bims-glucam Biomed News
on Glutamine cancer metabolism
Issue of 2023‒01‒01
twelve papers selected by
Sreeparna Banerjee
Middle East Technical University


  1. Front Oncol. 2022 ;12 1064127
      Introduction: Glutamine is characterized as the nutrient required in tumor cells. The study based on glutamine metabolism aimed to develop a new predictive factor for pan-cancer prognostic and therapeutic analyses and to explore the mechanisms underlying the development of cancer.Methods: The RNA-sequence data retrieved from TCGA, ICGC, GEO, and CGGA databases were applied to train and further validate our signature. Single-cell RNA transcriptome data from GEO were used to investigate the correlation between glutamine metabolism and cell cycle progression. A series of bioinformatics and machine learning approaches were applied to accomplish the statistical analyses in this study.
    Results: As an individual risk factor, our signature could predict the overall survival (OS) and immunotherapy responses of patients in the pan-cancer analysis. The nomogram model combined several clinicopathological features, provided the GMscore, a readable measurement to clinically predict the probability of OS and improve the predictive capacity of GMscore. While analyzing the correlations between glutamine metabolism and malignant features of the tumor, we observed that the accumulation of TP53 inactivation might underlie glutamine metabolism with cell cycle progression in cancer. Supposedly, CAD and its upstream genes in glutamine metabolism would be potential targets in the therapy of patients with IDH-mutated glioma. Immune infiltration and sensitivity to anti-cancer drugs have been confirmed in the high-risk group.
    Discussion: In summary, glutamine metabolism is significant to the clinical outcomes of patients with pan-cancer and is tightly associated with several hallmarks of a malignant tumor.
    Keywords:  cell cycle; glutamine metabolism; immunotherapy; prognosis; tumor microenvironment
    DOI:  https://doi.org/10.3389/fonc.2022.1064127
  2. Mol Cancer Res. 2022 Dec 27. pii: MCR-22-0796. [Epub ahead of print]
      Cancer cells undergo metabolic reprogramming to meet increased bioenergetic demands. Studies in cells and mice have highlighted the importance of oxidative metabolism and lipogenesis in prostate cancer, however, the metabolic landscape of human prostate cancer remains unclear. To address this knowledge gap, we performed radiometric (14C) and stable (13C) isotope tracing assays in precision-cut slices of patient-derived xenografts (PDXs). Glucose, glutamine, and fatty acid oxidation was variably upregulated in malignant PDXs compared to benign PDXs. De novo lipogenesis (DNL) and storage of free fatty acids into phospholipids and triacylglycerols were increased in malignant PDXs. There was no difference in substrate utilization between localized and metastatic PDXs and hierarchical clustering revealed marked metabolic heterogeneity across all PDXs. Mechanistically, glucose utilization was mediated by acetyl-CoA production rather than carboxylation of pyruvate, while glutamine entered the TCA cycle through transaminase reactions before being utilized via oxidative or reductive pathways. Blocking fatty acid uptake or fatty acid oxidation with pharmacological inhibitors was sufficient to reduce cell viability in PDX-derived organoids (PDXOs), whereas blockade of DNL, or glucose or glutamine oxidation induced variable and limited therapeutic efficacy. These findings demonstrate that human prostate cancer, irrespective of disease stage, can effectively utilize all metabolic substrates, albeit with marked heterogeneity across tumors. We also confirm that fatty acid uptake and oxidation are targetable metabolic dependencies in human prostate cancer. Implications: Prostate cancer utilizes multiple substrates to fuel energy requirements, yet pharmacological targeting of fatty acid uptake and oxidation reveals metabolic dependencies in localised and metastatic tumors.
    DOI:  https://doi.org/10.1158/1541-7786.MCR-22-0796
  3. Int Immunopharmacol. 2022 Dec 23. pii: S1567-5769(22)01102-X. [Epub ahead of print]115 109617
      Excessive activation of CD4+ T cells increases cytokine production substantially and induces immune-mediated diseases. Procyanidins are polyphenols with anti-inflammatory properties. Procyanidin B2 (PCB2) gallate [specifically, PCB2 3,3''-di-O-gallate (PCB2DG)] inhibits cytokine production through the suppression of glycolysis via mammalian target of rapamycin (mTOR) in T cells. Several amino acids play critical roles in T cell activation, especially glutamine, which is important in mTOR signaling and interferon-γ (IFN-γ) production in CD4+ T cells. However, the mechanisms underlying the effects of PCB2DG, including its interaction partners, have yet to be clarified. In the present study, the mechanisms underlying the inhibitory effect of PCB2DG on IFN-γ through glutamine metabolism regulation were investigated. We found that PCB2DG treatment reduced intracellular glutamine levels in CD4+ T cells, whereas the addition of glutamine abrogated the inhibitory effects of PCB2DG on IFN-γ production. The PCB2DG-induced reduction in intracellular glutamine accumulation led to the upregulated expression of activating transcription factor 4, which was induced by the cytoprotective signaling pathway in the amino acid response. In addition, the mRNA and protein expression levels of alanine serine cysteine transporter 2 (ASCT2), a major glutamine transporter in CD4+ T cells, were not altered by PCB2DG treatment. Further analysis using a target identification strategy revealed that PCB2DG binds to ASCT2, suggesting that PCB2DG interacts directly with this major glutamine transporter to inhibit glutamine influx. Overall, this study indicates that ASCT2 is a novel target protein of a dietary polyphenol and provides new insights into the mechanism underlying the immunomodulatory effects of polyphenols.
    Keywords:  ASCT2; Glutamine; IFN-γ; Procyanidin B2 gallate; Target protein
    DOI:  https://doi.org/10.1016/j.intimp.2022.109617
  4. Front Oncol. 2022 ;12 1046630
      Targeting tumor metabolism for cancer therapy is an old strategy. In fact, historically the first effective cancer therapeutics were directed at nucleotide metabolism. The spectrum of metabolic drugs considered in cancer increases rapidly - clinical trials are in progress for agents directed at glycolysis, oxidative phosphorylation, glutaminolysis and several others. These pathways are essential for cancer cell proliferation and redox homeostasis, but are also required, to various degrees, in other cell types present in the tumor microenvironment, including immune cells, endothelial cells and fibroblasts. How metabolism-targeted treatments impact these tumor-associated cell types is not fully understood, even though their response may co-determine the overall effectivity of therapy. Indeed, the metabolic dependencies of stromal cells have been overlooked for a long time. Therefore, it is important that metabolic therapy is considered in the context of tumor microenvironment, as understanding the metabolic vulnerabilities of both cancer and stromal cells can guide new treatment concepts and help better understand treatment resistance. In this review we discuss recent findings covering the impact of metabolic interventions on cellular components of the tumor microenvironment and their implications for metabolic cancer therapy.
    Keywords:  cancer; endothelial cells; fatty acid metabolism; glycolysis; metabolism; nucleotide metabolism; oxidative phoshorylation; tumor micro environment (TME)
    DOI:  https://doi.org/10.3389/fonc.2022.1046630
  5. Cancer Lett. 2022 Dec 21. pii: S0304-3835(22)00527-4. [Epub ahead of print] 216040
      Pancreatic stellate cells (PSCs) are crucial for metabolism and disease progression in pancreatic ductal adenocarcinoma (PDAC). However, detailed mechanisms of PSCs in glutamine (Gln) metabolism and tumor-stromal metabolic interactions have not been well clarified. Here we showed that tumor tissues displayed Gln deficiency in orthotopic PDAC models. Single-cell RNA sequencing analysis revealed metabolic heterogeneity in PDAC, with significantly higher expression of Gln catabolism pathway in stromal cells. Significantly higher glutamine synthetase (GS) protein expression was further validated in human tissues and cells. Elevated GS levels in tumor and stroma were independently prognostic of poorer prognosis in PDAC patients. Gln secreted by PSCs increased basal oxygen consumption rate in PCCs. Depletion of GS in PSCs significantly decreased PCCs proliferation in vitro and in vivo. Mechanistically, activation of Wnt signaling induced directly binding of β-catenin/TCF7 complex to GS promoter region and upregulated GS expression. Rescue experiments testified that GS overexpression recovered β-catenin knockdown-mediated function on Gln synthesis and tumor-promoting ability of PSCs. Overall, these findings identify Wnt/β-catenin/TCF7/GS-mediated growth-promoting effect of PSCs and provide new insights into stromal Gln metabolism, which may offer novel therapeutic strategies for PDAC.
    Keywords:  Cancer-associated fibroblasts; Metabolic crosstalk; Stromal glutamine metabolism; Tumor proliferation; Wnt signaling
    DOI:  https://doi.org/10.1016/j.canlet.2022.216040
  6. Bioact Mater. 2023 Jun;24 26-36
      Ultrasound (US)-activated sonodynamic therapy (SDT) stands for a distinct antitumor modality because of its attractive characteristics including intriguing noninvasiveness, desirable safety, and high tissue penetration depth, which, unfortunately, suffers from compromised therapeutic efficacy due to cancer cell-inherent adaptive mechanisms, such as glutathione (GSH) neutralization response to reactive oxygen species (ROS), and glutamine addictive properties of tumors. In this work, we developed a biological sonosensitive platelet (PLT) pharmacytes for favoring US/GSH-responsive combinational therapeutic of glutamine deprivation and augmented SDT. The amino acid transporter SLC6A14 blockade agent α-methyl-DL-tryptophan (α-MT)-loaded and MnO2-coated porphyrinic metal-organic framework (MOF) nanoparticles were encapsulated in the PLTs through the physical adsorption of electrostatic attraction and the intrinsic endocytosis of PLTs. When the sonosensitive PLT pharmacytes reached tumor sites through their natural tendencies to TME, US stimulated the PLTs-loaded porphyrinic MOF to generate ROS, resulting in morphological changes of the PLTs and the release of nanoparticles. Subsequently, intracellular high concentration of GSH and extracellular spatio-temporal controlled US irradiation programmatically triggered the release of α-MT, which enabled the synergistically amplified SDT by inducing amino acid starvation, inhibiting mTOR, and mediating ferroptosis. In addition, US stimulation achieved the targeted activation of PLTs at tumor vascular site, which evolved from circulating PLTs to dendritic PLTs, effectively blocking the blood supply of tumors through thrombus formation, and revealing the encouraging potential to facilitate tumor therapeutics.
    Keywords:  Amino acid starvation; Drug delivery; Glutamine deprivation; Sonodynamic tumor therapy; Sonosensitive platelets
    DOI:  https://doi.org/10.1016/j.bioactmat.2022.11.020
  7. Redox Biol. 2022 Dec 24. pii: S2213-2317(22)00357-3. [Epub ahead of print]59 102585
      N-acetylaspartate (NAA) is synthesized by the mitochondrial enzyme NAT8L, which uses acetyl-CoA and aspartate as substrates. These metabolites are fundamental for bioenergetics and anabolic requirements of highly proliferating cells, thus, NAT8L modulation may impinge on the metabolic reprogramming of cancer cells. Specifically, aspartate represents a limiting amino acid for nucleotide synthesis in cancer. Here, the expression of the NAT8L enzyme was modulated to verify how it impacts the metabolic adaptations and proliferative capacity of hepatocellular carcinoma. We demonstrated that NAT8L downregulation is associated with increased proliferation of hepatocellular carcinoma cells and immortalized hepatocytes. The overexpression of NAT8L instead decreased cell growth. The pro-tumoral effect of NAT8L silencing depended on glutamine oxidation and the rewiring of glucose metabolism. Mechanistically, NAT8L downregulation triggers aspartate outflow from mitochondria via the exporter SLC25A13 to promote glucose flux into the pentose phosphate pathway, boosting purine biosynthesis. These results were corroborated by the analyses of human and mouse hepatocellular carcinoma samples revealing a decrease in NAT8L expression compared to adjacent non-tumoral tissues. Overall, this work demonstrates that NAT8L expression in liver cells limits the cytosolic availability of aspartate necessary for enhancing the pentose phosphate pathway and purine biosynthesis, counteracting cell proliferation.
    Keywords:  Aspartate; Mitochondria; NAA; Nucleotides; Pentose phosphate pathway
    DOI:  https://doi.org/10.1016/j.redox.2022.102585
  8. J Biol Chem. 2022 Dec 26. pii: S0021-9258(22)01281-9. [Epub ahead of print] 102838
      The tricarboxylic acid (TCA) cycle, otherwise known as the Krebs cycle, is a central metabolic pathway that performs the essential function of oxidizing nutrients to support cellular bioenergetics. More recently, it has become evident that TCA cycle behavior is dynamic and products of the TCA cycle can be co-opted in cancer and other pathologic states. In this review, we revisit the TCA cycle, including its potential origins and the history of its discovery. We provide a detailed accounting of the requirements for sustained TCA cycle function and the critical regulatory nodes that can stimulate or constrain TCA cycle activity. We also discuss recent advances in our understanding of the flexibility of TCA cycle wiring and the increasingly appreciated heterogeneity in TCA cycle activity exhibited by mammalian cells. Deeper insight into how the TCA cycle can be differentially regulated and, consequently, configured in different contexts will shed light on how this pathway is primed to meet the requirements of distinct mammalian cell states.
    DOI:  https://doi.org/10.1016/j.jbc.2022.102838
  9. Biochim Biophys Acta Gen Subj. 2022 Dec 23. pii: S0304-4165(22)00219-7. [Epub ahead of print] 130301
      Our understanding of metabolic reprogramming in cancer has tremendously improved along with the technical progression of metabolomic analysis. Metabolic changes in cancer cells proved much more complicated than the classical Warburg effect. Previous studies have approached metabolic changes as therapeutic and/or chemopreventive targets. Recently, several clinical trials have reported anti-cancer agents associated with metabolism. However, whether cancer cells are dependent on metabolic reprogramming or favor suitable conditions remains nebulous. Both scenarios are possibly intertwined. Identification of downstream molecules and the understanding of mechanisms underlying reprogrammed metabolism can improve the effectiveness of cancer therapy. Here, we review several examples of the metabolic reprogramming of cancer cells and the therapies targeting the metabolism-related molecules as well as discuss practical approaches to improve the next generation of cancer therapies focused on the metabolic reprogramming of cancer.
    Keywords:  Anticancer agent; Clinical trial; Drug discovery; Metabolic reprograming; Therapeutic target
    DOI:  https://doi.org/10.1016/j.bbagen.2022.130301
  10. Front Immunol. 2022 ;13 1066773
      Introduction: Metabolic rewiring satisfies increased nutritional demands and modulates many oncogenic processes in tumors. Amino acid metabolism is abnormal in many malignancies. Metabolic reprogramming of amino acids not only plays a crucial role in sustaining tumor cell proliferation but also influences the tumor immune microenvironment. Herein, the aim of our study was to elucidate the metabolic signature of amino acids in hepatocellular carcinoma (HCC).Methods: Transcriptome profiles of HCC were obtained from the TCGA and ICGC databases. Based on the expression of amino acid metabolism-related genes (AAMRGs), we clustered the HCC samples into two molecular subtypes using the non-negative matrix factorization algorithm. Then, we constructed the amino acid metabolism-related gene signature (AAMRGS) by Cox regression and LASSO regression. Afterward, the clinical significance of the AAMRGS was evaluated. Additionally, we comprehensively analyzed the differences in mutational profiles, immune cell infiltration, immune checkpoint expression, and drug sensitivity between different risk subgroups. Furthermore, we examined three key gene expressions in liver cancer cells by quantitative real-time PCR and conducted the CCK8 assay to evaluate the influence of two chemotherapy drugs on different liver cancer cells.
    Results: A total of 81 differentially expressed AAMRGs were screened between the two molecular subtypes, and these AAMRGs were involved in regulating amino acid metabolism. The AAMRGS containing GLS, IYD, and NQO1 had a high value for prognosis prediction in HCC patients. Besides this, the two AAMRGS subgroups had different genetic mutation probabilities. More importantly, the immunosuppressive cells were more enriched in the AAMRGS-high group. The expression level of inhibitory immune checkpoints was also higher in patients with high AAMRGS scores. Additionally, the two AAMRGS subgroups showed different susceptibility to chemotherapeutic and targeted drugs. In vitro experiments showed that gemcitabine significantly reduced the proliferative capacity of SNU449 cells, and rapamycin remarkedly inhibited Huh7 proliferation. The five HCC cells displayed different mRNA expression levels of GLS, IYD, and NQO1.
    Conclusions: Our study explored the features of amino acid metabolism in HCC and identified the novel AAMRGS to predict the prognosis, immune microenvironment, and drug sensitivity of HCC patients. These findings might help to guide personalized treatment and improve the clinical outcomes of HCC.
    Keywords:  amino acid metabolism; drug sensitivity; hepatocellular carcinoma; immune microenvironment; prognosis
    DOI:  https://doi.org/10.3389/fimmu.2022.1066773
  11. Biotechnol Bioeng. 2022 Dec 27.
      Mammalian cells frequently encounter subtle perturbations during recombinant protein production. Identifying the genetic factors that govern the cellular stress response can facilitate targeted genetic engineering to obtain production cell lines that demonstrate a higher stress tolerance. To simulate nutrient stress, Chinese hamster ovary (CHO) cells were transferred into a glutamine(Q)-free medium and transcriptional dynamics using thiol(SH)-linked alkylation for the metabolic sequencing of RNA (SLAM-seq) along with standard RNA-seq of stressed and unstressed cells were investigated. The SLAM-seq method allows to differentiate between actively transcribed, nascent mRNA and total (previously present) mRNA in the sample, adding an additional, time-resolved layer to classic RNA-sequencing. The cells tackle amino acid (AA) limitation by inducing the integrated stress response (ISR) signaling pathway, reflected in Atf4 overexpression in the early hours post Q deprivation, leading to subsequent activation of its targets, Asns, Atf3, Ddit3, Eif4ebp1, Gpt2, Herpud1, Slc7a1, Slc7a11, Slc38a2, Trib3, and Vegfa. The GCN2-eIF2α-ATF4 pathway is confirmed by a significant halt in transcription of translation-related genes at 24 hours post Q deprivation. The downregulation of lipid synthesis indicates the inhibition of the mTOR pathway, further confirmed by overexpression of Sesn2. Furthermore, SLAM-seq detects short-lived transcription factors, such as Egr1, that would have been missed in standard experimental designs with RNA-seq. Our results describe the successful establishment of SLAM-seq in CHO cells and therefore facilitate its future use in other scenarios where dynamic transcriptome profiling in CHO cells is essential. This article is protected by copyright. All rights reserved.
    Keywords:  Chinese hamster ovary; SLAM-seq; gene expression; glutamine deprivation; nascent mRNA; stress-response pathways
    DOI:  https://doi.org/10.1002/bit.28320
  12. J Phys Org Chem. 2022 Nov;pii: e4347. [Epub ahead of print]35(11):
      The glutamine transporter ASCT2 is highly overexpressed in cancer cells. Block of glutamine uptake by ASCT2 is a potential strategy to inhibit growth of cancer cells. However, pharmacology of the ASCT2 binding site is not well established. In this work, we report the computational docking to the binding site, and the synthesis of a new class of ASCT2 inhibitors based on the novel L-hydroxyhomoserine scaffold. While these compounds inhibit the ASCT2 leak anion conductance, as expected for competitive inhibitors, they did not block leak conductance in glutamate transporters (EAAT1-3 and EAAT5). They were also ineffective with respect to subtype ASCT1, which has >57% amino acid sequence similarity to ASCT2. Molecular docking studies agree very well with the experimental results and suggest specific polar interactions in the ASCT2 binding site. Our findings add to the repertoire of ASCT2 inhibitors and will aid in further studies of ASCT2 pharmacology.
    DOI:  https://doi.org/10.1002/poc.4347