bims-imicid Biomed News
on Immunometabolism of infection, cancer and immune-mediated disease
Issue of 2022‒01‒30
twenty-one papers selected by
Dylan Ryan
University of Cambridge


  1. Proc Natl Acad Sci U S A. 2022 Jan 25. pii: e2107742119. [Epub ahead of print]119(4):
      Proinflammatory cytokine production by innate immune cells plays a crucial role in inflammatory diseases, but the molecular mechanisms controlling the inflammatory responses are poorly understood. Here, we show that TANK-binding kinase 1 (TBK1) serves as a vital regulator of proinflammatory macrophage function and protects against tissue inflammation. Myeloid cell-conditional Tbk1 knockout (MKO) mice spontaneously developed adipose hypertrophy and metabolic disorders at old ages, associated with increased adipose tissue M1 macrophage infiltration and proinflammatory cytokine expression. When fed with a high-fat diet, the Tbk1-MKO mice also displayed exacerbated hepatic inflammation and insulin resistance, developing symptoms of nonalcoholic steatohepatitis. Furthermore, myeloid cell-specific TBK1 ablation exacerbates inflammation in experimental colitis. Mechanistically, TBK1 functions in macrophages to suppress the NF-κB and MAP kinase signaling pathways and thus attenuate induction of proinflammatory cytokines, particularly IL-1β. Ablation of IL-1 receptor 1 (IL-1R1) eliminates the inflammatory symptoms of Tbk1-MKO mice. These results establish TBK1 as a pivotal anti-inflammatory mediator that restricts inflammation in different disease models.
    Keywords:  TBK1; fatty liver disease; inflammation; macrophages; metabolic disorders
    DOI:  https://doi.org/10.1073/pnas.2107742119
  2. J Immunol Res. 2022 ;2022 6284124
      Iron plays an important role in macrophage polarization by altering metabolic and redox status. However, the impact of iron on the immune status of macrophages is still controversial. In this study, we report that ferric ammonium citrate (FAC) upregulates PD-L1 expression in macrophages. FAC not only altered the phenotype of macrophages but also led to enriching immune-modulatory T cell subsets. Since iron is known to be a constituent of coenzymes facilitating metabolic processes in mitochondria, we examined the metabolic status of FAC-overloaded macrophages by measuring the oxygen consumption rate (OCR) and the represented coenzyme, aconitase. In addition to enhancement of metabolic processes, FAC accelerated the Fenton reaction in macrophages, which also contributed to the facilitation of oxygen consumption. We reasoned that the enhancement of the OCR leads to the production of reactive oxygen species (ROS), which are directly linked to PD-L1 induction. Using ferrostatin, rotenone, and N-acetyl-L-cysteine, we confirmed that metabolic and redox regulation is responsible for FAC-mediated PD-L1 expression. Furthermore, we suggested that FAC-induced ROS production may explain FAC-mediated pro- and anti-inflammatory responses in macrophages. These findings may extend our understanding of regulating iron concentration during immune checkpoint therapy in cancer patients.
    DOI:  https://doi.org/10.1155/2022/6284124
  3. Immunometabolism. 2021 ;pii: e220002. [Epub ahead of print]4(1):
      CD4+ Foxp3+ T regulatory cells (Tregs) residing in the visceral adipose tissues (VAT) have profound effects on local and systemic metabolism. Although many of the molecular characteristics of VAT resident Tregs have been identified, how these cells promote metabolic homeostasis is still unclear. Several new publications help to illuminate the molecular mechanisms that underpin VAT resident Treg function and will be discussed here.
    Keywords:  Tregs; adipose tissue; metabolism; obesity
    DOI:  https://doi.org/10.20900/immunometab20220002
  4. Cell Rep. 2022 Jan 25. pii: S2211-1247(21)01799-X. [Epub ahead of print]38(4): 110284
      Macrophages display phenotypic plasticity and can be induced by hepatitis B virus (HBV) to undergo either M1-like pro-inflammatory or M2-like anti-inflammatory polarization. Here, we report that M1-like macrophages stimulated by HBV exhibit a strong HBV-suppressive effect, which is diminished in M2-like macrophages. Transcriptomic analysis reveals that HBV induces the expression of interleukin-1β (IL-1β) in M1-like macrophages, which display a high oxidative phosphorylation (OXPHOS) activity distinct from that of conventional M1-like macrophages. Further analysis indicates that OXPHOS attenuates the expression of IL-1β, which suppresses the expression of peroxisome proliferator-activated receptor α (PPARα) and forkhead box O3 (FOXO3) in hepatocytes to suppress HBV gene expression and replication. Moreover, multiple HBV proteins can induce the expression of IL-1β in macrophages. Our results thus indicate that macrophages can respond to HBV by producing IL-1β to suppress HBV replication. However, HBV can also metabolically reprogram macrophages to enhance OXPHOS to minimize this host antiviral response.
    Keywords:  IL-1β signaling; M1-like and M2-like macrophages; hepatitis B virus; metabolic reprogramming; oxidative phosphorylation; transcriptional regulation
    DOI:  https://doi.org/10.1016/j.celrep.2021.110284
  5. Blood Adv. 2022 Jan 24. pii: bloodadvances.2021005103. [Epub ahead of print]
      Chronic graft-versus-host disease (cGVHD) remains a major obstacle impeding successful allogeneic hematopoietic cell transplantation (allo-HCT). MicroRNAs (miRs) play key roles in immune regulation during acute GVHD development. Preclinical studies to identify miRs that impact cGVHD pathogenesis are required to develop these as potential life-saving interventions. Using oligonucleotide array, we identified miR-31 that was significantly elevated in allogeneic T cells following HCT in mice. Using genetic and pharmacological approaches, we demonstrated a key role for miR-31 in mediating donor T-cell pathogenicity in cGVHD. Recipients of miR-31-deficient T cells displayed improved cutaneous and pulmonary cGVHD. Deficiency of miR-31 reduced T-cell expansion and Th17 differentiation, but increased generation and function of Tregs. MiR-31 facilitated Neuropilin-1 down-regulation, Foxp3 loss and IFNγ production in alloantigen-induced Tregs. Mechanistically, miR-31 was required for Hypoxia-inducible Factor 1α (HIF1α) upregulation in allogeneic T cells. Hence, miR-31-deficient CD4 T cells displayed impaired activation, survival, Th17 differentiation and glycolytic metabolism under hypoxia. Upregulation of Factor Inhibiting HIF1 (FIH1), a direct target of miR-31, in miR-31-deficient T cells was essential for attenuating T-cell pathogenicity. However, miR-31-deficienty CD8 T cells maintained intact glucose metabolism, cytolytic activity and graft-versus-leukemia response. Importantly, systemic administration of a specific inhibitor of miR-31 effectively reduced donor T-cell expansion, improved Treg generation, and attenuated cGVHD. Taken together, miR-31 is a key driver for T-cell pathogenicity in cGVHD but not for the anti-leukemia activity. Taken together, miR-31 is essential to drive cGVHD pathogenesis and represents a novel potential therapeutic target for controlling cGVHD.
    DOI:  https://doi.org/10.1182/bloodadvances.2021005103
  6. Trends Endocrinol Metab. 2022 Jan 19. pii: S1043-2760(21)00301-5. [Epub ahead of print]
      As major eukaryotic lipid storage organelles, lipid droplets (LDs) are metabolic hubs coordinating energy flux and building block distribution. Infectious pathogens often promote accumulation and physically interact with LDs. The most accepted view is that host LDs are hijacked by invaders to draw on nutrients for host colonisation. However, unique traits such as biogenesis plasticity, dynamic proteome, signalling capacity, and ability to interact with other organelles endow LDs with competencies to face complex biological challenges. Here, we focus on published data suggesting that LDs are not usurped organelles but innate immunity first responders. By comparison with analogous mechanisms activated on LDs in nutrient-poor environments, our review supports the hypothesis that host LDs actively participate in immunometabolism, immune signalling, and microbial killing.
    Keywords:  infection; innate immunity; lipid droplet; metabolism
    DOI:  https://doi.org/10.1016/j.tem.2021.12.006
  7. mBio. 2022 Jan 25. e0209621
      Mitochondria are dynamic organelles vital for energy production with now appreciated roles in immune defense. During microbial infection, mitochondria serve as signaling hubs to induce immune responses to counteract invading pathogens like viruses. Mitochondrial functions are central to a variety of antiviral responses including apoptosis and type I interferon signaling (IFN-I). While apoptosis and IFN-I mediated by mitochondrial antiviral signaling (MAVS) are well-established defenses, new dimensions of mitochondrial biology are emerging as battlefronts during viral infection. Increasingly, it has become apparent that mitochondria serve as reservoirs for distinct cues that trigger immune responses and that alterations in mitochondrial morphology may also tip infection outcomes. Furthermore, new data are foreshadowing pivotal roles for classic, homeostatic facets of this organelle as host-virus interfaces, namely, the tricarboxylic acid (TCA) cycle and electron transport chain (ETC) complexes like respiratory supercomplexes. Underscoring the importance of "housekeeping" mitochondrial activities in viral infection is the growing list of viral-encoded inhibitors including mimics derived from cellular genes that antagonize these functions. For example, virologs for ETC factors and several enzymes from the TCA cycle have been recently identified in DNA virus genomes and serve to pinpoint new vulnerabilities during infection. Here, we highlight recent advances for known antiviral functions associated with mitochondria as well as where the next battlegrounds may be based on viral effectors. Collectively, new methodology and mechanistic insights over the coming years will strengthen our understanding of how an ancient molecular truce continues to defend cells against viruses.
    Keywords:  C15orf48; DAMP; MAVS; MISTR; NDUFA4; OXPHOS; TCA cycle; apoptosis; interferon; micropeptides; mimics; mitochondria; mitochondrial dynamics; mtDNA; mtROS; mtdsRNA; pyroptosis; supercomplexes; virologs; virus
    DOI:  https://doi.org/10.1128/mbio.02096-21
  8. Cell Mol Life Sci. 2022 Jan 24. 79(2): 89
      Human macrophages infiltrating hypoxic regions alter their metabolism, because oxygen becomes limited. Increased glycolysis is one of the most common cellular adaptations to hypoxia and mostly is regulated via hypoxia-inducible factor (HIF) and RAC-alpha serine/threonine-protein kinase (Akt) signaling, which gets activated under reduced oxygen content. We noticed that micro RNA (miR)-193a-3p enhances Akt phosphorylation at threonine 308 under hypoxia. In detail, miR-193a-3p suppresses the protein abundance of phosphatase PTC7 homolog (PPTC7), which in turn increases Akt phosphorylation. Lowering PPTC7 expression by siRNA or overexpressing miR-193a-3p increases Akt phosphorylation. Vice versa, inhibition of miR-193a-3p attenuates Akt activation and prevents a subsequent increase of glycolysis under hypoxia. Excluding effects of miR-193a-3p and Akt on HIF expression, stabilization, and function, we noticed phosphorylation of 6 phosphofructo-2-kinase/fructose 2,6-bisphosphatase PFKFB3 in response to the PI3K/Akt/mTOR signaling cascade. Inhibition of PFKFB3 blocked an increased glycolytic flux under hypoxia. Apparently, miR-193a-3p balances Akt phosphorylation and dephosphorylation by affecting PPTC7 protein amount. Suppression of PPTC7 increases Akt activation and phosphorylation of PFKFB3, which culminates in higher rates of glycolysis under hypoxia.
    Keywords:  HIF; PDPK1; PPTC7; mTOR
    DOI:  https://doi.org/10.1007/s00018-022-04146-z
  9. Scand J Immunol. 2022 Jan 24. e13146
      1,25-dihydroxyvitamin D3 (1,25(OH)2 D3 ), the active metabolite of vitamin D3 has a strong impact on the differentiation and function of immune cells. Here we analyzed the influence of its precursor 25-hydroxyvitamin D3 (25(OH)D3 ) on the differentiation of human CD4+ T cells applying physiological concentrations in vitro. Our data show that 25(OH)D3 is converted to its active form 1,25(OH)2 D3 by T cells, which in turn supports FOXP3, CD25 and CTLA-4 expression and inhibits IFN-γ production. These changes were not reflected in the demethylation of the respective promoters. Furthermore, we investigated the impact of vitamin D3 metabolites under induced Treg polarization conditions using TGF-β. Surprisingly, no additive effect but a decreased percentage of FOXP3 expressing cells was observed. However, the combination of 25(OH)D3 or 1,25(OH)2 D3 together with TGF-β further upregulated CD25 and CTLA-4 and significantly increased soluble CTLA-4 and IL-10 secretion whereas IFN-γ expression of iTreg was decreased. Our data suggest that physiological levels of 25(OH)D3 act as potent modulator of human CD4+ T cells and autocrine or paracrine production of 1,25(OH)2 D3 by T cells might be crucial for the local regulation of an adaptive immune response. However, since no epigenetic changes are detected by 25(OH)D3 a rather transient phenotype is induced.
    Keywords:  1,25(OH)2D3; 25(OH)D3; CD4; CTLA-4; CYP27B1; FOXP3; IFN-γ; IL-10; TGF-β; Treg; VDR; Vitamin D3
    DOI:  https://doi.org/10.1111/sji.13146
  10. Front Immunol. 2021 ;12 797091
      The efficient removal of apoptotic cells (ACs), a process termed as efferocytosis, is essential for immune homeostasis. While recent work has established an important interplay between efferocytosis and cellular metabolic changing, underlying mechanisms remain poorly known. Here, we discovered that pentose phosphate pathway (PPP) regulates tolerogenic ACs clearance and immune tolerance. ACs decreased levels of PPP-related genes and metabolites in macrophages. AG1, the agonist of PPP, increased the activity of PPP but greatly reduced macrophage phagocytosis of ACs and enhanced the inflammatory response during efferocytosis. miR-323-5p regulated the expression of PPP-related genes and its levels increased during efferocytosis. miR-323-5p inhibitor greatly promoted levels of PPP-related genes, reduced the macrophage phagocytosis of ACs, and increased inflammatory response during efferocytosis, suggesting that miR-323-5p was essential in regulating PPP activity and ACs clearance in macrophages. Correspondingly, the PPP agonist AG1 exacerbated the lupus-like symptoms in the AC-induced systemic lupus erythematosus (SLE) model. Our study reveals that regulating PPP-dependent metabolic reprogramming is critical for tolerogenic ACs phagocytosis and immune tolerance.
    Keywords:  autoimmune disease; efferocytosis; immune tolerance; macrophage; pentose phosphate pathway (PPP)
    DOI:  https://doi.org/10.3389/fimmu.2021.797091
  11. Sci Rep. 2022 Jan 27. 12(1): 1464
      Glioblastoma (GBM) is the most common primary brain tumor with a median survival under two years. Using in silico and in vitro techniques, we demonstrate heterogeneous expression of CD97, a leukocyte adhesion marker, in human GBM. Beyond its previous demonstrated role in tumor invasion, we show that CD97 is also associated with upregulation of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/Erk) and phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathways in GBM. While CD97 knockout decreased Akt activation, CD97 targeting did not alter MAPK/Erk activation, did not slow GBM cell proliferation in culture, and increased levels of glycolytic and oxidative phosphorylation metabolites. Treatment with a soluble CD97 inhibitor did not alter activation of the MAPK/Erk and PI3K/Akt pathways. Tumors with high CD97 expression were associated with immune microenvironment changes including increased naïve macrophages, regulatory T cells, and resting natural killer (NK) cells. These data suggest that, while CD97 expression is associated with conflicting effects on tumor cell proliferative and metabolic pathways that overall do not affect tumor cell proliferation, CD97 exerts pro-tumoral effects on the tumor immune microenvironment, which along with the pro-invasive effects of CD97 we previously demonstrated, provides impetus to continue exploring CD97 as a therapeutic target in GBM.
    DOI:  https://doi.org/10.1038/s41598-022-05259-y
  12. Sci Rep. 2022 Jan 27. 12(1): 1459
      Glycolysis is the metabolic pathway that converts glucose into pyruvate. Central nervous system (CNS) pathologies, such as spinal cord injury (SCI) and ischemia, are accompanied by an increase of the glycolytic pathway in the damaged areas as part of the inflammatory response. Pyruvate kinase is a key glycolytic enzyme that converts phosphoenolpyruvate and ADP to pyruvate and ATP. The protein has two isoforms, PKM1 and PKM2, originated from the same gene. As a homodimer, PKM2 loses the pyruvate kinase activity and acts as a transcription factor that regulates the expression of target genes involved in glycolysis and inflammation. After SCI, resident microglia and hematogenous macrophages are key inducers of the inflammatory response with deleterious effects. Activation of the bile acid receptor TGR5 inhibits the pro-inflammatory NFκB pathway in microglia and macrophages. In the present study we have investigated whether bile acids affect the expression of glycolytic enzymes and their regulation by PKM2. Bacterial lipopolysaccharide (LPS) induced the expression of PKM1, PKM2 and its target genes in primary cultures of microglial and Raw264.7 macrophage cells. SCI caused an increase of PKM2 immunoreactivity in macrophages after SCI. Pretreatment with tauroursodeoxycholic acid (TUDCA) or taurolithocholic acid (TLCA) reduced the expression of PKM2 and its target genes in cell cultures. Similarly, after SCI, TUDCA treatment reduced the expression of PKM2 in the lesion center. These results confirm the importance of PKM2 in the inflammatory response in CNS pathologies and indicate a new mechanism of bile acids as regulators of PKM2 pathway.
    DOI:  https://doi.org/10.1038/s41598-022-05408-3
  13. Antioxid Redox Signal. 2022 Jan 28.
      SIGNIFICANCE Oxygen deprivation (hypoxia) is a common feature at sites of inflammation. Immune and all other cells present at the inflamed site have to adapt to these conditions. They do so by stabilization and activation of hypoxia inducible factor subunit α (HIF-1α and HIF-2α, respectively), enabling constant generation of ATP, e.g. glycolytic pathways. RECENT ADVANTAGES During recent years, it has become evident that HIFs play an important role in shaping the inflammatory phenotype of immune cells. They are indispensable for migration, phagocytosis, and the induction of inflammatory cytokines by innate immune cells and thereby enable a crosstalk between innate and adaptive immunity. In short, they ensure the survival and function of immune cells under critical conditions. CRITICAL ISSUES Open questions remain regarding the individual roles of HIF-1 and HIF-2 for the different immune cells. In particular, the loss of both HIF-1 and HIF-2 in myeloid cells led to unexpected and contradictory results in the mouse models. Similarly, the role of HIF-1 in dendritic cell maturation is unclear due to inconsistent results from in vitro experiments. FUTURE DIRECTIONS HIFs are indispensable for immune cell survival and action under inflammatory conditions, but might also trigger their over-activation. With the approval of prolyl hydroxylase inhibitors (PHIs) to stabilize HIF such as roxadustat we need to better understand the extent to which HIF-1 or HIF-2 regulates the adaptation of immune cells and the surrounding tissue to inflammatory hypoxia. Therefore, we urgently need isoform- and cell type-specific modulators of the HIF pathway.
    DOI:  https://doi.org/10.1089/ars.2022.0004
  14. J Surg Res. 2022 Jan 24. pii: S0022-4804(21)00768-X. [Epub ahead of print]273 161-171
      INTRODUCTION: Obesity and diabetes are characterized by chronic inflammatory responses. Roux-en-Y gastric bypass (RYGB) is increasingly regarded as an effective approach for the improvement of glucose homeostasis. In this study, we examined the effects of RYGB on the regulation of early inflammatory responses in the liver and adipose tissue in high-fat diet (HFD)-induced obese (DIO) mice.MATERIALS AND METHODS: RYGB was performed in DIO mice followed by analyses of adiposity, insulin sensitivity, plasma and tissue cytokines and adipokines, tissue NF-κB and JNK/c-Jun activation, and tissue macrophage and T-cell subsets.
    RESULTS: We found that RYGB resulted in sustained improvement of adiposity and insulin sensitivity. Plasma insulin and leptin levels were increased in untreated DIO mice and reduced in RYGB mice. RYGB maintained plasma adiponectin levels and inhibited monocyte chemoattractant protein-1 and interleukin 6 in white adipose tissue (WAT) and liver. RYGB inhibited NF-κB activation in WAT and muscle, but not in the liver. However, RYGB attenuated the JNK/c-Jun signaling pathway in the liver and WAT at 1 wk after surgery, suggesting that RYGB regulates the tissue-specific inflammatory pathway. RYGB reduced M1-like (F4/80+/CD11c+) differentiation and enhanced M2-like population (F4/80+/CD206c+). RYGB also regulated CD4+ and CD8+ T-cell infiltration and increased Treg cells in the liver and WAT at the same time point.
    CONCLUSIONS: Our findings demonstrate that RYGB improves obesity and insulin resistance, which are associated with the regulation of early inflammatory reactions in the liver and WAT.
    Keywords:  Gastric bypass; Inflammation; Insulin resistance; Mice
    DOI:  https://doi.org/10.1016/j.jss.2021.12.027
  15. Trends Parasitol. 2022 Jan 22. pii: S1471-4922(21)00338-X. [Epub ahead of print]
      Type 2 inflammation (T2I) accompanies many inflammatory diseases. In a recent issue of Cell, Ahrends et al. demonstrate that helminth-elicited T2I preserves excitatory neurons and enteric function through the expansion of Arginase-1 (Arg-1)-expressing macrophages, thereby extending our understanding of the protective functions that T2I can orchestrate in inflamed barrier tissue.
    Keywords:  Arginase-1; alternatively activated macrophages; type 2 inflammation
    DOI:  https://doi.org/10.1016/j.pt.2021.12.008
  16. Front Cell Infect Microbiol. 2021 ;11 799276
      Aim: Smoker COPD patients with chest radiological signs of prior tuberculosis (TB) showed more severe lung damage, but the mechanisms remain unclear. Emerging evidence has implicated NK cells in the pathogenesis of both COPD and TB. The purpose of this study was to delineate the profile and cytokine production of NK-cell subpopulations and their immunometabolic changes after exposure to both cigarette smoke (CS) and Mycobacterium tuberculosis(MTB).Methods: We profiled NK-cell subpopulations in terms of percentage and cytokine production by flow cytometry in smoker patients with pulmonary TB (PTB). In an in vitro coexposure model, we investigated proinflammatory cytokine production, glycolytic influx, and oxidative phosphorylation of NK cells under CS extract (CSE) and PPD costimulation.
    Results: Peripheral blood NK cells in smoker patients with active PTB (CS+PTB group) showed altered proportion of subpopulations and excessive proinflammatory cytokine expressions. In vitro, CSE- and PPD-coexposed NK-92 cells displayed enhanced proinflammatory cytokine production, concurrent with decreased glycolytic influx and oxidative phosphorylation.
    Conclusion: Smoker patients with active PTB showed enhanced proinflammatory cytokine expression within altered NK cell subpopulations. CSE and PPD coexposure induced heightened cytokine production concurrent with impaired cell metabolism in NK cells. These novel data suggest a potential role of NK cells in the pathogenesis of lung injury in subjects with coexposure to CS and TB.
    Keywords:  chronic obstructive pulmonary disease (COPD); cigarette smoking; glycolysis; immunometabolism; inflammation; lung tissue destruction; oxidative phosphorylation; tuberculosis
    DOI:  https://doi.org/10.3389/fcimb.2021.799276
  17. Front Microbiol. 2021 ;12 780768
      Mitochondria, which is essential for adequate innate immune response, energy metabolism and mitochondria reactive oxygen species (ROS) production, might be in the cross fire of Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and host cell defense. However, little is known about interactions between mitochondria and SARS-CoV-2. We performed fluorescent microscopy and found an enrichment of SARS-CoV-2 replication products double stranded RNA (dsRNA) within mitochondria. The entry process of dsRNA might be mediated by Tom20 as observed by reduced mitochondrial localization of SARS-CoV-2 dsRNA in Tom20 knockdown cells. Importantly, decreased mitochondrial localization of dsRNA, as well as mitochondrial membrane stabilizers mdivi-1 and cyclosporin A, inhibited viral load in cells. Next, we detected mitochondrial dysfunction caused by SARS-CoV-2 infection, including mitochondrial membrane depolarization, mitochondrial permeability transition pore opening and increased ROS release. In response to mitochondrial damage, we observed an increase in expression and mitochondrial accumulation of Pink1 and Parkin proteins, as well as Pink-1-mediated recruitment of P62 to mitochondria, suggesting initiated mitophagy for mitochondrial quality control and virus clearance. Nevertheless, we observed that mitophagy was inhibited and stayed in early stage with an unchanged Hsp60 expression post SARS-CoV-2 infection. This might be one of the anti-autophagy strategies of SARS-CoV-2 and we used co-immunoprecipitation to found that SARS-CoV-2 infection inhibited P62 and LC3 binding which plays a critical role in selective envelopment of substrates into autophagosomes. Our results suggest that mitochondria are closely involved in SARS-CoV-2 replication and mitochondrial homeostasis is disrupted by SARS-CoV-2 in the virus-cell confrontation.
    Keywords:  SARS-CoV-2; Tom20; mitochondria; mitophagy; viral RNA localization
    DOI:  https://doi.org/10.3389/fmicb.2021.780768
  18. Appl Environ Microbiol. 2022 Jan 26. aem0241321
      Recent progress indicates that the gut microbiota plays important role in regulating the host's glucose homeostasis. However, the mechanisms remain unclear. Here, we reported that one integral member of the murine gut microbiota, the protozoan Tritrichomonas musculis could drive the host's glucose metabolic imbalance. By metabolomics analysis and in vivo assays, we found that mechanistically this protozoan influences the host glucose metabolism by facilitating the production of a significant amount of free choline. Free choline could be converted sequentially by choline-utilizing bacteria and then the host to a final product trimethylamine N-oxide (TMAO), which promoted hepatic gluconeogenesis. Together, our data reveal a previously underappreciated gut eukaryotic microorganism by working together with other members of microbiota to influence the host's metabolism. Our study underscores the importance and prevalence of metabolic interactions between the gut microbiota and the host in modulating the host's metabolic health. Importance Blood glucose levels are important for human health and can be influenced by gut microbes. However, its mechanism of action was previously unknown. In this study, researchers identify a unique member of the gut microbes in mice that can influence glucose metabolism by promoting the host's ability to synthesis glucose by using non-glucose materials. This is because of its ability to generate the essential nutrient choline, and choline, aided by other gut bacteria and the host, is converted to trimethylamine N-oxide (TMAO) which promotes glucose production. These studies show how gut microbes promote metabolic dysfunction and suggest novel approaches for treating patients with blood glucose abnormality.
    DOI:  https://doi.org/10.1128/aem.02413-21
  19. Ageing Res Rev. 2022 Jan 24. pii: S1568-1637(22)00015-0. [Epub ahead of print] 101573
      Indoleamine 2,3-dioxygenase 1 (IDO1) is activated in chronic inflammatory states, e.g., in the aging process and age-related diseases. IDO1 enzyme catabolizes L-tryptophan (L-Trp) into kynurenine (KYN) thus stimulating the KYN pathway. The depletion of L-Trp inhibits the proliferation of immune cells in inflamed tissues and it also reduces serotonin synthesis predisposing to psychiatric disorders. Interestingly, IDO1 protein contains two immunoreceptor tyrosine-based inhibitory motifs (ITIM) which trigger suppressive signaling through the binding of PI3K p110 and SHP-1 proteins. This immunosuppressive activity is not dependent on the catalytic activity of IDO1. KYN and its metabolite, kynurenic acid (KYNA), are potent activators of the aryl hydrocarbon receptor (AhR) which can enhance immunosuppression. IDO1-KYN-AhR signaling counteracts excessive pro-inflammatory responses in acute inflammation but in chronic inflammatory states it has many harmful effects. A chronic low-grade inflammation is associated with the aging process, a state called inflammaging. There is substantial evidence that the activation of the IDO1-KYN-AhR pathway robustly increases with the aging process. The activation of IDO1-KYN-AhR signaling does not only suppress the functions of effector immune cells, probably promoting immunosenescence, but it also impairs autophagy, induces cellular senescence, and remodels the extracellular matrix as well as enhancing the development of osteoporosis and vascular diseases. I will review the function of IDO1-KYN-AhR signaling and discuss its activation with aging as an enhancer of the aging process.
    Keywords:  Ageing; MDSC; NAD; RelB; Tolerance
    DOI:  https://doi.org/10.1016/j.arr.2022.101573
  20. Crit Care Med. 2022 Jan 24.
      OBJECTIVES: Recent publications have shown that mitochondrial dynamics can govern the quality and quantity of extracellular mitochondria subsequently impacting immune phenotypes. This study aims to determine if pathologic mitochondrial fission mediated by Drp1/Fis1 interaction impacts extracellular mitochondrial content and macrophage function in sepsis-induced immunoparalysis.DESIGN: Laboratory investigation.
    SETTING: University laboratory.
    SUBJECTS: C57BL/6 and BALB/C mice.
    INTERVENTIONS: Using in vitro and murine models of endotoxin tolerance (ET), we evaluated changes in Drp1/Fis1-dependent pathologic fission and simultaneously measured the quantity and quality of extracellular mitochondria. Next, by priming mouse macrophages with isolated healthy mitochondria (MC) and damaged mitochondria, we determined if damaged extracellular mitochondria are capable of inducing tolerance to subsequent endotoxin challenge. Finally, we determined if inhibition of Drp1/Fis1-mediated pathologic fission abrogates release of damaged extracellular mitochondria and improves macrophage response to subsequent endotoxin challenge.
    MEASUREMENTS AND MAIN RESULTS: When compared with naïve macrophages (NMs), endotoxin-tolerant macrophages (ETM) demonstrated Drp1/Fis1-dependent mitochondrial dysfunction and higher levels of damaged extracellular mitochondria (Mitotracker-Green + events/50 μL: ETM = 2.42 × 106 ± 4,391 vs NM = 5.69 × 105 ± 2,478; p < 0.001). Exposure of NMs to damaged extracellular mitochondria (MH) induced cross-tolerance to subsequent endotoxin challenge, whereas MC had minimal effect (tumor necrosis factor [TNF]-α [pg/mL]: NM = 668 ± 3, NM + MH = 221 ± 15, and NM + Mc = 881 ± 15; p < 0.0001). Inhibiting Drp1/Fis1-dependent mitochondrial fission using heptapeptide (P110), a selective inhibitor of Drp1/Fis1 interaction, improved extracellular mitochondrial function (extracellular mitochondrial membrane potential, JC-1 [R/G] ETM = 7 ± 0.5 vs ETM + P110 = 19 ± 2.0; p < 0.001) and subsequently improved immune response in ETMs (TNF-α [pg/mL]; ETM = 149 ± 1 vs ETM + P110 = 1,150 ± 4; p < 0.0001). Similarly, P110-treated endotoxin tolerant mice had lower amounts of damaged extracellular mitochondria in plasma (represented by higher extracellular mitochondrial membrane potential, TMRM/MT-G: endotoxin tolerant [ET] = 0.04 ± 0.02 vs ET + P110 = 0.21 ± 0.02; p = 0.03) and improved immune response to subsequent endotoxin treatment as well as cecal ligation and puncture.
    CONCLUSIONS: Inhibition of Drp1/Fis1-dependent mitochondrial fragmentation improved macrophage function and immune response in both in vitro and in vivo models of ET. This benefit is mediated, at least in part, by decreasing the release of damaged extracellular mitochondria, which contributes to endotoxin cross-tolerance. Altogether, these data suggest that alterations in mitochondrial dynamics may play an important role in sepsis-induced immunoparalysis.
    DOI:  https://doi.org/10.1097/CCM.0000000000005437
  21. Cell Rep Methods. 2021 Dec 20. pii: 100132. [Epub ahead of print]1(8):
      Cell communication underlies emergent functions in diverse cell types and tissues. Recent evidence suggests that macrophages are organized in communicating networks, but new tools are needed to quantitatively characterize the resulting cellular conversations. Here, we infer cell communication from spatiotemporal correlations of intracellular calcium dynamics that are non-destructively imaged across cell populations expressing genetically encoded calcium indicators. We describe a hematopoietic calcium reporter mouse (Csf1rCreGCaMP5fl) and a computational analysis pipeline for inferring communication between reporter cells based on "excess synchrony." We observed signals suggestive of cell communication in macrophages treated with immune-stimulatory DNA in vitro and tumor-associated immune cells imaged in a dorsal window chamber model in vivo. Together, the methods described here expand the toolkit for discovery of cell communication events in macrophages and other immune cells.
    DOI:  https://doi.org/10.1016/j.crmeth.2021.100132