bims-hafaim Biomed News
on Heart Failure Metabolism
Issue of 2021‒05‒30
eight papers selected by
Kyle McCommis
Saint Louis University

  1. ESC Heart Fail. 2021 May 26.
      AIMS: Myeloid differentiation protein 1 (MD1) was shown to ameliorate pressure overload-induced cardiac hypertrophy and fibrosis by negatively regulating the MEK-ERK1/2 and NF-κB pathways. However, whether MD1 modulates cardiac function and whether the Akt pathway mediates the benefits of MD1 in pressure overload-induced cardiac remodelling remain unclear.METHODS AND RESULTS: Male cardiac-specific transgenic MD1 (MD1-TG) mice, MD1-knockout (KO) mice and wild-type (WT) littermates aged 8-10 weeks were subjected to sham operation and aortic banding (AB) for 4 weeks. Then, left ventricular (LV) hypertrophy, fibrosis and function of the mice were assessed. When compared with WT-AB mice, MD1-TGs showed decreased cross-sectional area (CSA) of cardiomyocytes (P < 0.001), mRNA expression of β-myosin heavy chain (β-MHC) (P < 0.02), ratios of heart weight/body weight and heart weight/tibia length (P < 0.04) and collagen volume fraction (P < 0.001). The LV end-diastolic diameter was reduced, and LV ejection fraction and fractional shortening were improved in MD1-TG-AB mice than in WT-AB mice (P < 0.05). In cultured H9C2 cells, adenovirus vector-mediated MD1 overexpression decreased angiotensin II-induced mRNA expression of brain natriuretic peptide (BNP) and β-MHC and cell CSA (P < 0.002), whereas knockdown of MD1 by shRNA exhibited opposite effects (P < 0.04). Mechanistically, MD1 suppressed pathological cardiac remodelling at least partly by blocking Akt pathway. Akt inactivation by MK2206 largely offset the pro-hypertrophic effects of MD1 deficiency in angiotensin II-stimulated cardiomyocytes.
    CONCLUSIONS: The Akt pathway mediates the protective effects of MD1 in pressure overload-induced cardiac remodelling in mice. Targeting MD1 may provide therapeutic strategy for the treatment of pathological cardiac remodelling and heart failure.
    Keywords:  Akt signalling pathway; Heart failure; Myeloid differentiation protein 1; Pathological cardiac remodelling; Toll-like receptor 4
  2. J Biol Chem. 2021 May 21. pii: S0021-9258(21)00623-2. [Epub ahead of print] 100825
      Normal contractile function of the heart depends on a constant and reliable production of ATP by cardiomyocytes. Dysregulation of cardiac energy metabolism can result in immature heart development and disrupt the ability of the adult myocardium to adapt to stress, potentially leading to heart failure. Further, restoration of abnormal mitochondrial function can have beneficial effects on cardiac dysfunction. Previously, we identified a novel protein termed Perm1 (PGC-1 and ERR induced regulator, muscle 1) that is enriched in skeletal and cardiac-muscle mitochondria and transcriptionally regulated by PGC-1 (Peroxisome proliferator-activated receptor gamma coactivator 1) and ERR (Estrogen-related receptor). The role of Perm1 in the heart is poorly understood and was studied here. We utilized cell culture, mouse models and human tissue, to study its expression and transcriptional control, as well as its role in transcription of other factors. Critically, we tested Perm1's role in cardiomyocyte mitochondrial function and its ability to protect myocytes from stress-induced damage. Our studies show Perm1 expression increases throughout mouse cardiogenesis, demonstrate that Perm1 interacts with PGC-1α and enhances activation of PGC-1 and ERR, increases mitochondrial DNA copy number, and augments oxidative capacity in cultured neonatal mouse cardiomyocytes. Moreover, we found that Perm1 reduced cellular damage produced as a result of hypoxia and reoxygenation-induced stress and mitigated cell death of cardiomyocytes. Taken together, our results show that Perm1 promotes mitochondrial biogenesis in mouse cardiomyocytes. Future studies can assess the potential of Perm1 to be used as a novel therapeutic to restore cardiac dysfunction induced by ischemic injury.
    Keywords:  Perm1; cardiomyocytes; mitochondrial biogenesis; oxidative metabolism
  3. Mol Med Rep. 2021 Jul;pii: 531. [Epub ahead of print]24(1):
      Guan Xin Dan Shen formulation (GXDSF) is a widely used treatment for the management of coronary heart disease in China and is composed of three primary components: Dalbergiae odoriferae Lignum, Salviae miltiorrhizae Radix et Rhizoma and Panax notoginseng Radix et Rhizoma. However, the potential use of GXDSF for the management of diabetic cardiomyopathy (DCM) has not been previously assessed. The present study aimed to assess the effects of GXDSF on DCM, as well as the underlying mechanism. In the present study, db/db mice were used. Following treatment with GXDSF for 10 weeks, fasting blood glucose, insulin sensitivity, serum lipid levels and cardiac enzyme levels were detected. Cardiac pathological alterations and cardiac function were assessed by performing hematoxylin and eosin staining and echocardiograms, respectively. TUNEL assays were conducted to assess cardiomyocyte apoptosis. Additionally, reverse transcription‑quantitative PCR and western blotting were performed to evaluate the expression of apoptosis‑associated genes and proteins, respectively. In the model group, the db/db mice displayed obesity, hyperlipidemia and hyperglycemia, accompanied by noticeable myocardial hypertrophy and diastolic dysfunction. Following treatment with GXDSF for 10 weeks, serum triglyceride levels were lower and insulin sensitivity was enhanced in db/db mice compared with the model group, which indicated improvement in condition. Cardiac hypertrophy and dysfunction were also improved in db/db mice following treatment with GXDSF, resulting in significantly increased left ventricular ejection fraction and fractional shortening compared with the model group. Following treatment with metformin or GXDSF, model‑induced increases in levels of myocardial enzymes were decreased in the moderate and high dose groups. Moreover, the results indicated that, compared with the model group, GXDSF significantly inhibited cardiomyocyte apoptosis in diabetic heart tissues by increasing Bcl‑2 expression and decreasing the expression levels of Bax, cleaved caspase‑3 and cleaved caspase‑9. Mechanistically, GXDSF enhanced Akt phosphorylation, which upregulated antioxidant enzymes mediated by nuclear factor erythroid 2‑related factor 2 (Nrf2) signaling. Collectively, the results of the present study indicated that GXDSF attenuated cardiac dysfunction and inhibited cardiomyocyte apoptosis in diabetic mice via activation of Akt/Nrf2 signaling. Therefore, GXDSF may serve as a potential therapeutic agent for the management of DCM.
    Keywords:  Guan Xin Dan Shen formulation; diabetes mellitus; diabetic cardiomyopathy; heart; myocardial apoptosis
  4. Cell Death Dis. 2021 May 28. 12(6): 557
      Maintaining proper mitochondrial respiratory function is crucial for alleviating cardiac metabolic disorders during obesity, and mitophagy is critically involved in this process. Long non-coding RNA H19 (H19) is crucial for metabolic regulation, but its roles in cardiac disorders, mitochondrial respiratory function, and mitophagy during obesity are largely unknown. In this study, palmitic acid (PA)-treated H9c2 cell and Lep-/- mice were used to investigate cardiac metabolic disorders in vitro and in vivo, respectively. The effects of H19 on metabolic disorders, mitochondrial respiratory function, and mitophagy were investigated. Moreover, the regulatory mechanisms of PA, H19, mitophagy, and respiratory function were examined. The models tested displayed a reduction in H19 expression, respiratory function and mitochondrial number and volume, while the expression of mitophagy- and Pink1/Parkin signaling-related proteins was upregulated, as indicated using quantitative real-time PCR, Seahorse mitochondrial stress test analyzer, transmission electron microscopy, fluorescence indicators and western blotting. Forced expression of H19 helped to the recoveries of respiratory capacity and mitochondrial number while inhibited the levels of mitophagy- and Pink1/Parkin signaling-related proteins. Pink1 knockdown also attenuated PA-induced mitophagy and increased respiratory capacity. Mechanistically, RNA pull-down, mass spectrometry, and RNA-binding protein immunoprecipitation assays showed that H19 could hinder the binding of eukaryotic translation initiation factor 4A, isoform 2 (eIF4A2) with Pink1 mRNA, thus inhibiting the translation of Pink1 and attenuation of mitophagy. PA significantly increased the methylation levels of the H19 promoter region by upregulation Dnmt3b methylase levels, thereby inhibiting H19 transcription. Collectively, these findings suggest that DNA methylation-mediated the downregulation of H19 expression plays a crucial role in cardiomyocyte or H9c2 cells metabolic disorders and induces cardiac respiratory dysfunction by promoting mitophagy. H19 inhibits excessive mitophagy by limiting Pink1 mRNA translation, thus alleviating this cardiac defect that occurs during obesity.
  5. J Diabetes Complications. 2021 May 15. pii: S1056-8727(21)00136-7. [Epub ahead of print] 107949
      AIMS: Sodium-glucose cotransporter-2 (SGLT-2) inhibitors reduce blood pressure without compensatory heart rate elevation, possibly by modulating sympathetic/parasympathetic activity. This may contribute to their cardiovascular benefits in type 2 diabetes (T2D). We evaluated the effects of dapagliflozin (DAPA) on measures of cardiovascular autonomic neuropathy (CAN), cardiac function, and glucose variability (GV) in T2D.METHODS: Pilot, randomized, two-period crossover trial comparing 12-week DAPA versus 12-week glimepiride treatment on CAN measures (cardiovascular autonomic reflex tests and heart rate variability), B-type natriuretic peptide (BNP), and GV (Abbott's Libre Pro devices) using signed rank tests and mixed models from baseline to 12 weeks within and between each period.
    RESULTS: Forty-five T2D participants on metformin monotherapy (mean age 57 ± 8 years, duration 7 ± 6 years, HbA1c 7.8 ± 1.3%) were enrolled with 41 completing the trial. There were no differences in CAN indices or BNP with each drug compared to baseline and each other. Participants on DAPA demonstrated greater weight loss, reduced time in hypoglycemia, and improved GV compared to glimepiride.
    CONCLUSIONS: Short term treatment with DAPA did not affect CAN measures or BNP in uncomplicated and relatively healthy T2D participants. Longer prospective studies in patients with advanced disease are needed to better understand relationships between SGLT-2 inhibitors and CAN.
    Keywords:  Cardiovascular autonomic dysfunction; Cardiovascular autonomic neuropathy; Cardiovascular disease; Diabetes mellitus; Sodium-glucose transporter-2 (SGLT-2) inhibitors
  6. Front Pharmacol. 2021 ;12 641058
      Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Sepsis-induced circulatory and cardiac dysfunction is associated with high mortality rates. Mitophagy, a specific form of autophagy, is excessively activated in lipopolysaccharide-induced myocardial injury. The present study investigated whether aldehyde dehydrogenase 2 (ALDH2) regulates mitophagy in sepsis-induced myocardial dysfunction. After lipopolysaccharide administration, cardiac dysfunction, inflammatory cell infiltration, biochemical indicators of myocardial cell injury, and cardiomyocyte apoptosis were ameliorated in mice by ALDH2 activation or overexpression. In contrast, cardiac dysfunction and cardiomyocyte apoptosis were exacerbated in mice followed ALDH2 inhibition. Moreover, ALDH2 activation or overexpression regulated mitophagy by suppressing the expression of phosphatase and tensin homolog-induced putative kinase 1 (PINK1)/Parkin, by preventing the accumulation of 4-hydroxy-trans-nonenal. Conversely, ALDH2 inhibition promoted the expression of LC3B by increasing 4-hydroxy-trans-2-nonenal accumulation. Consequently, ALDH2 may protect the heart from lipopolysaccharide-induced injury by suppressing PINK1/Parkin-dependent mitophagy.
    Keywords:  ALDH2; PINK1/parkin; lipopolysaccharide; mitophagy; myocardium; oxidative stress
  7. Cardiovasc Drugs Ther. 2021 May 24.
      PURPOSE: Diabetes mellitus (DM) is a major risk factor for the development of heart failure (HF). Sodium-glucose co-transporter 2 (SGLT2) inhibitors have demonstrated consistent benefits in the reduction of hospitalization for HF in patients with DM. However, the pharmacological mechanism is not clear. To investigate the mechanisms of SGLT2 inhibitors in DM with HF, we performed target prediction and network analysis by a network pharmacology method.METHODS: We selected targets of SGLT2 inhibitors and DM status with HF from databases and studies. The "Drug-Target" and "Drug-Target-Disease" networks were constructed using Cytoscape. Then the protein-protein interaction (PPI) was analyzed using the STRING database. Gene Ontology (GO) biological functions and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were performed to investigate using the Bioconductor tool for analysis.
    RESULTS: There were 125 effective targets between SGLT2 inhibitors and DM status with HF. Through further screening, 33 core targets were obtained, including SRC, MAPK1, NARS, MAPK3 and EGFR. It was predicted that the Rap1 signaling pathway, MAPK signaling pathway, EGFR tyrosine kinase inhibitor resistance, AGE-RAGE signaling pathway in diabetic complications and other signaling pathways were involved in the treatment of DM with HF by SGLT2 inhibitors.
    CONCLUSION: Our study elucidated the possible mechanisms of SGLT2 inhibitors from a systemic and holistic perspective based on pharmacological networks. The key targets and pathways will provide new insights for further research on the pharmacological mechanism of SGLT2 inhibitors in the treatment of DM with HF.
    Keywords:  Diabetes mellitus; Heart failure; Network pharmacology; Sodium-glucose co-transporter 2 inhibitors
  8. JCI Insight. 2021 May 25. pii: 142801. [Epub ahead of print]
      ECSIT is a protein with roles in early development, activation of the transcription factor NFB and production of mitochondrial reactive oxygen species (mROS) that facilitates clearance of intracellular bacteria like Salmonella. ECSIT is also an important assembly factor for mitochondrial complex I. Unlike the murine form of Ecsit (mEcsit), we demonstrate here that human ECSIT (hECSIT) to be highly labile. In order to explore if the instability of hECSIT affects functions previously ascribed to its murine counterpart, we created a novel transgenic mouse in which the murine Ecsit gene is replaced by the human ECSIT gene. The humanised mouse has low levels of hECSIT protein in keeping with its intrinsic instability. Whereas low level expression of hECSIT was capable of fully compensating for mEcsit in its roles in early development and activation of the NFB pathway, macrophages from humanised mice showed impaired clearance of Salmonella that was associated with reduced production of mROS. Notably, severe cardiac hypertrophy manifested in ageing humanised mice leading to premature death. The cellular and molecular basis to this phenotype is delineated by showing that low levels of human ECSIT protein leads to marked reduction in assembly and activity of mitochondrial complex I with impaired oxidative phosphorylation and reduced production of ATP. Cardiac tissue from humanised hECSIT mice also shows reduced mitochondrial fusion and more fission but impaired clearance of fragmented mitochondria. A cardiomyocyte-intrinsic role for Ecsit in mitochondrial function and cardioprotection is also demonstrated. We also show that cardiac fibrosis and damage in humans correlates with low expression of human ECSIT. In summary, our findings identify a new role for ECSIT in cardioprotection whilst also generating a valuable new experimental model to study mitochondrial dysfunction and cardiac pathophysiology.
    Keywords:  Cardiology; Cardiovascular disease; Metabolism; Mitochondria