bims-glucam Biomed News
on Glutamine cancer metabolism
Issue of 2024‒04‒07
fifteen papers selected by
Sreeparna Banerjee, Middle East Technical University



  1. Biochim Biophys Acta Mol Cell Res. 2024 Apr 03. pii: S0167-4889(24)00064-8. [Epub ahead of print] 119721
      Metabolic reprogramming is considered as a hallmark of cancer and is clinically exploited as a novel target for therapy. The E2F transcription factor-1 (E2F1) regulates various cellular processes, including proliferative and metabolic pathways, and acts, depending on the cellular and molecular context, as an oncogene or tumor suppressor. The latter is evident by the observation that E2f1-knockout mice develop spontaneous tumors, including uterine sarcomas. This dual role warrants a detailed investigation of how E2F1 loss impacts metabolic pathways related to cancer progression. Our data indicate that E2F1 binds to the promoter of several glutamine metabolism-related genes. Interestingly, the expression of genes in the glutamine metabolic pathway were increased in mouse embryonic fibroblasts (MEFs) lacking E2F1. In addition, we confirm that E2f1-/- MEFs are more efficient in metabolizing glutamine and producing glutamine-derived precursors for proliferation. Mechanistically, we observe a co-occupancy of E2F1 and MYC on glutamine metabolic promoters, increased MYC binding after E2F1 depletion and that silencing of MYC decreased the expression of glutamine-related genes in E2f1-/- MEFs. Analyses of transcriptomic profiles in 29 different human cancers identified uterine sarcoma that showed a negative correlation between E2F1 and glutamine metabolic genes. CRISPR/Cas9 knockout of E2F1 in the uterine sarcoma cell line SK-UT-1 confirmed elevated glutamine metabolic gene expression, increased proliferation and increased MYC binding to glutamine-related promoters upon E2F1 loss. Together, our data suggest a crucial role of E2F1 in energy metabolism and metabolic adaptation in uterine sarcoma cells.
    Keywords:  E2F1; Glutamine; MYC; SLC1A5; Uterine sarcoma; cancer metabolism
    DOI:  https://doi.org/10.1016/j.bbamcr.2024.119721
  2. BMC Oral Health. 2024 Apr 05. 24(1): 418
      Oral squamous cell carcinoma (OSCC) is the most common head and neck malignancy. The oncometabolites have been studied in OSCC, but the mechanism of metabolic reprogramming remains unclear. To identify the potential metabolic markers to distinguish malignant oral squamous cell carcinoma (OSCC) tissue from adjacent healthy tissue and study the mechanism of metabolic reprogramming in OSCC. We compared the metabolites between cancerous and paracancerous tissues of OSCC patients by 1HNMR analysis. We established OSCC derived cell lines and analyzed their difference of RNA expression by RNA sequencing. We investigated the metabolism of γ-aminobutyrate in OSCC derived cells by real time PCR and western blotting. Our data revealed that much more γ-aminobutyrate was produced in cancerous tissues of OSCC patients. The investigation based on OSCC derived cells showed that the increase of γ-aminobutyrate was promoted by the synthesis of glutamate beyond the mitochondria. In OSCC cancerous tissue derived cells, the glutamate was catalyzed to glutamine by glutamine synthetase (GLUL), and then the generated glutamine was metabolized to glutamate by glutaminase (GLS). Finally, the glutamate produced by glutamate-glutamine-glutamate cycle was converted to γ-aminobutyrate by glutamate decarboxylase 2 (GAD2). Our study is not only benefit for understanding the pathological mechanisms of OSCC, but also has application prospects for the diagnosis of OSCC.
    Keywords:  Metabolic reprogramming; Oral squamous cell carcinoma; γ-aminobutyrate
    DOI:  https://doi.org/10.1186/s12903-024-04174-0
  3. Biotechnol Prog. 2024 Apr 01. e3464
      Amino acids are vital components of the serum-free medium that influence the expansion and function of NK cells. This study aimed to clarify the relationship between amino acid metabolism and expansion and cytotoxicity of NK cells. Based on analyzing the mino acid metabolism of NK-92 cells and Design of Experiments (DOE), we optimized the combinations and concentrations of amino acids in NK-92 cells culture medium. The results demonstrated that NK-92 cells showed a pronounced demand for glutamine, serine, leucine, and arginine, in which glutamine played a central role. Significantly, at a glutamine concentration of 13 mM, NK-92 cells expansion reached 161.9 folds, which was significantly higher than 55.5 folds at 2.5 mM. Additionally, under higher glutamine concentrations, NK-92 cells expressed elevated levels of cytotoxic molecules, the level of cytotoxic molecules expressed by NK-92 cells was increased and the cytotoxic rate was 68.42%, significantly higher than that of 58.08% under low concentration. In view of the close relationship between glutamine metabolism and intracellular redox state, we investigated the redox status within the cells. This study demonstrated that intracellular ROS levels in higher glutamine concentrations were significantly lower than those under lower concentration cultures with decreased intracellular GSH/GSSG ratio, NADPH/NADP+ ratio, and apoptosis rate. These findings indicate that NK-92 cells exhibit improved redox status when cultured at higher glutamine concentrations. Overall, our research provides valuable insights into the development of serum-free culture medium for ex vivo expansion of NK-92 cells.
    Keywords:  NK‐92 cells; amino acid; glutamine; medium; redox state
    DOI:  https://doi.org/10.1002/btpr.3464
  4. Biol Res. 2024 Apr 01. 57(1): 13
      BACKGROUND: Endometrial fibrosis, a significant characteristic of intrauterine adhesion (IUA), is caused by the excessive differentiation and activation of endometrial stromal cells (ESCs). Glutaminolysis is the metabolic process of glutamine (Gln), which has been implicated in multiple types of organ fibrosis. So far, little is known about whether glutaminolysis plays a role in endometrial fibrosis.METHODS: The activation model of ESCs was constructed by TGF-β1, followed by RNA-sequencing analysis. Changes in glutaminase1 (GLS1) expression at RNA and protein levels in activated ESCs were verified experimentally. Human IUA samples were collected to verify GLS1 expression in endometrial fibrosis. GLS1 inhibitor and glutamine deprivation were applied to ESCs models to investigate the biological functions and mechanisms of glutaminolysis in ESCs activation. The IUA mice model was established to explore the effect of glutaminolysis inhibition on endometrial fibrosis.
    RESULTS: We found that GLS1 expression was significantly increased in activated ESCs models and fibrotic endometrium. Glutaminolysis inhibition by GLS1 inhibitor bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl) ethyl sulfide (BPTES or glutamine deprivation treatment suppressed the expression of two fibrotic markers, α-SMA and collagen I, as well as the mitochondrial function and mTORC1 signaling in ESCs. Furthermore, inhibition of the mTORC1 signaling pathway by rapamycin suppressed ESCs activation. In IUA mice models, BPTES treatment significantly ameliorated endometrial fibrosis and improved pregnancy outcomes.
    CONCLUSION: Glutaminolysis and glutaminolysis-associated mTOR signaling play a role in the activation of ESCs and the pathogenesis of endometrial fibrosis through regulating mitochondrial function. Glutaminolysis inhibition suppresses the activation of ESCs, which might be a novel therapeutic strategy for IUA.
    Keywords:  Endometrial fibrosis; Endometrial stromal cell; Glutaminolysis; Intrauterine adhesion; Mitochondria
    DOI:  https://doi.org/10.1186/s40659-024-00492-3
  5. Cell Biol Int. 2024 Apr 01.
      Metabolic reprogramming in cancer occurs due to interaction of cells with the surrounding tumor microenvironment. In the microenvironment of solid tumors, nutrient deprivation is induced by high consumption of nutrients and insufficient vasculature. Tumor cells alter their metabolic strategies to adapt to the microenvironment. To understand the role of these metabolic changes, in the current study, we have mimicked nutrient deprivation condition in vitro to evaluate the associated signaling pathways in breast cancer cells. In our study, we have shown that nutritional deprivation activated p38 MAPK and activating transcription factor-2 (ATF-2) by increased phosphorylation of Thr180/Tyr182 and Thr71, respectively, in breast cancer cells. Pharmacological inhibition of p38 MAPK showed increased cell viability and reduced expression of ATF-2 and RAD23B under nutrient starvation conditions. Further, silencing of ATF-2 showed increased cell viability and decreased expression of RAD23B under nutrient starvation conditions. This suggests the involvement of p38 MAPK/ATF-2/RAD23B axis as a signaling pathway under nutrition starvation in breast cancer cells. The RAD23B mediated proteasome activity was shown to be much higher under stress conditions indicating a crucial role of RAD23B as a target for breast cancer.
    Keywords:  P38 MAPK; RAD23B; activating transcription factor‐2; breast cancer; nutrient deprivation
    DOI:  https://doi.org/10.1002/cbin.12160
  6. Cancer Discov. 2024 Apr 04. 14(4): 653-657
      SUMMARY: Nutrients are essential for supporting tumor growth and immune cell function in the tumor microenvironment, but emerging evidence reveals a paradoxical competition and collaboration between the metabolic demands of proliferating cancer cells and immune cell activation. Dietary interventions and metabolic immunoengineering offer promise to selectively modulate cancer and immune cell metabolism by targeting metabolic sensing processes rather than pathways directly, moving beyond conventional ideas and heralding an exciting new era of immunometabolism discovery and translation.
    DOI:  https://doi.org/10.1158/2159-8290.CD-23-1509
  7. Am J Hum Genet. 2024 Apr 04. pii: S0002-9297(24)00078-8. [Epub ahead of print]111(4): 729-741
      Glutamine synthetase (GS), encoded by GLUL, catalyzes the conversion of glutamate to glutamine. GS is pivotal for the generation of the neurotransmitters glutamate and gamma-aminobutyric acid and is the primary mechanism of ammonia detoxification in the brain. GS levels are regulated post-translationally by an N-terminal degron that enables the ubiquitin-mediated degradation of GS in a glutamine-induced manner. GS deficiency in humans is known to lead to neurological defects and death in infancy, yet how dysregulation of the degron-mediated control of GS levels might affect neurodevelopment is unknown. We ascertained nine individuals with severe developmental delay, seizures, and white matter abnormalities but normal plasma and cerebrospinal fluid biochemistry with de novo variants in GLUL. Seven out of nine were start-loss variants and two out of nine disrupted 5' UTR splicing resulting in splice exclusion of the initiation codon. Using transfection-based expression systems and mass spectrometry, these variants were shown to lead to translation initiation of GS from methionine 18, downstream of the N-terminal degron motif, resulting in a protein that is stable and enzymatically competent but insensitive to negative feedback by glutamine. Analysis of human single-cell transcriptomes demonstrated that GLUL is widely expressed in neuro- and glial-progenitor cells and mature astrocytes but not in post-mitotic neurons. One individual with a start-loss GLUL variant demonstrated periventricular nodular heterotopia, a neuronal migration disorder, yet overexpression of stabilized GS in mice using in utero electroporation demonstrated no migratory deficits. These findings underline the importance of tight regulation of glutamine metabolism during neurodevelopment in humans.
    Keywords:  GLUL; degron motif; epileptic encephalopathies; glutamine metabolism; glutamine synthetase
    DOI:  https://doi.org/10.1016/j.ajhg.2024.03.005
  8. Biomed Pharmacother. 2024 Mar 29. pii: S0753-3322(24)00390-1. [Epub ahead of print]174 116506
      Combination therapy has become the most important treatment for advanced non-small cell lung cancer (NSCLC), which can significantly improve the prognosis of patients. However, poor targeting and adverse reactions limited its clinical application. Here, we constructed an AS1411 aptamer-programmed cell death ligand-1 (PD-L1) siRNA chimera/polyethylenimine/glutamine/β-cyclodextrin/doxorubicin (Chimera/ PEI/Gln/β-CD/DOX) nanoparticle for the combination therapy (chemotherapy combined with immunotherapy). Scanning electron microscopy showed that PEI/Gln/β-CD/DOX nanoparticle was conical, with a diameter of about 250-500 nm. AS1411 aptamer-PD-L1 siRNA chimera can effectively bind NSCLC cells and inhibit PD-L1 expression, further activating T cells and CD8+T cells. Glutamine modification effectively promoted the doxorubicin uptake by cancer cells and induced their apoptosis. Animal experiments showed that our nanoparticles effectively treated the transplanted tumor, and the adverse reactions were reduced. Compared with the Aptamer/β-CD/DOX group, the volume and ki-67 index of transplanted tumors in the Chimera/β-CD/DOX group were significantly decreased, while the apoptosis ratio was increased. Immunohistochemical results showed that Compared with the Aptamer/β-CD/DOX group, the number of T cells and CD8+T cells in the Chimera/β-CD/DOX group was increased by 1.34 and 1.41 times. Glutamine modification enhanced the chemotherapeutic efficacy and anti-tumor immune response in vivo. Our study provided a new method for the combination therapy of lung squamous cell carcinoma.
    Keywords:  aptamer; chemotherapy; glutamine; immunotherapy; lung squamous cell carcinoma
    DOI:  https://doi.org/10.1016/j.biopha.2024.116506
  9. Cancer Res. 2024 Apr 01. 84(7): 950-952
      Acute myeloid leukemia (AML) is one of the most prevalent blood cancers, characterized by a dismal survival rate. This poor outcome is largely attributed to AML cells that persist despite treatment and eventually result in relapse. Relapse-initiating cells exhibit diverse resistance mechanisms, encompassing genetic factors and, more recently discovered, nongenetic factors such as metabolic adaptations. Leukemic stem cells (LSC) rely on mitochondrial metabolism for their survival, whereas hematopoietic stem cells primarily depend on glycolysis. Furthermore, following treatments such as cytarabine, a standard in AML treatment for over four decades, drug-persisting leukemic cells exhibit an enhanced reliance on mitochondrial metabolism. In this issue of Cancer Research, two studies investigated dependencies of AML cells on two respiratory substrates, α-ketoglutarate and lactate-derived pyruvate, that support mitochondrial oxidative phosphorylation (OXPHOS) following treatment with the imipridone ONC-213 and the BET inhibitor INCB054329, respectively. Targeting lactate utilization by interfering with monocarboxylate transporter 1 (MCT1 or SLC16A1) or lactate dehydrogenase effectively sensitized cells to BET inhibition in vitro and in vivo. In addition, ONC-213 affected αKGDH, a pivotal NADH-producing enzyme of the TCA cycle, to induce a mitochondrial stress response through ATF4 activation that diminished the expression of the antiapoptotic protein MCL1, consequently promoting apoptosis of AML cells. In summary, targeting these mitochondrial dependencies might be a promising strategy to kill therapy-naïve and treatment-resistant OXPHOS-reliant LSCs and to delay or prevent relapse. See related articles by Monteith et al., p. 1101 and Su et al., p. 1084.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-24-0019
  10. Chirality. 2024 Apr;36(4): e23665
      In this paper, the amino acid chiral ionic liquid (AACIL) was prepared with L-phenylalanine and imidazole. It was characterized by CD, FT-IR, 1H NMR, and 13C NMR spectrum. The chiral recognition sensor was constructed with AACIL and Cu(II), which exhibited different chiral visual responses (solubility or color difference) to the enantiomers of glutamine (Gln) and phenylalanine (Phe). The effects of solvent, pH, time, temperature, metal ions, and other amino acids on visual chiral recognition were optimized. The minimum concentrations of Gln and Phe for visual chiral recognition were 0.20 mg/ml and 0.28 mg/ml, respectively. The mechanism of chiral recognition was investigated by FT-IR, TEM, SEM, TG, XPS, and CD. The location of the host-guest inclusion or molecular placement has been conformationally searched based on Gaussian 09 software.
    Keywords:  amino acids; chiral ionic liquids; enantioselective precipitate; recognition mechanism; visual chiral recognition
    DOI:  https://doi.org/10.1002/chir.23665
  11. Mol Cancer. 2024 Apr 04. 23(1): 71
      It is generally recognized that tumor cells proliferate more rapidly than normal cells. Due to such an abnormally rapid proliferation rate, cancer cells constantly encounter the limits of insufficient oxygen and nutrient supplies. To satisfy their growth needs and resist adverse environmental events, tumor cells modify the metabolic pathways to produce both extra energies and substances required for rapid growth. Realizing the metabolic characters special for tumor cells will be helpful for eliminating them during therapy. Cell death is a hot topic of long-term study and targeting cell death is one of the most effective ways to repress tumor growth. Many studies have successfully demonstrated that metabolism is inextricably linked to cell death of cancer cells. Here we summarize the recently identified metabolic characters that specifically impact on different types of cell deaths and discuss their roles in tumorigenesis.
    Keywords:  Apoptosis; Autophage; Cell death; Cuproptosis; Ferroptosis; Pyroptosis; Tumor metabolism; Tumor microenvironment
    DOI:  https://doi.org/10.1186/s12943-024-01977-1
  12. Cold Spring Harb Perspect Med. 2024 Apr 02. pii: a041531. [Epub ahead of print]
      A cell committed to proliferation must reshape its metabolism to enable robust yet balanced production of building blocks for the assembly of proteins, lipids, nucleic acids, and other macromolecules, from which two functional daughter cells can be produced. The metabolic remodeling associated with proliferation is orchestrated by a number of pro-proliferative signaling nodes, which include phosphatidylinositol-3 kinase (PI3K), the RAS family of small GTPases, and transcription factor c-myc In metazoan cells, these signals are activated in a paracrine manner via growth factor-mediated activation of receptor (or receptor-associated) tyrosine kinases. Such stimuli are limited in duration and therefore allow the metabolism of target cells to return to the resting state once the proliferation demands have been satisfied. Cancer cells acquire activating genetic alterations within common pro-proliferative signaling nodes. These alterations lock cellular nutrient uptake and utilization into a perpetual progrowth state, leading to the aberrant accumulation and spread of cancer cells.
    DOI:  https://doi.org/10.1101/cshperspect.a041531
  13. Anim Cells Syst (Seoul). 2024 ;28(1): 123-136
      The tumor microenvironment comprises both tumor and non-tumor stromal cells, including tumor-associated macrophages (TAMs), endothelial cells, and carcinoma-associated fibroblasts. TAMs, major components of non-tumor stromal cells, play a crucial role in creating an immunosuppressive environment by releasing cytokines, chemokines, growth factors, and immune checkpoint proteins that inhibit T cell activity. During tumors develop, cancer cells release various mediators, including chemokines and metabolites, that recruit monocytes to infiltrate tumor tissues and subsequently induce an M2-like phenotype and tumor-promoting properties. Metabolites are often overlooked as metabolic waste or detoxification products but may contribute to TAM polarization. Furthermore, macrophages display a high degree of plasticity among immune cells in the tumor microenvironment, enabling them to either inhibit or facilitate cancer progression. Therefore, TAM-targeting has emerged as a promising strategy in tumor immunotherapy. This review provides an overview of multiple representative metabolites involved in TAM phenotypes, focusing on their role in pro-tumoral polarization of M2.
    Keywords:  Cancer; TAM; metabolites; polarization; tumor microenvironment
    DOI:  https://doi.org/10.1080/19768354.2024.2336249
  14. J Nanobiotechnology. 2024 Apr 03. 22(1): 147
      The challenges associated with activating ferroptosis for cancer therapy primarily arise from obstacles related to redox and iron homeostasis, which hinder the susceptibility of tumor cells to ferroptosis. However, the specific mechanisms of ferroptosis resistance, especially those intertwined with abnormal metabolic processes within tumor cells, have been consistently underestimated. In response, we present an innovative glutathione-responsive magnetocaloric therapy nanodrug termed LFMP. LFMP consists of lonidamine (LND) loaded into PEG-modified magnetic nanoparticles with a Fe3O4 core and coated with disulfide bonds-bridged mesoporous silica shells. This nanodrug is designed to induce an accelerated ferroptosis-activating state in tumor cells by disrupting homeostasis. Under the dual effects of alternating magnetic fields and high concentrations of glutathione in the tumor microenvironment, LFMP undergoes disintegration, releasing drugs. LND intervenes in cell metabolism by inhibiting glycolysis, ultimately enhancing iron death and leading to synthetic glutathione consumption. The disulfide bonds play a pivotal role in disrupting intracellular redox homeostasis by depleting glutathione and inactivating glutathione peroxidase 4 (GPX4), synergizing with LND to enhance the sensitivity of tumor cells to ferroptosis. This process intensifies oxidative stress, further impairing redox homeostasis. Furthermore, LFMP exacerbates mitochondrial dysfunction, triggering ROS formation and lactate buildup in cancer cells, resulting in increased acidity and subsequent tumor cell death. Importantly, LFMP significantly suppresses tumor cell proliferation with minimal side effects both in vitro and in vivo, exhibiting satisfactory T2-weighted MR imaging properties. In conclusion, this magnetic hyperthermia-based nanomedicine strategy presents a promising and innovative approach for antitumor therapy.
    Keywords:  Ferroptosis; Magnetothermal therapy; Mesoporous silica nanoparticle; Metabolic interference; Redox homeostasis
    DOI:  https://doi.org/10.1186/s12951-024-02425-4
  15. Int J Biol Macromol. 2024 Apr 03. pii: S0141-8130(24)02164-0. [Epub ahead of print] 131359
      The combination of photothermal therapy (PTT) and photodynamic therapy (PDT) has emerged as a promising strategy for cancer treatment. However, the poor photostability and photothermal conversion efficiency (PCE) of organic small-molecule photosensitizers, and the intracellular glutathione (GSH)-mediated singlet oxygen scavenging largely decline the antitumor efficacy of PTT and PDT. Herein, a versatile nanophotosensitizer (NPS) system is developed by ingenious incorporation of indocyanine green (ICG) into the PEGylated chitosan (PEG-CS)-coated polydopamine (PDA) nanoparticles via multiple π-π stacking, hydrophobic and electrostatic interactions. The PEG-CS-covered NPS showed prominent colloidal and photothermal stability as well as high PCE (ca 62.8 %). Meanwhile, the Michael addition between NPS and GSH can consume GSH, thus reducing the GSH-induced singlet oxygen scavenging. After being internalized by CT26 cells, the NPS under near-infrared laser irradiation produced massive singlet oxygen with the aid of thermo-enhanced intracellular GSH depletion to elicit mitochondrial damage and lipid peroxide formation, thus leading to ferroptosis and apoptosis. Importantly, the combined PTT and PDT delivered by NPS effectively inhibited CT26 tumor growth in vivo by light-activated intense hyperthermia and redox homeostasis disturbance. Overall, this work presents a new tactic of boosting antitumor potency of ICG-mediated phototherapy by PEG-CS-covered NPS.
    Keywords:  Nanophotosensitizer; PEGylated chitosan; Photothermal-photodynamic therapy
    DOI:  https://doi.org/10.1016/j.ijbiomac.2024.131359