bims-imseme Biomed News
on Immunosenescence and T cell metabolism
Issue of 2021‒06‒13
twelve papers selected by
Pierpaolo Ginefra
Ludwig Institute for Cancer Research


  1. Immunohorizons. 2021 Jun 08. 5(6): 395-409
      Clinical use of various forms of immunotherapeutic drugs in glioblastoma (GBM), has highlighted severe T cell dysfunction such as exhaustion in GBM patients. However, reversing T cell exhaustion using immune checkpoint inhibitors in GBM clinical trials has not shown significant overall survival benefit. Phenotypically, CD8+ T cells with downregulated CD28 coreceptors, low CD27 expression, increased CD57 expression, and telomere shortening are classified as senescent T cells. These senescent T cells are normally seen as part of aging and also in many forms of solid cancers. Absence of CD28 on T cells leads to several functional irregularities including reduced TCR diversity, incomplete activation of T cells, and defects in Ag-induced proliferation. In the context of GBM, presence and/or function of these CD8+CD28- T cells is unknown. In this clinical correlative study, we investigated the effect of aging as well as tumor microenvironment on CD8+ T cell phenotype as an indicator of its function in GBM patients. We systematically analyzed and describe a large population of CD8+CD28- T cells in both the blood and tumor-infiltrating lymphocytes of GBM patients. We found that phenotypically these CD8+CD28- T cells represent a distinct population compared with exhausted T cells. Comparative transcriptomic and pathway analysis of CD8+CD28- T cell populations in GBM patients revealed that tumor microenvironment might be influencing several immune related pathways and thus further exaggerating the age associated immune dysfunction in this patient population.
    DOI:  https://doi.org/10.4049/immunohorizons.2100008
  2. Transplantation. 2021 Jun 09.
      Exhaustion of T cells occurs in response to chronic exposure to self and foreign antigens. It limits T cell capacity to proliferate and produce cytokines, leading to an impaired ability to clear chronic infections or eradicate tumors. T cell exhaustion is associated with a specific transcriptional, epigenetic, and metabolic program and characteristic cell surface markers' expression. Recent studies have begun to elucidate the role of T cell exhaustion in transplant. Higher levels of exhausted T cells have been associated with better graft function in kidney transplant recipients. In contrast, reinvigorating exhausted T cells by immune checkpoint blockade therapies, while promoting tumor clearance, increases the risk of acute rejection. Lymphocyte depletion and high alloantigen load have been identified as major drivers of T cell exhaustion. This could account, at least in part, for the reduced rates of acute rejection in organ transplant recipients induced with thymoglobulin and for the pro-tolerogenic effects of a large organ such as the liver. Amongst the drugs that are widely-used for maintenance immunosuppression, calcineurin inhibitors have a contrasting inhibitory effect on exhaustion of T cells, while the influence of mTOR inhibitors is still unclear. Harnessing or encouraging the natural processes of exhaustion may provide a novel strategy to promote graft survival and transplantation tolerance. Supplemental Visual Abstract; http://links.lww.com/TP/C250.
    DOI:  https://doi.org/10.1097/TP.0000000000003851
  3. Aging (Albany NY). 2021 Jun 08. 13(undefined):
      Cellular senescence is linked to chronic age-related diseases including atherosclerosis, diabetes, and neurodegeneration. Compared to proliferating cells, senescent cells express distinct subsets of proteins. In this study, we used cultured human diploid fibroblasts rendered senescent through replicative exhaustion or ionizing radiation to identify proteins differentially expressed during senescence. We identified acid ceramidase (ASAH1), a lysosomal enzyme that cleaves ceramide into sphingosine and fatty acid, as being highly elevated in senescent cells. This increase in ASAH1 levels in senescent cells was associated with a rise in the levels of ASAH1 mRNA and a robust increase in ASAH1 protein stability. Furthermore, silencing ASAH1 in pre-senescent fibroblasts decreased the levels of senescence proteins p16, p21, and p53, and reduced the activity of the senescence-associated β-galactosidase. Interestingly, depletion of ASAH1 in pre-senescent cells sensitized these cells to the senolytics Dasatinib and Quercetin (D+Q). Together, our study indicates that ASAH1 promotes senescence, protects senescent cells, and confers resistance against senolytic drugs. Given that inhibiting ASAH1 sensitizes cells towards senolysis, this enzyme represents an attractive therapeutic target in interventions aimed at eliminating senescent cells.
    Keywords:  SASP; post-transcriptional; senescent cell metabolism; senotherapy; translational control
    DOI:  https://doi.org/10.18632/aging.203170
  4. Nat Rev Immunol. 2021 Jun 07.
      Age-related T cell dysfunction can lead to failure of immune tolerance mechanisms, resulting in aberrant T cell-driven cytokine and cytotoxic responses that ultimately cause tissue damage. In this Review, we discuss the role of T cells in the onset and progression of age-associated conditions, focusing on cardiovascular disorders, metabolic dysfunction, neuroinflammation and defective tissue repair and regeneration. We present different mechanisms by which T cells contribute to inflammageing and might act as modulators of age-associated diseases, including through enhanced pro-inflammatory and cytotoxic activity, defective clearance of senescent cells or regulation of the gut microbiota. Finally, we propose that 'resetting' immune system tolerance or targeting pathogenic T cells could open up new therapeutic opportunities to boost resilience to age-related diseases.
    DOI:  https://doi.org/10.1038/s41577-021-00557-4
  5. J Immunol. 2021 Jun 09. pii: ji2001077. [Epub ahead of print]
      Differentially and functionally distinct T cell subsets are involved in the development of complications after allogeneic hematopoietic stem cell transplantation (HSCT), but little is known about factors regulating their recovery after HSCT. In this study, we investigated associations between immune-regulating cytokines, T cell differentiation, and clinical outcomes. We included 80 children undergoing allogeneic HSCT for acute leukemia using bone marrow or peripheral blood stem cells grafted from a matched sibling or unrelated donor. Cytokines (IL-7, IL-15, IL-18, SCF, IL-6, IL-2, and TNF-α) and active anti-thymocyte globulin (ATG) levels were longitudinally measured along with extended T cell phenotyping. The cytokine profiles showed a temporary rise in IL-7 and IL-15 during lymphopenia, which was strongly dependent on exposure to active ATG. High levels of IL-7 and IL-15 from graft infusion to day +30 were predictive of slower T cell recovery during the first 2 mo post-HSCT; however, because of a major expansion of memory T cell stages, only naive T cells remained decreased after 3 mo (p < 0.05). No differential effect was seen on polarization of CD4+ T cells into Th1, Th2, or Th17 cells or regulatory T cells. Low levels of IL-7 and IL-15 at day +14 were associated with acute graft-versus-host disease grades II-IV in ATG-treated patients (p = 0.0004 and p = 0.0002, respectively). Children with IL-7 levels comparable to healthy controls at day +14 post-HSCT were less likely to develop EBV reactivation posttransplant. These findings suggest that quantification of IL-7 and IL-15 may be useful as biomarkers in assessing the overall T cell depletion and suggest a potential for predicting complications after HSCT.
    DOI:  https://doi.org/10.4049/jimmunol.2001077
  6. Cell Rep. 2021 Jun 08. pii: S2211-1247(21)00578-7. [Epub ahead of print]35(10): 109227
      γδ T cells form an integral arm of the immune system and are critical during protective and destructive immunity. However, how γδ T cells are functionally programmed in vivo remains unclear. Here, we employ RBPJ-inducible and KN6-transgenic mice to assess the roles of ontogenic timing, T cell receptor (TCR) signal strength, and Notch signaling. We find skewing of Vγ1+ cells toward the PLZF+Lin28b+ lineage at the fetal stage. Generation of interleukin-17 (IL-17)-producing γδ T cells is favored during, although not exclusive to, the fetal stage. Surprisingly, Notch signaling is dispensable for peripheral γδ T cell IL-17 production. Strong TCR signals, together with Notch, promote IL-4 differentiation. Conversely, less strong TCR signals promote Notch-independent IL-17 differentiation. Single-cell transcriptomic analysis reveals differential programming instilled by TCR signal strength and Notch for specific subsets. Thus, our results precisely define the roles of ontogenic timing, TCR signal strength, and Notch signaling in γδ T cell functional programming in vivo.
    Keywords:  Notch signaling; RBPJ(ind) mouse model; TCR signaling; ontogeny; single-cell RNA sequencing; γδ T cell development; γδ T cell effector programming; γδ T cell peripheral responses
    DOI:  https://doi.org/10.1016/j.celrep.2021.109227
  7. Cell Rep. 2021 Jun 08. pii: S2211-1247(21)00571-4. [Epub ahead of print]35(10): 109220
      Several types of pathogenic bacteria produce genotoxins that induce DNA damage in host cells. Accumulating evidence suggests that a central function of these genotoxins is to dysregulate the host's immune response, but the underlying mechanisms remain unclear. To address this issue, we investigated the effects of the most widely expressed bacterial genotoxin, the cytolethal distending toxin (CDT), on T cells-the key mediators of adaptive immunity. We show that CDT induces premature senescence in activated CD4 T cells in vitro and provide evidence suggesting that infection with genotoxin-producing bacteria promotes T cell senescence in vivo. Moreover, we demonstrate that genotoxin-induced senescent CD4 T cells assume a senescence-associated secretory phenotype (SASP) which, at least partly, is orchestrated by the ATM-p38 signaling axis. These findings provide insight into the immunomodulatory properties of bacterial genotoxins and uncover a putative link between bacterial infections and T cell senescence.
    Keywords:  ATM; DNA damage; T cells; bacteria; cytolethal distending toxin; genotoxins; inflammation; senescence; senescence-associated secretory phenotype; typhoid toxin
    DOI:  https://doi.org/10.1016/j.celrep.2021.109220
  8. Front Immunol. 2021 ;12 642807
      T cell immunological memory is established within days of an infection, but little is known about the in vivo changes in gene regulatory networks accounting for their ability to respond more efficiently to secondary infections. To decipher the timing and nature of immunological memory we performed genome-wide analyses of epigenetic and transcriptional changes in a mouse model generating antigen-specific T cells. Epigenetic reprogramming for Th differentiation and memory T cell formation was already established by the peak of the T cell response after 7 days. The Th memory T cell program was associated with a gain of open chromatin regions, enriched for RUNX, ETS and T-bet motifs, which remained stable for 56 days. The epigenetic programs for both effector memory, associated with T-bet, and central memory, associated with TCF-1, were established in parallel. Memory T cell-specific regulatory elements were associated with greatly enhanced inducible Th1-biased responses during secondary exposures to antigen. Furthermore, memory T cells responded in vivo to re-exposure to antigen by rapidly reprograming the entire ETS factor gene regulatory network, by suppressing Ets1 and activating Etv6 expression. These data show that gene regulatory networks are epigenetically reprogrammed towards memory during infection, and undergo substantial changes upon re-stimulation.
    Keywords:  T cell activation ; epigenetics (chromatin remodelling); gene regulatory networks; immunological memory responses; memory T CD4+ cells
    DOI:  https://doi.org/10.3389/fimmu.2021.642807
  9. Nat Commun. 2021 06 07. 12(1): 3379
      GATA3 is as a lineage-specific transcription factor that drives the differentiation of CD4+ T helper 2 (Th2) cells, but is also involved in a variety of processes such as immune regulation, proliferation and maintenance in other T cell and non-T cell lineages. Here we show a mechanism utilised by CD4+ T cells to increase mitochondrial mass in response to DNA damage through the actions of GATA3 and AMPK. Activated AMPK increases expression of PPARG coactivator 1 alpha (PPARGC1A or PGC1α protein) at the level of transcription and GATA3 at the level of translation, while DNA damage enhances expression of nuclear factor erythroid 2-related factor 2 (NFE2L2 or NRF2). PGC1α, GATA3 and NRF2 complex together with the ATR to promote mitochondrial biogenesis. These findings extend the pleotropic interactions of GATA3 and highlight the potential for GATA3-targeted cell manipulation for intervention in CD4+ T cell viability and function after DNA damage.
    DOI:  https://doi.org/10.1038/s41467-021-23715-7
  10. Nature. 2021 Jun 09.
      T cell immunoglobulin and mucin-containing molecule 3 (TIM-3), first identified as a molecule expressed on interferon-γ producing T cells1, is emerging as an important immune-checkpoint molecule, with therapeutic blockade of TIM-3 being investigated in multiple human malignancies. Expression of TIM-3 on CD8+ T cells in the tumour microenvironment is considered a cardinal sign of T cell dysfunction; however, TIM-3 is also expressed on several other types of immune cell, confounding interpretation of results following blockade using anti-TIM-3 monoclonal antibodies. Here, using conditional knockouts of TIM-3 together with single-cell RNA sequencing, we demonstrate the singular importance of TIM-3 on dendritic cells (DCs), whereby loss of TIM-3 on DCs-but not on CD4+ or CD8+ T cells-promotes strong anti-tumour immunity. Loss of TIM-3 prevented DCs from expressing a regulatory program and facilitated the maintenance of CD8+ effector and stem-like T cells. Conditional deletion of TIM-3 in DCs led to increased accumulation of reactive oxygen species resulting in NLRP3 inflammasome activation. Inhibition of inflammasome activation, or downstream effector cytokines interleukin-1β (IL-1β) and IL-18, completely abrogated the protective anti-tumour immunity observed with TIM-3 deletion in DCs. Together, our findings reveal an important role for TIM-3 in regulating DC function and underscore the potential of TIM-3 blockade in promoting anti-tumour immunity by regulating inflammasome activation.
    DOI:  https://doi.org/10.1038/s41586-021-03626-9