bims-imseme Biomed News
on Immunosenescence and T cell metabolism
Issue of 2021‒09‒26
fifteen papers selected by
Pierpaolo Ginefra
Ludwig Institute for Cancer Research

  1. Immunother Adv. 2021 Jan;1(1): ltab010
      Within the tumour microenvironment (TME), there is a cellular 'tug-of-war' for glutamine, the most abundant amino acid in the body. This competition is most evident when considering the balance between a successful anti-tumour immune response and the uncontrolled growth of tumour cells that are addicted to glutamine. The differential effects of manipulating glutamine abundance in individual cell types is an area of intense research and debate. Here, we discuss some of the current strategies in development altering local glutamine availability focusing on inhibition of enzymes involved in the utilisation of glutamine and its uptake by cells in the TME. Further studies are urgently needed to complete our understanding of glutamine metabolism, to provide critical insights into the pathways that represent promising targets and for the development of novel therapeutic strategies for the treatment of advanced or drug resistant cancers.
    Keywords:  T cells; cancer immunotherapy; glutamine
  2. Life Sci Alliance. 2021 Nov;pii: e202101081. [Epub ahead of print]4(11):
      The mechanisms inducing exhaustion of HIV-specific CD8+ T cells are not fully understood. Metabolic programming directly influences T-cell differentiation, effector function, and memory. We evaluated metabolic profiles of ex vivo CD8+ T cells in HIV-infected individuals. The baseline oxygen consumption rate of CD8+ T cells was elevated in all infected individuals and CD8+ T cells were working at maximal respiratory capacity. The baseline glycolysis rate was enhanced only during early untreated HIV and in viral controllers, but glycolytic capacity was conserved at all stages of infection. CD8+ T-cell mTOR activity was found to be reduced. Enhanced glycolysis was crucial for HIV-specific killing of CD8+ T cells. CD8+ T-cell cytoplasmic GAPDH content was reduced in HIV, but less in early infection and viral controllers. Thus, CD8+ T-cell exhaustion in HIV is characterized by reduced glycolytic activity, enhanced OXPHOS demands, dysregulated mTOR, and reduced cytoplasmic GAPDH. These data provide potential metabolic strategies to reverse CD8+ T-cell dysfunction in HIV.
  3. Trends Genet. 2021 Sep 21. pii: S0168-9525(21)00258-4. [Epub ahead of print]
      The aging process is associated with the accumulation of epigenetic alterations in immune cells, although the origin of these changes is not clear. Understanding this epigenetic drift in the immune system can provide essential information about the progression of the aging process and the immune history of each individual.
    Keywords:  T cells; aging; epigenetics; immunosenescence
  4. Immunol Rev. 2021 Sep 21.
      T cells are crucial to generate an effective response against numerous invading microbial pathogens and play a pivotal role in tumor surveillance and elimination. However, unwanted T cell activation can also lead to deleterious immune-mediated inflammation and tissue damage. To ensure that an optimal T cell response can be established, each step, beginning from T cell development in the thymus to their activation and function in the periphery, is tightly regulated by many transcription factors and epigenetic regulators including microRNAs (miRNAs). Here, we first summarize recent progress in identifying major immune regulatory miRNAs in controlling the differentiation and function of distinct T cell subsets. Moreover, as emerging evidence has demonstrated that miRNAs can impact T cell immunity through targeting both immune- and non-immune cell populations that T cells closely interact with, the T cell-extrinsic role of miRNAs in regulating different aspects of T cell biology is also addressed. Finally, we discuss the complex nature of miRNA-mediated control of T cell immunity and highlight important questions that remain to be further investigated.
    Keywords:  T cell immunity; immune regulation; miRNA; post-transcriptional regulation
  5. J Immunol. 2021 Sep 22. pii: ji2100405. [Epub ahead of print]
      CMV is a major infectious complication following solid organ transplantation. Reactivation of CMV leads to memory inflation, a process in which CD8 T cells expand over time. Memory inflation is associated with specific changes in T cell function, including increased oligoclonality, decreased cytokine production, and terminal differentiation. To address whether memory inflation during the first year after transplantation in human subjects alters T cell differentiation and function, we employed single-cell-matched TCRαβ and targeted gene expression sequencing. Expanded T cell clones exhibited a terminally differentiated, immunosenescent, and polyfunctional phenotype whereas rare clones were less differentiated. Clonal expansion occurring between pre- and 3 mo posttransplant was accompanied by enhancement of polyfunctionality. In contrast, polyfunctionality and differentiation state were largely maintained between 3 and 12 mo posttransplant. Highly expanded clones had a higher degree of polyfunctionality than rare clones. Thus, CMV-responsive CD8 T cells differentiated during the pre- to posttransplant period then maintained their differentiation state and functional capacity despite posttransplant clonal expansion.
  6. Immunity. 2021 Sep 15. pii: S1074-7613(21)00363-0. [Epub ahead of print]
      CD4+ T cells share common developmental pathways with CD8+ T cells, and upon maturation, CD4+ T conventional T (Tconv) cells lack phenotypic markers that distinguish these cells from FoxP3+ T regulatory cells. We developed a tamoxifen-inducible ThPOKCreERT2.hCD2 line with Frt sites inserted on either side of the CreERT2-hCD2 cassette, and a Foxp3Ametrine-FlpO strain, expressing Ametrine and FlpO in Foxp3+ cells. Breeding these mice resulted in a CD4conviCreERT2-hCD2 line that allows for the specific manipulation of a gene in CD4+ Tconv cells. As FlpO removes the CreERT2-hCD2 cassette, CD4+ Treg cells are spared from Cre activity, which we refer to as allele conditioning. Comparison with an E8IiCreERT2.GFP mouse that enables inducible targeting of CD8+ T cells, and deletion of two inhibitory receptors, PD-1 and LAG-3, in a melanoma model, support the fidelity of these lines. These engineered mouse strains present a resource for the temporal manipulation of genes in CD4+ T cells and CD4+ Tconv cells.
    Keywords:  CD4; CD8; T cells; Treg; allele-conditioning; gene editing
  7. Nat Commun. 2021 Sep 22. 12(1): 5565
      Complex autoimmune diseases are sexually dimorphic. An interplay between predisposing genetics and sex-related factors probably controls the sex discrepancy in the immune response, but the underlying mechanisms are unclear. Here we positionally identify a polymorphic estrogen receptor binding site that regulates Cd2 expression, leading to female-specific differences in T cell-dependent mouse models of autoimmunity. Female mice with reduced Cd2 expression have impaired autoreactive T cell responses. T cells lacking Cd2 costimulation upregulate inhibitory Lag-3. These findings help explain sexual dimorphism in human autoimmunity, as we find that CD2 polymorphisms are associated with rheumatoid arthritis and 17-β-estradiol-regulation of CD2 is conserved in human T cells. Hormonal regulation of CD2 might have implications for CD2-targeted therapy, as anti-Cd2 treatment more potently affects T cells in female mice. These results demonstrate the relevance of sex-genotype interactions, providing strong evidence for CD2 as a sex-sensitive predisposing factor in autoimmunity.
  8. Cell Metab. 2021 Sep 18. pii: S1550-4131(21)00418-6. [Epub ahead of print]
      Dietary restriction (DR) has long been viewed as the most robust nongenetic means to extend lifespan and healthspan. Many aging-associated mechanisms are nutrient responsive, but despite the ubiquitous functions of these pathways, the benefits of DR often vary among individuals and even among tissues within an individual, challenging the aging research field. Furthermore, it is often assumed that lifespan interventions like DR will also extend healthspan, which is thus often ignored in aging studies. In this review, we provide an overview of DR as an intervention and discuss the mechanisms by which it affects lifespan and various healthspan measures. We also review studies that demonstrate exceptions to the standing paradigm of DR being beneficial, thus raising new questions that future studies must address. We detail critical factors for the proposed field of precision nutrigeroscience, which would utilize individualized treatments and predict outcomes using biomarkers based on genotype, sex, tissue, and age.
    Keywords:  aging; biomarkers; caloric restriction; dietary restriction; healthspan; lifespan; precision medicine; precision nutrigeroscience; senescence
  9. Rheumatology (Oxford). 2021 Sep 24. pii: keab709. [Epub ahead of print]
      OBJECTIVE: Juvenile idiopathic arthritis (JIA) is a chronic inflammatory disease of unknown origin. The regulation of inflammatory processes involves multiple cellular steps including mRNA transcription and translation. Different miRNAs tightly control these processes. We aimed to determine the roles of specific miRNAs within JIA pathogenesis.METHODS: We performed a global miRNA expression analysis in parallel in cells from the arthritic joint and peripheral blood of oligoarticular JIA patients and healthy controls. QRT-PCR analysis was used to verify expression of miRNA in T cells. Ex vivo experiments and flow cytometric analyses were used to analyze proliferation and redox metabolism.
    RESULTS: Global miRNA expression analysis demonstrated a different composition of miRNA expression at the site of inflammation compared with peripheral blood. Bioinformatic analysis of predicted miRNA target genes suggest a huge overrepresentation of genes involved in metabolic and oxidative stress pathways in the inflamed joint. Despite enhanced ROS levels within the local inflammatory milieu, JIA T cells are hyperproliferative and reveal an overexpression of miR-23a, which is an inhibitor of PPIF, the regulator of mitochondrial ROS escape. Mitochondrial ROS escape is diminished in JIA T cells resulting in their prolonged survival.
    CONCLUSION: Our data suggest that miRNA dependent mitochondrial ROS shuttling might be a mechanism that contributes to T cell regulation in JIA at the site of inflammation.
    Keywords:  Autoimmunity; JIA; ROS; Redox metabolism; miR-23a
  10. NPJ Aging Mech Dis. 2021 Sep 21. 7(1): 25
      NAD+ supplementation has significant benefits in compromised settings, acting largely through improved mitochondrial function and DNA repair. Elevating NAD+ to physiological levels has been shown to improve the function of some adult stem cells, with implications that these changes will lead to sustained improvement of the tissue or system. Here, we examined the effect of elevating NAD+ levels in models with reduced hematopoietic stem cell (HSC) potential, ATM-deficient and aged WT mice, and showed that supplementation of nicotinamide riboside (NR), a NAD+ precursor, improved lymphoid lineage potential during supplementation. In aged mice, this improved lymphoid potential was maintained in competitive transplants and was associated with transcriptional repression of myeloid gene signatures in stem and lineage-committed progenitor cells after NR treatment. However, the altered transcriptional priming of the stem cells toward lymphoid lineages was not sustained in the aged mice after NR removal. These data characterize significant alterations to the lineage potential of functionally compromised HSCs after short-term exposure to NR treatment.
  11. Antioxid Redox Signal. 2021 Sep 24.
      SIGNIFICANCE: Immunometabolic regulation of macrophages has been the target of many researchers. Here we review the contribution of solute carriers (SLC) in regulating macrophage metabolism. We also highlight key mechanisms that regulate SLC function, their effects on mitochondrial activity, and how these intracellular activities contribute to macrophage fitness in healthy and disease. Recent Advances: Solute carriers serve as a major drug absorption pathway and represent a novel category of therapeutic drug targets. SLC dynamics affect cellular nutritional sensors, such as AMPK and mTOR and, consequently alters the cellular metabolism and mitochondrial dynamics within macrophages to adapt to a new functional phenotype.CRITICAL ISSUES: Macrophages play a significant role in several pathologies, including insulin resistance, atherosclerosis and cancer. Solute carrier function defines macrophage phenotype and these activities contribute to host health.
    FUTURE DIRECTIONS: Few studies focus on the impact of solute transporters on macrophage function. Identifying which solute carriers are present in macrophages and determining their functional roles may reveal novel therapeutic targets with which to treat metabolic and inflammatory diseases.
  12. J Exp Clin Cancer Res. 2021 Sep 21. 40(1): 295
      BACKGROUND: Although tumor-infiltrating T cells represent a favorable prognostic marker for cancer patients, the majority of these cells are rendered with an exhausted phenotype. Hence, there is an unmet need to identify factors which can reverse this dysfunctional profile and restore their anti-tumorigenic potential. Activin-A is a pleiotropic cytokine, exerting a broad range of pro- or anti-inflammatory functions in different disease contexts, including allergic and autoimmune disorders and cancer. Given that activin-A exhibits a profound effect on CD4+ T cells in the airways and is elevated in lung cancer patients, we hypothesized that activin-A can effectively regulate anti-tumor immunity in lung cancer.METHODS: To evaluate the effects of activin-A in the context of lung cancer, we utilized the OVA-expressing Lewis Lung Carcinoma mouse model as well as the B16F10 melanoma model of pulmonary metastases. The therapeutic potential of activin-A-treated lung tumor-infiltrating CD4+ T cells was evaluated in adoptive transfer experiments, using CD4-/--tumor bearing mice as recipients. In a reverse approach, we disrupted activin-A signaling on CD4+ T cells using an inducible model of CD4+ T cell-specific knockout of activin-A type I receptor. RNA-Sequencing analysis was performed to assess the transcriptional signature of these cells and the molecular mechanisms which mediate activin-A's function. In a translational approach, we validated activin-A's anti-tumorigenic properties using primary human tumor-infiltrating CD4+ T cells from lung cancer patients.
    RESULTS: Administration of activin-A in lung tumor-bearing mice attenuated disease progression, an effect associated with heightened ratio of infiltrating effector to regulatory CD4+ T cells. Therapeutic transfer of lung tumor-infiltrating activin-A-treated CD4+ T cells, delayed tumor progression in CD4-/- recipients and enhanced T cell-mediated immunity. CD4+ T cells genetically unresponsive to activin-A, failed to elicit effective anti-tumor properties and displayed an exhausted molecular signature governed by the transcription factors Tox and Tox2. Of translational importance, treatment of activin-A on tumor-infiltrating CD4+ T cells from lung cancer patients augmented their immunostimulatory capacity towards autologous CD4+ and CD8+ T cells.
    CONCLUSIONS: In this study, we introduce activin-A as a novel immunomodulatory factor in the lung tumor microenvironment, which bestows exhausted CD4+ T cells with effector properties.
    Keywords:  Activin-A; Anti-tumor immunity; CD4+ T cells; Immune regulation; Non-small cell lung cancer; T cell exhaustion
  13. NPJ Regen Med. 2021 Sep 24. 6(1): 58
      Mitochondria are cellular organelles critical for numerous cellular processes and harboring their own circular mitochondrial DNA (mtDNA). Most mtDNA associated disorders (either deletions, mutations, or depletion) lead to multisystemic disease, often severe at a young age, with no disease-modifying therapies. Mitochondria have a capacity to enter eukaryotic cells and to be transported between cells. We describe a method of ex vivo augmentation of hematopoietic stem and progenitor cells (HSPCs) with normal exogenous mitochondria, termed mitochondrial augmentation therapy (MAT). Here, we show that MAT is feasible and dose dependent, and improves mitochondrial content and oxygen consumption of healthy and diseased HSPCs. Ex vivo mitochondrial augmentation of HSPCs from a patient with a mtDNA disorder leads to superior human engraftment in a non-conditioned NSGS mouse model. Using a syngeneic mouse model of accumulating mitochondrial dysfunction (Polg), we show durable engraftment in non-conditioned animals, with in vivo transfer of mitochondria to recipient hematopoietic cells. Taken together, this study supports MAT as a potential disease-modifying therapy for mtDNA disorders.