bims-imicid Biomed News
on Immunometabolism of infection, cancer and immune-mediated disease
Issue of 2021‒12‒19
twenty-six papers selected by
Dylan Ryan
University of Cambridge

  1. Redox Biol. 2021 Dec 07. pii: S2213-2317(21)00366-9. [Epub ahead of print]48 102206
      Trained monocytes and macrophages produce reactive oxygen species (ROS), which trigger antioxidative glutathione (GSH) response to buffer the rising ROS. However, whether and how the trained immunity is shaped by GSH synthesis remains unknown. Here, we report that β-glucan-trained macrophages from mice harboring a myeloid-specific deletion of the catalytic subunit of glutamate-cysteine ligase (Gclc) showed impaired GSH synthesis and decreased proinflammatory cytokine production in response to lipopolysaccharide challenge. Gclc deficiency compromised the activation of mammalian target of rapamycin-1 (mTOR) and expression of c-Myc transcription factors, abrogating the energy utilization and the metabolic reprogramming that allows β-glucan-trained macrophages to switch to glycolysis and glutaminolysis. Furthermore, Gclc deletion repressed effective H3K27me3 demethylation in the promoters of immunometabolic genes, such as Gls, Hk2, and Glut1, in β-glucan-trained macrophages by promoting the methyltransferase enhancer of zeste homolog 2 (EZH2). In vivo, myeloid-specific ablation of Gclc decreased the secretion of proinflammatory cytokines upon rechallenge with Candida albicans and these animals were less protected against the infection, compared with control littermates. Moreover, pharmacological inhibition of EZH2 enhanced the trained immunity response against Candida infection in Gclc-deficient mouse and human peripheral blood mononuclear cells treated with GCLC inhibitor buthionine sulfoximine (BSO). Thus, antioxidative GSH synthesis supports an environment conducive to β-glucan-induced metabolic and epigenetic reprogramming in trained immunity, allowing exploration of its functional consequences in autoimmune or inflammatory disease.
    Keywords:  Catalytic subunit of glutamate-cysteine ligase; GSH; Innate immune memory; ROS; Trained immunity
  2. Mucosal Immunol. 2021 Dec 16.
      Heme metabolism is a key regulator of inflammatory responses. Cobalt protoporphyrin IX (CoPP) is a heme analog and mimic that potently activates the NRF2/heme oxygenase-1 (HO-1) pathway, especially in monocytes and macrophages. We investigated the influence of CoPP on inflammatory responses using a murine model of colitis. Surprisingly, conditional deletion of myeloid HO-1 did not impact the colonic inflammatory response or the protective influence of CoPP in the setting of dextran sodium sulfate-induced colitis. Rather, we reveal that CoPP elicits a contradictory shift in blood myeloid populations relative to the colon during active intestinal inflammation. Major population changes include markedly diminished trafficking of CCR2+Ly6Chi monocytes to the inflamed colon, despite significant mobilization of this population into circulation. This resulted in significantly diminished colonic expansion of monocyte-derived macrophages and inflammatory cytokine expression. These findings were linked with significant induction of systemic CCL2 leading to a disrupted CCL2 chemoattractant gradient toward the colon and concentration-dependent suppression of circulating monocyte CCR2 expression. Administration of CoPP also induced macrophage differentiation toward a MarcohiHmox1hi anti-inflammatory erythrophagocytic phenotype, contributing to an overall decreased inflammatory profile. Such findings redefine protective influences of heme metabolism during inflammation, and highlight previously unreported immunosuppressive mechanisms of endogenous CCL2 induction.
  3. Cell Death Dis. 2021 Dec 16. 13(1): 1
      Fulminant hepatic failure (FHF) is a potentially fatal liver disease that is associated with intrahepatic infiltration of inflammatory cells. As the receptor of polyunsaturated long chain fatty acids, GPR120 can regulate cell differentiation, proliferation, metabolism, and immune response. However, whether GPR120 is involved in FHF remains unknown. Using Propionibacterium acnes (P. acnes)-primed, LPS-induced FHF in mice, we found that interference with GPR120 activity using pharmacological agonist attenuated the severity of the liver injury and mortality of FHF in mice, while a lack of GPR120 exacerbated the disease. GPR120 activation potently alleviated FHF and led to decreased T helper (Th) 1 cell response and expansion of regulatory T cells (Tregs). Interestingly, GPR120 agonist didn't directly target T cells, but dramatically induced a distinct population of CD11c+MHC IIlowCD80lowCD86low regulatory DCs in the livers of FHF mice. GPR120 was found to restrict HIF-1α-dependent glycolysis. The augmented HIF-1α stabilization caused by GPR120 antagonism or deletion could be attenuated by the inhibition of ERK or by the activation of AMPK. Through the analysis of the clinical FHF, we further confirmed the activation of GPR120 was negatively associated with the severity in patients. Our findings indicated that GPR120 activation has therapeutic potential in FHF. Strategies to target GPR120 using agonists or free fatty acids (FFAs) may represent a novel approach to FHF treatment.
  4. Acta Pharmacol Sin. 2021 Dec 15.
      The putative medium-chain free fatty acid receptor GPR84 is a G protein-coupled receptor primarily expressed in myeloid cells that constitute the innate immune system, including neutrophils, monocytes, and macrophages in the periphery and microglia in the brain. The fact that GPR84 expression in leukocytes is remarkably increased under acute inflammatory stimuli such as lipopolysaccharide (LPS) and TNFα suggests that it may play a role in the development of inflammatory and fibrotic diseases. Here we demonstrate that GPR84 is highly upregulated in inflamed colon tissues of active ulcerative colitis (UC) patients and dextran sulfate sodium (DSS)-induced colitis mice. Infiltrating GPR84+ macrophages are significantly increased in the colonic mucosa of both the UC patients and the mice with colitis. Consistently, GPR84-/- mice are resistant to the development of colitis induced by DSS. GPR84 activation imposes pro-inflammatory properties in colonic macrophages through enhancing NLRP3 inflammasome activation, while the loss of GPR84 prevents the M1 polarization and properties of proinflammatory macrophages. CLH536, a novel GPR84 antagonist discovered by us, suppresses colitis by reducing the polarization and function of pro-inflammatory macrophages. These results define a unique role of GPR84 in innate immune cells and intestinal inflammation, and suggest that GPR84 may serve as a potential drug target for the treatment of UC.
    Keywords:  GPCR; GPR84; NLRP3 inflammasome; inflammatory bowel diseases; macrophages; medium chain fatty acid receptor; ulcerative colitis
  5. Nature. 2021 Dec 15.
      Pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) in plants enable them to respond to pathogens by activating the production of defence metabolites that orchestrate immune responses1-4. How the production of defence metabolites is promoted by immune receptors and coordinated with broad-spectrum resistance remains elusive. Here we identify the deubiquitinase PICI1 as an immunity hub for PTI and ETI in rice (Oryza sativa). PICI1 deubiquitinates and stabilizes methionine synthetases to activate methionine-mediated immunity principally through biosynthesis of the phytohormone ethylene. PICI1 is targeted for degradation by blast fungal effectors, including AvrPi9, to dampen PTI. Nucleotide-binding domain, leucine-rich-repeat-containing receptors (NLRs) in the plant immune system, such as PigmR, protect PICI1 from effector-mediated degradation to reboot the methionine-ethylene cascade. Natural variation in the PICI1 gene contributes to divergence in basal blast resistance between the rice subspecies indica and japonica. Thus, NLRs govern an arms race with effectors, using a competitive mode that hinges on a critical defence metabolic pathway to synchronize PTI with ETI and ensure broad-spectrum resistance.
  6. J Virol. 2021 Dec 15. JVI0191921
      African swine fever is one of the most serious viral diseases caused by African swine fever virus (ASFV). The metabolic changes induced by ASFV infection remain unknown. Here, PAMs infected with ASFV was analyzed by ultra-high-performance liquid chromatography/quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS) in combination with multivariate statistical analysis. A total of 90 metabolites were significantly changed after ASFV infection, and most of them belong to amino acids and TCA cycle intermediates. ASFV infection induced increase of most of amino acids in host during the early stages of infection, and amino acids decreased in the late stages of infection. ASFV infection did not significantly affected glycolysis pathway, whereas it induced the increase of citrate, succinate, α-ketoglutarate, and oxaloacetate levels in the TCA cycle, suggesting that ASFV infection promoted TCA cycle. The activity of aspartate aminotransferase and glutamate production were significantly elevated in ASFV-infected cells and pigs, resulting in reversible transition between TCA cycle and amino acids synthesis. Aspartate, glutamate, and TCA cycle were essential for ASFV replication. In addition, ASFV infection induced an increase in lactate level using lactate dehydrogenase, which led to low expression of IFN-β and increased of ASFV replication. Our data, for the first time, indicated that ASFV infection controls IFN-β production through RIG-I-mediated signaling pathways. These data identified a novel mechanism evolved by ASFV to inhibit host innate immune responses, and will provide insights for development of new preventive or therapeutic strategies targeting the altered metabolic pathways. IMPORTANCE In order to promote viral replication, viruses often cause severe immunosuppression and seize organelles to synthesize a large number of metabolites required for self-replication. African swine fever virus (ASFV) has developed many strategies to evade host innate immune responses. However, the impact of ASFV infection on host cellular metabolism remains unknown. Here, for the first time, we analyzed the metabolomic profiles of ASFV-infected PAMs cells. ASFV infection increased host TCA cycle and amino acids metabolism. Aspartate, glutamate, and TCA cycle promoted ASFV replication. ASFV infection also induced the increase of lactate production to inhibit innate immune responses for self-replication. This study identified novel immune evasion mechanisms utilized by ASFV and provided viewpoints on ASFV-host interactions, which is critical for guiding the design of new prevention strategies against ASFV targeting the altered metabolic pathways.
  7. Cell Rep. 2021 Dec 14. pii: S2211-1247(21)01612-0. [Epub ahead of print]37(11): 110118
      Zika virus (ZIKV) is an Aedes-mosquito-borne flavivirus that causes debilitating congenital and developmental disorders. Improved understanding of ZIKV pathogenesis could assist efforts to fill the therapeutic and vaccine gap. We use several ZIKV strains, including a pair differing by a single phenylalanine-to-leucine substitution (M-F37L) in the membrane (M) protein, coupled with unbiased genomics to demarcate the border between attenuated and pathogenic infection. We identify infection-induced metabolic dysregulation as a minimal set of host alterations that differentiates attenuated from pathogenic ZIKV strains. Glycolytic rewiring results in impaired oxidative phosphorylation and mitochondrial dysfunction that trigger inflammation and apoptosis in pathogenic but not attenuated ZIKV strains. Critically, pyruvate supplementation prevents cell death, in vitro, and rescues fetal development in ZIKV-infected dams. Our findings thus demonstrate dysregulated metabolism as an underpinning of ZIKV pathogenicity and raise the potential of pyruvate supplementation in expectant women as a prophylaxis against congenital Zika syndrome.
    Keywords:  Zika virus; attenuated; congenital zika syndrome; glycolysis; pathogenic; pyruvate supplementation; tricarboxylic acid cycle
  8. J Innate Immun. 2021 Dec 14. 14(1): 1-3
    Keywords:  Adipose tissue; Immunometabolism; Inflammation; Macrophages; Metabolism; Non-alcoholic fatty liver disease; Obesity; Trained immunity
  9. Front Immunol. 2021 ;12 729209
      Elevated blood lactate levels are frequently found in critically ill patients and thought to result from tissue hypoperfusion and cellular oxygen shortage. Considering the close relationship between immune cell function and intracellular metabolism, lactate is more than a glycolytic waste molecule but able to regulate the immune response. Our aim was to elucidate the temporal and mechanistic effect of extracellular lactate on monocytes. To this end, primary human monocytes and the human monocytic cell line MonoMac6 were stimulated with various toll-like-receptor agonists after priming with Na-L-lactate under constant pH conditions. As readout, cytokine production was measured, real-time assessment of intracellular energy pathways was performed, and intracellular metabolite concentrations were determined. Irrespective of the immunogenic stimulus, short-term Na-lactate-priming strongly reduced cytokine production capacity. Lactate and hexoses accumulated intracellularly and, together with a decreased glycolytic flux, indicate a lactate-triggered impairment of glycolysis. To counteract intracellular hyperglycemia, glucose is shunted into the branching polyol pathway, leading to sorbitol accumulation. In contrast, long-term priming with Na-L-lactate induced cellular adaption and abolished the suppressive effect. This lactate tolerance is characterized by a decreased cellular respiration due to a reduced complex-I activity. Our results indicate that exogenous lactate shapes monocyte function by altering the intracellular energy metabolism and acts as a metabolic checkpoint of monocyte activation.
    Keywords:  critically ill; glycolysis; immune dysfunction; immunometabolism; polyol pathway; sepsis; sorbitol
  10. Front Immunol. 2021 ;12 790574
      Pseudomonas aeruginosa and Staphylococcus aureus are both opportunistic pathogens that are frequently associated with chronic lung infections. While bacterial virulence determinants are critical in initiating infection, the metabolic flexibility of these bacteria promotes their persistence in the airway. Upon infection, these pathogens induce host immunometabolic reprogramming, resulting in an airway milieu replete with immune-signaling metabolites. These metabolites are often toxic to the bacteria and create a steep selection pressure for the emergence of bacterial isolates adapted for long-term survival in the inflamed lung. In this review, we discuss the main differences in the host immunometabolic response to P. aeruginosa and S. aureus, as well as how these pathogens alter their own metabolism to adapt to airway metabolites and cause persistent lung infections.
    Keywords:  Pseudomonas aeruginosa; Staphylococcus aureus; bacterial persistence; host-pathogen interaction; immunometabolism; itaconate; metabolic adaptation; succinate
  11. Immunometabolism. 2022 ;pii: e220001. [Epub ahead of print]4(1):
      T cells rapidly convert their cellular metabolic requirements upon activation, switching to a highly glycolytic program to satisfy their increasingly complex energy needs. Fundamental metabolic differences have been established for the development of Foxp3+ T regulatory (Treg) cells versus TH17 cells, alterations of which can drive disease. TH17 cell dysregulation is a driver of autoimmunity and chronic inflammation, contributing to pathogenesis in diseases such as multiple sclerosis. A recent paper published in Cell by Wagner, et al. combined scRNA-seq and metabolic mapping data to interrogate potential metabolic modulators of TH17 cell pathogenicity. This Compass to TH17 cell metabolism highlights the polyamine pathway as a critical regulator of TH17/Treg cell function, signifying its potential as a therapeutic target.
    Keywords:  Foxp3; T regulatory; TH17 cell; arginine; glycolysis; inflammation; metabolism; polyamine
  12. Cell Stress. 2021 Dec;5(12): 176-182
      Programmed cell death protein 4 (PDCD4) exerts critical functions as tumor suppressor and in immune cells to regulate inflammatory processes. The phosphoinositide 3-kinase (PI3K) promotes degradation of PDCD4 via mammalian target of rapamycin complex 1 (mTORC1). However, additional pathways that may regulate PDCD4 expression are largely ill-defined. In this study, we have found that activation of the mitogen-activated protein kinase p38 promoted degradation of PDCD4 in macrophages and fibroblasts. Mechanistically, we identified a pathway from p38 and its substrate MAP kinase-activated protein kinase 2 (MK2) to the tuberous sclerosis complex (TSC) to regulate mTORC1-dependent degradation of PDCD4. Moreover, we provide evidence that TSC1 and TSC2 regulate PDCD4 expression via an additional mechanism independent of mTORC1. These novel data extend our knowledge of how PDCD4 expression is regulated by stress- and nutrient-sensing pathways.
    Keywords:  MK2; PDCD4; TSC1; TSC2; cancer; mTORC1; macrophages; p38; rapamycin
  13. FASEB J. 2022 Jan;36(1): e22096
      Tuberculosis is a communicable disease caused by Mycobacterium tuberculosis which primarily infects macrophages and establishes intracellular parasitism. A mycobacterial virulence factor Zn2+ metalloprotease 1 (Zmp1) is known to suppress interleukin (IL)-1β production by inhibiting caspase-1 resulting in phagosome maturation arrest. However, the molecular mechanism of caspase-1 inhibition by Zmp1 is still elusive. Here, we identified GRIM-19 (also known as NDUFA13), an essential subunit of mitochondrial respiratory chain complex I, as a novel Zmp1-binding protein. Using the CRISPR/Cas9 system, we generated GRIM-19 knockout murine macrophage cell line J774.1 and found that GRIM-19 is essential for IL-1β production during mycobacterial infection as well as in response to NLRP3 inflammasome-activating stimuli such as extracellular ATP or nigericin. We also found that GRIM-19 is required for the generation of mitochondrial reactive oxygen species and NLRP3-dependent activation of caspase-1. Loss of GRIM-19 or forced expression of Zmp1 resulted in a decrease in mitochondrial membrane potential. Our study revealed a previously unrecognized role of GRIM-19 as an essential regulator of NLRP3 inflammasome and a molecular mechanism underlying Zmp1-mediated suppression of IL-1β production during mycobacterial infection.
    Keywords:   Mycobacterium tuberculosis ; inflammasome; interleukin-1β; macrophages; mitochondria
  14. EMBO Rep. 2021 Dec 16. e54384
      During embryonic development, hematopoiesis occurs through primitive and definitive waves, giving rise to distinct blood lineages. Hematopoietic stem cells (HSCs) emerge from hemogenic endothelial (HE) cells, through endothelial-to-hematopoietic transition (EHT). In the adult, HSC quiescence, maintenance, and differentiation are closely linked to changes in metabolism. However, metabolic processes underlying the emergence of HSCs from HE cells remain unclear. Here, we show that the emergence of blood is regulated by multiple metabolic pathways that induce or modulate the differentiation toward specific hematopoietic lineages during human EHT. In both in vitro and in vivo settings, steering pyruvate use toward glycolysis or OXPHOS differentially skews the hematopoietic output of HE cells toward either an erythroid fate with primitive phenotype, or a definitive lymphoid fate, respectively. We demonstrate that glycolysis-mediated differentiation of HE toward primitive erythroid hematopoiesis is dependent on the epigenetic regulator LSD1. In contrast, OXPHOS-mediated differentiation of HE toward definitive hematopoiesis is dependent on cholesterol metabolism. Our findings reveal that during EHT, metabolism is a major regulator of primitive versus definitive hematopoietic differentiation.
    Keywords:  OXPHOS; endothelial-to-hematopoietic transition; glycolysis; hematopoiesis; pyruvate metabolism
  15. FASEB J. 2022 Jan;36(1): e22078
      Large clinical trials and real-world studies have demonstrated that the beneficial effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on renal outcomes regardless of the presence of diabetes. However, the mechanism remains obscure. Here, we analyze the anti-fibrotic and anti-inflammatory effects of dapagliflozin, a SGLT2 inhibitor, on renal alternations using the ischemia/reperfusion-induced fibrosis model. Transcriptome and metabolome analysis showed that the accumulation of tricarboxylic acid (TCA) cycle metabolites and upregulation of inflammation in fibrosis renal cortical tissue were mitigated by dapagliflozin treatment. Moreover, dapagliflozin markedly relieved the activation of mammalian target of rapamycin and hypoxia inducible factor-1α signaling and restored tubular cell-preferred fatty acid oxidation. Notably, NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome activation was strikingly blocked by dapagliflozin. We further demonstrated that the immunomodulatory metabolite itaconate derived from the TCA cycle was significantly boosted as a result of decreased isocitrate dehydrogenase 2 and increased immune-responsive gene 1 and mitochondrial citrate carrier in dapagliflozin-treated mice, which contributed to the inhibitory effect of dapagliflozin on NLRP3 inflammasome activation. Furthermore, administration of cell-permeable itaconate surrogate prevented activation of NLRP3 inflammasome and protected kidney against fibrosis development. Our results identify a novel mechanism coupling metabolism and inflammation for kidney benefits of SGLT2 inhibition in progressive chronic kidney disease.
    Keywords:  SGLT2; fibrosis; inflammasome; metabolism; metabolite
  16. Cardiovasc Res. 2021 Dec 13. pii: cvab359. [Epub ahead of print]
      AIMS: Atherosclerosis is a chronic inflammatory disease of the vessel wall controlled by local and systemic immune responses. The role of interleukin-23 receptor (IL-23R), expressed in adaptive immune cells (mainly T helper 17 cells) and γδ T cells, in atherosclerosis is only incompletely understood. Here we investigated the vascular cell types expressing IL-23R and addressed the function of IL-23R and γδ T cells in atherosclerosis.METHOD AND RESULTS: IL-23R+ cells were frequently found in the aortic root in contrast to the aorta in low density lipoprotein receptor deficient IL-23R reporter mice (Ldlr-/-Il23rgfp/+), and mostly identified as γδ T cells that express IL-17 and GM-CSF. scRNA-seq confirmed γδ T cells as the main cell type expressing Il23r and Il17a in the aorta. Ldlr-/-Il23rgfp/gfp mice deficient in IL-23R showed a loss of IL-23R+ cells in the vasculature, and had reduced atherosclerotic lesion formation in the aortic root compared to Ldlr-/- controls after 6 weeks of high fat diet feeding. In contrast, Ldlr-/-Tcrδ-/- mice lacking all γδ T cells displayed unaltered early atherosclerotic lesion formation compared to Ldlr-/- mice. In both HFD-fed Ldlr-/-Il23rgfp/gfp and Ldlr-/-Tcrδ-/- mice a reduction in the plaque necrotic core area was noted as well as an expansion of splenic regulatory T cells. In vitro, exposure of bone marrow-derived macrophages to both IL-17A and GM-CSF induced cell necrosis, and necroptotic RIP3K and MLKL expression, as well as inflammatory mediators.
    CONCLUSIONS: IL-23R+ γδ T cells are predominantly found in the aortic root rather than the aorta and promote early atherosclerotic lesion formation, plaque necrosis and inflammation at this site. Targeting IL-23R may thus be explored as a therapeutic approach to mitigate atherosclerotic lesion development.
    TRANSLATIONAL PERSPECTIVE: The mechanisms and cell types contributing to early inflammation and lesion formation are incompletely understood. Here we demonstrate that the aortic root harbors a population of IL23R-dependent γδ T cells that can release IL-17 and GM-CSF, and both cytokines together induce macrophage inflammation and necroptosis. IL-23R+ γδ T cells locally promote early lesion formation in the aortic root and contribute to the expansion of the necrotic core, a hallmark of vulnerable atherosclerotic lesions. Targeting IL-23R or IL-23 itself could thus be further explored as a therapeutic option in early atherosclerosis.
  17. Front Immunol. 2021 ;12 718863
      T-cell activation upon antigen stimulation is essential for the continuation of the adaptive immune response. Impairment of mitochondrial oxidative phosphorylation is a well-known disruptor of T-cell activation. Dihydroorotate dehydrogenase (DHODH) is a component of the de novo synthesis of pyrimidines, the activity of which depends on functional oxidative phosphorylation. Under circumstances of an inhibited oxidative phosphorylation, DHODH becomes rate-limiting. Inhibition of DHODH is known to block clonal expansion and expression of effector molecules of activated T cells. However, this effect has been suggested to be caused by downstream impairment of oxidative phosphorylation rather than a lower rate of pyrimidine synthesis. In this study, we successfully inhibit the DHODH of T cells with no residual effect on oxidative phosphorylation and demonstrate a dose-dependent inhibition of proliferation of activated CD3+ T cells. This block is fully rescued when uridine is supplemented. Inhibition of DHODH does not alter expression of effector molecules but results in decreased intracellular levels of deoxypyrimidines without decreasing cell viability. Our results clearly demonstrate the DHODH and mitochondrial linked pyrimidine synthesis as an independent and important cytostatic regulator of activated T cells.
    Keywords:  T-cell activation; T-cell metabolism; immunosenescence and exhaustion; mitochondrial respiration and oxidative respiration; pyrimidine de novo synthesis
  18. JHEP Rep. 2022 Jan;4(1): 100386
      Background & Aims: Fibrosis, the primary cause of morbidity in chronic liver disease, is induced by pro-inflammatory cytokines, immune cell infiltrates, and tissue resident cells that drive excessive myofibroblast activation, collagen production, and tissue scarring. Rho-associated kinase 2 (ROCK2) regulates key pro-fibrotic pathways involved in both inflammatory reactions and altered extracellular matrix remodelling, implicating this pathway as a potential therapeutic target.Methods: We used the thioacetamide-induced liver fibrosis model to examine the efficacy of administration of the selective ROCK2 inhibitor KD025 to prevent or treat liver fibrosis and its impact on immune composition and function.
    Results: Prophylactic and therapeutic administration of KD025 effectively attenuated thioacetamide-induced liver fibrosis and promoted fibrotic regression. KD025 treatment inhibited liver macrophage tumour necrosis factor production and disrupted the macrophage niche within fibrotic septae. ROCK2 targeting in vitro directly regulated macrophage function through disruption of signal transducer and activator of transcription 3 (STAT3)/cofilin signalling pathways leading to the inhibition of pro-inflammatory cytokine production and macrophage migration. In vivo, KDO25 administration significantly reduced STAT3 phosphorylation and cofilin levels in the liver. Additionally, livers exhibited robust downregulation of immune cell infiltrates and diminished levels of retinoic acid receptor-related orphan receptor gamma (RORγt) and B-cell lymphoma 6 (Bcl6) transcription factors that correlated with a significant reduction in liver IL-17, splenic germinal centre numbers and serum IgG.
    Conclusions: As IL-17 and IgG-Fc binding promote pathogenic macrophage differentiation, together our data demonstrate that ROCK2 inhibition prevents and reverses liver fibrosis through direct and indirect effects on macrophage function and highlight the therapeutic potential of ROCK2 inhibition in liver fibrosis.
    Lay summary: By using a clinic-ready small-molecule inhibitor, we demonstrate that selective ROCK2 inhibition prevents and reverses hepatic fibrosis through its pleiotropic effects on pro-inflammatory immune cell function. We show that ROCK2 mediates increased IL-17 production, antibody production, and macrophage dysregulation, which together drive fibrogenesis in a model of chemical-induced liver fibrosis. Therefore, in this study, we not only highlight the therapeutic potential of ROCK2 targeting in chronic liver disease but also provide previously undocumented insights into our understanding of cellular and molecular pathways driving the liver fibrosis pathology.
    Keywords:  ALT, alanine aminotransferase; AST, aspartate aminotransferase; B cells; BMDM, bone marrow-derived macrophages; Bcl6, B-cell lymphoma 6; CLD, chronic liver disease; Col1a2, collagen type α1; DR, ductular reaction; ECM, extracellular matrix; GC, germinal centre; HCC, hepatocellular carcinoma; HSC, hepatic stellate cell; IHC, immunohistochemical; IL-17; Inflammation; LPS, lipopolysaccharide; Liver fibrosis; MMP, matrix metalloproteinase; Macrophages; NASH, non-alcoholic steatohepatitis; RAR, retinoic acid receptor; ROCK, Rho-associated coiled-coil forming protein kinases; ROCK2; ROCK2, Rho-associated kinase 2; RORγt, RAR-related orphan receptor gamma; SR, Sirius red; STAT3, signal transducer and activator of transcription 3; TAA, thioacetamide; TGF-β, transforming growth factor-beta; TNF, tumour necrosis factor; Tfh, T follicular helper; Th17, T helper 17; Therapy; cGVHD, chronic graft-vs-host disease; pCofilin, phosphorylated cofilin; pMac, peritoneal macrophages; pSTAT3, phosphorylated signal transducer and activator of transcription; qRT-PCR, quantitative real-time PCR; α-SMA, alpha smooth muscle actin
  19. Front Mol Biosci. 2021 ;8 763902
      Metabolic reprogramming has been suggested as a hallmark of cancer progression. Metabolomic analysis of various metabolic profiles represents a powerful and technically feasible method to monitor dynamic changes in tumor metabolism and response to treatment over the course of the disease. To date, numerous original studies have highlighted the application of metabolomics to various aspects of tumor metabolic reprogramming research. In this review, we summarize how metabolomics techniques can help understand the effects that changes in the metabolic profile of the tumor microenvironment on the three major metabolic pathways of tumors. Various non-invasive biofluids are available that produce accurate and useful clinical information on tumor metabolism to identify early biomarkers of tumor development. Similarly, metabolomics can predict individual metabolic differences in response to tumor drugs, assess drug efficacy, and monitor drug resistance. On this basis, we also discuss the application of stable isotope tracer technology as a method for the study of tumor metabolism, which enables the tracking of metabolite activity in the body and deep metabolic pathways. We summarize the multifaceted application of metabolomics in cancer metabolic reprogramming to reveal its important role in cancer development and treatment.
    Keywords:  biomarkers; drug resistance; metabolic reprogramming; metabolomics; stable isotope resolved metabolomics
  20. Elife. 2021 Dec 16. pii: e72051. [Epub ahead of print]10
      Efficient immune responses require Ca2+ fluxes across ORAI1 channels during engagement of T cell receptors (TCR) at the immune synapse (IS) between T cells and antigen presenting cells. Here, we show that ZDHHC20-mediated S-acylation of the ORAI1 channel at residue Cys143 promotes TCR recruitment and signaling at the IS. Cys143 mutations reduced ORAI1 currents and store-operated Ca2+ entry in HEK-293 cells and nearly abrogated long-lasting Ca2+ elevations, NFATC1 translocation, and IL-2 secretion evoked by TCR engagement in Jurkat T cells. The acylation-deficient channel remained in cholesterol-poor domains upon enforced ZDHHC20 expression and was recruited less efficiently to the IS along with actin and TCR. Our results establish S-acylation as a critical regulator of ORAI1 channel trafficking and function at the IS and reveal that ORAI1 S-acylation enhances TCR recruitment to the synapse.
    Keywords:  Jurkat; ORAI1; S-Acylation; T cell activation; immunology; inflammation; none
  21. J Cereb Blood Flow Metab. 2021 Dec 15. 271678X211067133
      The metabolic reprogramming of peripheral CD4+ T cells that occurs after stroke can lead to imbalanced differentiation of CD4+ T cells, including regulation of T cells, and presents a promising target for poststroke immunotherapy. However, the regulatory mechanism underlying the metabolic reprogramming of peripheral CD4+ T cell remains unknown. In this study, using combined transcription and metabolomics analyses, flow cytometry, and conditional knockout mice, we demonstrate that the receptor for advanced glycation end products (RAGE) can relay the ischemic signal to CD4+ T cells, which underwent acetyl coenzyme A carboxylase 1(ACC1)-dependent metabolic reprogramming after stroke. Furthermore, by administering soluble RAGE (sRAGE) after stroke, we demonstrate that neutralization of RAGE reversed the enhanced fatty acid synthesis of CD4+ T cells and the post-stroke imbalance of Treg/Th17. Finally, we found that post-stroke sRAGE treatment protected against infarct volume and ameliorated functional recovery. In conclusion, sRAGE can serve as a novel immunometabolic modulator that ameliorates ischemic stroke recovery by inhibiting fatty acid synthesis and thus favoring CD4+ T cells polarization toward Treg after cerebral ischemia injury. The above findings provide new insights for the treatment of neuroinflammatory responses after ischemia stroke.
    Keywords:  ACC1; Ischemic stroke; RAGE; T cell differentiation; fatty acid synthesis
  22. Int Immunopharmacol. 2021 Dec 13. pii: S1567-5769(21)01031-6. [Epub ahead of print]102 108395
      Septic acute kidney injury (AKI) always accounts for high mortality of septic patients in ICU. Due to its not well understood mechanism for infection and immune-regulation in kidney dysfunction, there is a lack of effective therapy without side effects. Dimethyl fumarate (DMF) as an immunomodulatory molecule has been approved for treatment to multiple sclerosis. However, the therapeutic effect and immunomodulatory role underlying DMF action in septic AKI is unclear. This study aimed to elucidate the role of DMF in lipopolysaccharide (LPS)-induced septic AKI involving macrophage regulation. In current study, we administered DMF by oral gavage to mice with LPS-induced AKI, then harvested serum and kidney at three different time points. We further isolated Bone marrow-derived macrophages (BMDMs) from mice and stimulated them with LPS followed by DMF treatment. To explore immunomodulatory role of DMF in macrophages, we depleted macrophages in mice using liposomal clodronate after DMF treatment upon LPS-induced septic AKI. Then we observed that DMF attenuated renal dysfunction and murine pathological kidney injury after LPS injection. DMF could inhibit translocation of phosphorylated NF-κB p65 and suppress macrophage activation in LPS-induced AKI. DMF reduced the secretion of TNF-α and IL-6 whereas increased the secretion of IL-10 and Arg-1 in BMDMs after LPS stimulation. DMF also inhibited NF-κB p65 phosphorylation in BMDMs after LPS stimulation. Importantly, the effect of DMF against LPS-induced AKI, macrophage activation, and translocation of phosphorylated NF-κB p65 was impaired upon macrophage depletion. Thus, DMF could attenuate LPS-induced septic AKI by suppression of NF-κB p65 phosphorylation and macrophage activation. This work suggested the potential therapeutic role of DMF for patients in ICU threatened by septic AKI.
    Keywords:  DMF; Inflammation; Macrophage activation; NF-κB p65 phosphorylation; Septic AKI
  23. Cell Metab. 2021 Dec 10. pii: S1550-4131(21)00621-5. [Epub ahead of print]
      Zickler et al. describe SARS-CoV-2 RNA in post-mortem samples of human adipose tissue. In the hamster model, SARS-CoV-2 propagation in adipose tissue leads to specific changes in lipid metabolism, which are reflected in lipidome patterns of hamster and human plasma.
  24. Nat Metab. 2021 Dec 13.
      To liberate fatty acids (FAs) from intracellular stores, lipolysis is regulated by the activity of the lipases adipose triglyceride lipase (ATGL), hormone-sensitive lipase and monoacylglycerol lipase. Excessive FA release as a result of uncontrolled lipolysis results in lipotoxicity, which can in turn promote the progression of metabolic disorders. However, whether cells can directly sense FAs to maintain cellular lipid homeostasis is unknown. Here we report a sensing mechanism for cellular FAs based on peroxisomal degradation of FAs and coupled with reactive oxygen species (ROS) production, which in turn regulates FA release by modulating lipolysis. Changes in ROS levels are sensed by PEX2, which modulates ATGL levels through post-translational ubiquitination. We demonstrate the importance of this pathway for non-alcoholic fatty liver disease progression using genetic and pharmacological approaches to alter ROS levels in vivo, which can be utilized to increase hepatic ATGL levels and ameliorate hepatic steatosis. The discovery of this peroxisomal β-oxidation-mediated feedback mechanism, which is conserved in multiple organs, couples the functions of peroxisomes and lipid droplets and might serve as a new way to manipulate lipolysis to treat metabolic disorders.
  25. Front Microbiol. 2021 ;12 807737
      Long noncoding RNA (LncRNA), a noncoding RNA over 200nt in length, can regulate glycolysis through metabolic pathways, glucose metabolizing enzymes, and epigenetic reprogramming. Upon viral infection, increased aerobic glycolysis providzes material and energy for viral replication. Mitochondrial antiviral signaling protein (MAVS) is the only protein-specified downstream of retinoic acid-inducible gene I (RIG-I) that bridges the gap between antiviral immunity and glycolysis. MAVS binding to RIG-I inhibits MAVS binding to Hexokinase (HK2), thereby impairing glycolysis, while excess lactate production inhibits MAVS and the downstream antiviral immune response, facilitating viral replication. LncRNAs can also regulate antiviral innate immunity by interacting with RIG-I and downstream signaling pathways and by regulating the expression of interferons and interferon-stimulated genes (ISGs). Altogether, we summarize the relationship between glycolysis, antiviral immunity, and lncRNAs and propose that lncRNAs interact with glycolysis and antiviral pathways, providing a new perspective for the future treatment against virus infection, including SARS-CoV-2.
    Keywords:  RIG-I/MAVS; antivirus; glycolysis; innate immunity; lncRNA
  26. Sci Rep. 2021 Dec 17. 11(1): 24194
      Inflammatory changes in the liver represent a key feature of non-alcoholic steatohepatitis (NASH), the progressive form of non-alcoholic fatty liver disease (NAFLD). Innate immune activation including hepatic neutrophilic infiltration acts as an important inflammatory trigger as well as a potential mediator of inflammation resolution. In this study, we dissected the effects of neutrophil depletion via anti-lymphocyte antigen 6 complex locus G6D (Ly6G) antibodies administration during ongoing high fat-fructose-cholesterol (FFC) diet-induced murine NASH and during inflammation resolution by switching into a low-fat control diet. During NASH progression, protective effects were shown as HSC activation, cell infiltration and activation of pro-inflammatory macrophages were ameliorated. Furthermore, these changes were contrasted with the effects observed when neutrophil depletion was performed during the resolution phase. Impaired resolving mechanisms, such as a failure to balance the pro and anti-inflammatory cytokines ratio, deficient macrophage phenotypic switch into a pro-restorative profile, and defective repair and remodeling processes were observed when neutrophils were depleted in this scenario. This study described phase-dependent contrasting roles of neutrophils as triggers and pro-resolutive mediators of liver injury and fibrosis associated with diet-induced NASH in mice. These findings have important translational implications at the time of designing NASH therapeutic strategies.