute to local and systemic inflammation by affecting immune and cancer cell functions through the release of soluble mediators. Among the factors introduced with diet and enriched in AT, fatty acids (FA) represent major players in inflammation and are able to deeply regulate AT homeostasis and immune cell function through gene expression regulation and by modulating the activity of several transcription factors (TF). This review summarizes human studies on the effects of dietary FA on AT homeostasis and immune cell functions, highlighting the molecular pathways and TF involved. The relevance of FA balance in linking diet, AT inflammation, and CRC is also discussed. Original and review articles were searched in PubMed without temporal limitation up to March 2021, by using fatty acid as a keyword in combination with diet, obesity, colorectal cancer, inflammation, adipose tissue, immune cells, and transcription factors.
    Keywords:  adipose tissue; colorectal cancer; diet; fatty acids; immune cells; inflammation; obesity; transcription factors
    DOI:  https://doi.org/10.3390/cells10071738
  13. Oncogene. 2021 Jul 31.
      Oncogenic mutations of KRAS are found in the most aggressive human tumors, including colorectal cancer. It has been suggested that oncogenic KRAS phosphorylation at Ser181 modulates its activity and favors cell transformation. Using nonphosphorylatable (S181A), phosphomimetic (S181D), and phospho-/dephosphorylatable (S181) oncogenic KRAS mutants, we analyzed the role of this phosphorylation to the maintenance of tumorigenic properties of colorectal cancer cells. Our data show that the presence of phospho-/dephosphorylatable oncogenic KRAS is required for preserving the epithelial organization of colorectal cancer cells in 3D cultures, and for supporting subcutaneous tumor growth in mice. Interestingly, gene expression differed according to the phosphorylation status of KRAS. In DLD-1 cells, CTNNA1 was only expressed in phospho-/dephosphorylatable oncogenic KRAS-expressing cells, correlating with cell polarization. Moreover, lack of oncogenic KRAS phosphorylation leads to changes in expression of genes related to cell invasion, such as SERPINE1, PRSS1,2,3, and NEO1, and expression of phosphomimetic oncogenic KRAS resulted in diminished expression of genes involved in enterocyte differentiation, such as HNF4G. Finally, the analysis, in a public data set of human colorectal cancer, of the gene expression signatures associated with phosphomimetic and nonphosphorylatable oncogenic KRAS suggests that this post-translational modification regulates tumor progression in patients.
    DOI:  https://doi.org/10.1038/s41388-021-01967-3
  14. Oncol Lett. 2021 Sep;22(3): 675
      Several screening methods are currently used to detect colorectal cancer (CRC). However, these are either under-utilized due to their invasive nature or are limited in terms of their diagnostic ability. Numerous reports have investigated messenger and circular RNA as non-invasive biomarkers, but the majority of gene expression studies using RT-qPCR involve critical errors that often lead to irreproducible findings. In the present study, several of these issues were addressed. To the best of our knowledge, this study reports for the first time the upregulation of both the circular and the linear isoform of USP3 and METTL3 in leukocytes from patients with CRC. The linear transcripts of USP3 and METTL3 exhibited 2.3- and 2-fold increases on average in CRC samples (n=42 CRC) compared with the respective healthy controls (n=32), whereas their circular isoforms showed 1.6- and 1.7-fold increases, respectively. Moreover, a strong positive correlation was observed between the circular and linear isoforms of USP3 in the CRC cohort (P<0.0001), but not in the control group (P>0.05). In addition, the linear USP3 assay had excellent sensitivity (79%), specificity (75%), positive predictive value (81%), negative predictive value (73%) and area under the curve (AUC, 0.8534; P-value <0.0001). The circular (AUC, 0.6946; P-value =0.0043) and linear (AUC, 0.7202; P-value =0.0012) METTL3 assays also showed potential; however, this was not the case for the circular USP3 assay (P-value >0.05). Taken together, this stringent RT-qPCR approach provides evidence for the viability of using circular and linear RNA molecules as disease biomarkers and may help shed light on the regulatory pathways of CRC.
    Keywords:  biomarkers; circular RNA; colorectal cancer; methyltransferase-like 3; ubiquitin-specific peptidase 3
    DOI:  https://doi.org/10.3892/ol.2021.12936
  15. J Oncol. 2021 ;2021 5338934
      Colorectal carcinoma (CRC), a life-threatening malignancy, has been found to present resistance to 5-fluorouracil (5-FU) and cause a poor prognosis for patients. Previous studies have proved that all-trans retinoic acid (ATRA) could inhibit the development of CRC cells. In addition, miR-378c was discovered to exert a vital role in various cancers. In this study, we utilized MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), transwell assay, and flow cytometry to confirm that ATRA was able to enhance the inhibitory effects of 5-FU on HCT116 cells effectively by promoting cell apoptosis. Then, ENCORI database (http://starbase.sysu.edu.cn/) was employed to predict that miR-378c was downregulated dramatically in CRC and E2F7 was the direct target of miR-378c. QRT-PCR (quantitative real-time polymerase chain reaction) was conducted to verify that the expression level of miR-378c was decreased while E2F7 expression was upregulated in CRC tissues compared with para-carcinoma tissues. Additionally, treatment of 5-FU combined with ATRA could increase miR-378c expression, whereas it decreased the expression of E2F7. Dual-Luciferase Reporter assay results revealed that miR-378c could regulate the load of E2F7 by binding to its 3'UTR directly. Furthermore, miR-378c inhibitor or vector with E2F7 partially counteracted the effects of 5-FU combined with ATRA on viability, migration, invasion, and apoptosis of HCT116 cells. In conclusion, our study aims to confirm that ATRA enhances chemosensitivity to 5-FU of patients with CRC and expound the potential molecular mechanisms.
    DOI:  https://doi.org/10.1155/2021/5338934
  16. Front Oncol. 2021 ;11 692592
      In silico models of biomolecular regulation in cancer, annotated with patient-specific gene expression data, can aid in the development of novel personalized cancer therapeutic strategies. Drosophila melanogaster is a well-established animal model that is increasingly being employed to evaluate such preclinical personalized cancer therapies. Here, we report five Boolean network models of biomolecular regulation in cells lining the Drosophila midgut epithelium and annotate them with colorectal cancer patient-specific mutation data to develop an in silico Drosophila Patient Model (DPM). We employed cell-type-specific RNA-seq gene expression data from the FlyGut-seq database to annotate and then validate these networks. Next, we developed three literature-based colorectal cancer case studies to evaluate cell fate outcomes from the model. Results obtained from analyses of the proposed DPM help: (i) elucidate cell fate evolution in colorectal tumorigenesis, (ii) validate cytotoxicity of nine FDA-approved CRC drugs, and (iii) devise optimal personalized treatment combinations. The personalized network models helped identify synergistic combinations of paclitaxel-regorafenib, paclitaxel-bortezomib, docetaxel-bortezomib, and paclitaxel-imatinib for treating different colorectal cancer patients. Follow-on therapeutic screening of six colorectal cancer patients from cBioPortal using this drug combination demonstrated a 100% increase in apoptosis and a 100% decrease in proliferation. In conclusion, this work outlines a novel roadmap for decoding colorectal tumorigenesis along with the development of personalized combinatorial therapeutics for preclinical translational studies.
    Keywords:  Boolean network models; cancer systems biology; combinatorial therapeutics; personalized in silico cancer models; preclinical in silico drug screening
    DOI:  https://doi.org/10.3389/fonc.2021.692592
  17. Stem Cells Int. 2021 ;2021 9136583
      Colorectal cancer (CRC) is a common malignant tumor of the gastrointestinal tract with nonobvious early symptoms and late symptoms of anemia, weight loss, and other systemic symptoms. Its morbidity and fatality rate are next only to gastric cancer, esophageal cancer, and primary liver cancer among digestive malignancies. In addition to the conventional surgical intervention, other therapies such as radiotherapy and chemotherapy and new treatment methods such as biologics and microbiological products have been introduced. As a promising cell therapy, mesenchymal stem cell (MSC) has attracted extensive research attention. MSCs are early undifferentiated pluripotent stem cells, which have the common features of stem cells, including self-replication, self-division, self-renewal, and multidirectional differentiation. MSCs come from a wide range of sources and can be extracted from a variety of tissues such as the bone marrow, umbilical cord, and fat. Current studies have shown that MSCs have a variety of biological functions such as immune regulation, tissue damage repair, and therapeutic effects on tumors such as CRC. This review outlines the overview of MSCs and CRC and summarizes the role of MSC application in CRC.
    DOI:  https://doi.org/10.1155/2021/9136583
  18. Cancer Prev Res (Phila). 2021 Aug 02. pii: canprevres.0057.2021. [Epub ahead of print]
      Colorectal cancer (CRC) causes over 53,000 deaths annually in the United States. Its rising incidences worldwide and particularly in young adults is a major concern. Here, we evaluated the efficacy of omeprazole (OME) that is clinically approved for treating acid-reflux, to enable its repurposing for CRC prevention. In the azoxymethane (AOM)-induced rat CRC model, dietary OME (250 and 500 ppm) was administered at early adenoma stage (8 weeks after AOM) to assess the progression of early lesions to adenocarcinoma. Administration of OME at 250 ppm or 500 ppm doses led to suppression of total colon adenocarcinoma incidence by 15.7% and 32% (p<0.01), respectively. Importantly, invasive carcinoma incidence was reduced by 59% (p<0.0005) and 90% (p<0.0001) in OME administered rats in a dose-dependent manner. There was also a strong and dose-dependent inhibition in the adenocarcinoma multiplicity in rats exposed to OME. Administration of 250 and 500 ppm OME inhibited total colon adenocarcinoma multiplicity by ~49% and ~65% (p<0.0001), respectively. While non-invasive adenocarcinomas multiplicity was suppressed by ~34% to ~48% (p<0.02), the invasive carcinomas multiplicity was reduced by ~74% to ~94% (p<0.0001) in OME exposed rats in comparison to the untreated rats. Biomarker analysis results showed a decrease in cell proliferation and anti-apoptotic/pro-survival proteins with an increase in apoptosis. Transcriptome analysis of treated tumors revealed a significant increase in adenocarcinoma inhibitory genes (Olmf4; Spink4) expression and down regulation of progression promoting genes (SerpinA1, MMP21, IL6). In summary, OME showed significant protection against the progression of adenoma to adenocarcinoma.
    DOI:  https://doi.org/10.1158/1940-6207.CAPR-21-0057
  19. Cell Death Dis. 2021 Jul 31. 12(8): 757
      TNF-related apoptosis-inducing ligand (TRAIL) receptor 2 (TRAIL-R2) can induce apoptosis in cancer cells upon crosslinking by TRAIL. However, TRAIL-R2 is highly expressed by many cancers suggesting pro-tumor functions. Indeed, TRAIL/TRAIL-R2 also activate pro-inflammatory pathways enhancing tumor cell invasion, migration, and proliferation. In addition, nuclear TRAIL-R2 (nTRAIL-R2) promotes malignancy by inhibiting miRNA let-7-maturation. Here, we show that TRAIL-R2 interacts with the tumor suppressor protein p53 in the nucleus, assigning a novel pro-tumor function to TRAIL-R2. Knockdown of TRAIL-R2 in p53 wild-type cells increases the half-life of p53 and the expression of its target genes, whereas its re-expression decreases p53 protein levels. Interestingly, TRAIL-R2 also interacts with promyelocytic leukemia protein (PML), a major regulator of p53 stability. PML-nuclear bodies are also the main sites of TRAIL-R2/p53 co-localization. Notably, knockdown or destruction of PML abolishes the TRAIL-R2-mediated regulation of p53 levels. In summary, our finding that nTRAIL-R2 facilitates p53 degradation and thereby negatively regulates p53 target gene expression provides insight into an oncogenic role of TRAIL-R2 in tumorigenesis that particularly manifests in p53 wild-type tumors.
    DOI:  https://doi.org/10.1038/s41419-021-04048-1
  20. Lancet Oncol. 2021 Aug;pii: S1470-2045(21)00343-0. [Epub ahead of print]22(8): e358-e368
      Epithelial-mesenchymal transition (EMT) is a process during which cells lose their epithelial characteristics, for instance apical-basal cell polarity and cell-cell contact, and gain mesenchymal properties, such as increased motility. In colorectal cancer, EMT has an important role in tumour progression, metastasis, and drug resistance. There has been accumulating evidence from preclinical and early clinical studies that show that EMT markers might serve as outcome predictors and potential therapeutic targets in colorectal cancer. This Review describes the fundamentals of EMT, including biology, newly partial EMT, and associated changes. We also provide a comprehensive summary of therapeutic compounds capable of targeting EMT markers, including drugs in preclinical and clinical trials and those with repurpose potential. Lastly, we explore the obstacles of EMT bench-to-bedside drug development.
    DOI:  https://doi.org/10.1016/S1470-2045(21)00343-0
  21. Int J Mol Sci. 2021 Jul 27. pii: 8041. [Epub ahead of print]22(15):
      This study investigated the roles of low-molecular-weight fucoidan (LMWF) in enhancing the anti-cancer effects of fluoropyrimidine-based chemotherapy. HCT116 and Caco-2 cells were treated with LMWF and 5-FU. Cell viability, cell cycle, apoptosis, and migration were analyzed in both cell types. Potential mechanisms underlying how LMWF enhances the anti-cancer effects of fluoropyrimidine-based chemotherapy were also explored. The cell viability of HCT116 and Caco-2 cells was significantly reduced after treatment with a LMWF--5FU combination. In HCT116 cells, LMWF enhanced the suppressive effects of 5-FU on cell viability through the (1) induction of cell cycle arrest in the S phase and (2) late apoptosis mediated by the Jun-N-terminal kinase (JNK) signaling pathway. In Caco-2 cells, LMWF enhanced the suppressive effects of 5-FU on cell viability through both the c-mesenchymal-epithelial transition (MET)/Kirsten rat sarcoma virus (KRAS)/extracellular signal-regulated kinase (ERK) and the c-MET/phosphatidyl-inositol 3-kinases (PI3K)/protein kinase B (AKT) signaling pathways. Moreover, LMWF enhanced the suppressive effects of 5-FU on tumor cell migration through the c-MET/matrix metalloproteinase (MMP)-2 signaling pathway in both HCT116 and Caco-2 cells. Our results demonstrated that LMWF is a potential complementary therapy for enhancing the efficacies of fluoropyrimidine-based chemotherapy in colorectal cancers (CRCs) with the wild-type or mutated KRAS gene through different mechanisms. However, in vivo studies and in clinical trials are required in order to validate the results of the present study.
    Keywords:  Caco-2 cell; HCT116 cell; colorectal cancer; complementary therapy; fluoropyrimidine-based chemotherapy; low-molecular-weight fucoidan
    DOI:  https://doi.org/10.3390/ijms22158041
  22. Molecules. 2021 Aug 02. pii: 4683. [Epub ahead of print]26(15):
      Zotarolimus is a semi-synthetic derivative of rapamycin and an inhibitor of mammalian target of rapamycin (mTOR) signaling. Currently, zotarolimus is used to prolong the survival time of organ grafts, but it is also a novel immunosuppressive agent with potent anti-proliferative activity. Here, we examine the anti-tumor effect of zotarolimus, alone and in combination with 5-fluorouracil, on HCT-116 colorectal adenocarcinoma cells implanted in BALB/c nude mice. Compared with the control mice, mice treated with zotarolimus or zotarolimus combined with 5-FU showed retarded tumor growth; increased tumor apoptosis through the enhanced expression of cleaved caspase 3 and extracellular signal-regulated kinase (ERK) phosphorylation; reduced inflammation-related factors such as IL-1β, TNF-α, and cyclooxygenase-2 (COX-2) protein; and inhibited metastasis-related factors such as CD44, epidermal growth factor receptor (EGFR), transforming growth factor β (TGF-β), and vascular endothelial growth factor (VEGF). Notably, mice treated with a combination of zotarolimus and 5-FU showed significantly retarded tumor growth, reduced tumor size, and increased tumor inhibition compared with mice treated with 5-FU or zotarolimus alone, indicating a strong synergistic effect. This in vivo study confirms that zotarolimus or zotarolimus combined with 5-FU can be used to retard colorectal adenocarcinoma growth and inhibit tumorigenesis. Our results suggest that zotarolimus may increase the chemo-sensitization of tumor cells. Therefore, zotarolimus alone and zotarolimus combined with 5-FU may be potential anti-tumor agents in the treatment of human colon adenocarcinoma. Future research on zotarolimus may lead to the development of new therapeutic strategies.
    Keywords:  5-fluorouracil; colorectal adenocarcinoma; inflammation; metastasis; zotarolimus
    DOI:  https://doi.org/10.3390/molecules26154683
  23. Cancers (Basel). 2021 Jul 26. pii: 3757. [Epub ahead of print]13(15):
      Colorectal cancer remains among the cancers with the highest incidence, prevalence, and mortality worldwide. Although the development of targeted therapies against the EGFR and VEGFR membrane receptors has considerably improved survival in these patients, the appearance of resistance means that their success is still limited. Overactivation of several members of the Ras-GTPase family is one of the main actors in both tumour progression and the lack of response to cytotoxic and targeted therapies. This fact has led many resources to be devoted over the last decades to the development of targeted therapies against these proteins. However, they have not been as successful as expected in their move to the clinic so far. In this review, we will analyse the role of these Ras-GTPases in the emergence and development of colorectal cancer and their relationship with resistance to targeted therapies, as well as the status and new advances in the design of targeted therapies against these proteins and their possible clinical implications.
    Keywords:  EGFR targeted therapies; Ras-GTPases; colorectal cancer; drug resistance
    DOI:  https://doi.org/10.3390/cancers13153757
  24. Oncol Lett. 2021 Sep;22(3): 681
      Our previous study revealed that the tumor suppressor/transcription factor p53 directly binds to its transcriptional target, p21, and that the p53/p21 complex binds to zinc finger protein SNAI2 (Slug), a tumor promoter/transcription factor; thereby promoting the degradation of Slug by Mdm2, an E3 ligase. The present study demonstrated that Slug reduced the cellular expression levels of p53 and p21 in HCT116 colon cancer by decreasing their protein stability. In parallel, Slug increased the mRNA and protein expression levels of Mdm2 in these cells. Moreover, knockdown of Mdm2 using specific small interfering RNAs abolished the ability of Slug to induce the degradation of p53 and p21. Considering the well-known function of Mdm2 in facilitating p53 and p21 degradation, these data suggested that Slug promoted p53 and p21 degradation by inducing Mdm2 expression. Moreover, Slug increased ubiquitination levels of p53 in HCT116 cells. This is consistent with the fact that Mdm2 induces p53 degradation by ubiquitinating p53, and further confirmed that Mdm2 acted downstream of Slug. Comparative studies using HCT116 cells and their p53- or p21-knockout variants have revealed that Slug requires p21 to induce p53 degradation. This result is consistent with our previous study, which revealed that Mdm2 acts more efficiently on p53 in the p53/p21 complex compared with on p53 alone. By contrast, Slug did not require p53 to induce p21 degradation, suggesting that p53 was dispensable in Mdm2-mediated p21 degradation. Notably, the ability of Slug to increase/decrease Mdm2/p53 and p21 levels, respectively, was not confined to HCT116 cells alone, but was also confirmed in A549 and H460 lung cancer cells. Collectively, the results of the present study suggested that Slug could counter p53 and p21. The balance between these two opposing groups (Slug vs. p53/p21) may depend on environmental stresses and the internal physiology of cells.
    Keywords:  Mdm2; oncogene; p21; p53; protein stability; tumor suppressor; zinc finger protein SNAI2
    DOI:  https://doi.org/10.3892/ol.2021.12942
  25. Front Cell Dev Biol. 2021 ;9 685665
      Epidermal Growth Factor (EGF) has long been known for its role in promoting proliferation of intestinal epithelial cells. EGF is produced by epithelial niche cells at the base of crypts in vivo and is routinely added to the culture medium to support the growth of intestinal organoids ex vivo. The recent identification of diverse stromal cell populations that reside underneath intestinal crypts has enabled the characterization of key growth factor cues supplied by these cells. The nature of these signals and how they are delivered to drive intestinal epithelial development, daily homeostasis and tissue regeneration following injury are being investigated. It is clear that aside from EGF, other ligands of the family, including Neuregulin 1 (NRG1), have distinct roles in supporting the function of intestinal stem cells through the ErbB pathway.
    Keywords:  Epidermal Growth Factor; ErbB; intestinal stem cells; neuregulin 1; niche; organoids; signaling; tissue regeneration
    DOI:  https://doi.org/10.3389/fcell.2021.685665