bims-glucam Biomed News
on Glutamine cancer metabolism
Issue of 2022‒10‒09
twelve papers selected by
Sreeparna Banerjee
Middle East Technical University


  1. Front Oncol. 2022 ;12 1011191
      Increased glutamine metabolism is a hallmark of many cancer types. In recent years, our understanding of the distinct and diverse metabolic pathways through which glutamine can be utilized has grown more refined. Additionally, the different metabolic requirements of the diverse array of cell types within the tumor microenvironment complicate the strategy of targeting any particular glutamine pathway as cancer therapy. In this Mini-Review, we discuss recent advances in further clarifying the cellular fate of glutamine through different metabolic pathways. We further discuss potential promising strategies which exploit the different requirements of cells in the tumor microenvironment as it pertains to glutamine metabolism in an attempt to suppress cancer growth and enhance anti-tumor immune responses.
    Keywords:  cancer; glutamine; immunooncology; metabolism; tumor microenvironment
    DOI:  https://doi.org/10.3389/fonc.2022.1011191
  2. World J Surg Oncol. 2022 Oct 03. 20(1): 329
      BACKGROUND: Circular RNA (circRNA) has been proved to be an important molecular target for cancer treatment. However, the function and molecular mechanism of circ_0000808 in non-small cell lung cancer (NSCLC) are still unclear.METHODS: Quantitative real-time PCR was used to detect the expression of circ_0000808, miR-1827, and solute carrier family 1 member 5 (SLC1A5). Cell proliferation, apoptosis, migration, and invasion were measured by cell counting kit 8 assay, colony formation assay, EdU staining, flow cytometry, wound healing assay, and transwell assay. The protein expression was measured by Western blot analysis. Dual-luciferase reporter assay and RIP assay were used to investigate the interactions between miR-1827 and circ_0000808 or SLC1A5. Cell glutamine metabolism was assessed by determining glutamine uptake, glutamate production, and α-ketoglutarate production. Xenograft mouse model was used to assess the in vivo effects of circ_0000808.
    RESULTS: Circ_0000808 expression was upregulated in NSCLC tissues and cancer cells, and its silencing inhibited NSCLC cell proliferation, migration, and invasion and led to apoptosis. Further results confirmed that circ_0000808 interacted with miR-1827 to positively regulate SLC1A5. The rescue experiments showed that miR-1827 inhibitor reversed the suppressive effect of circ_0000808 knockdown on the malignant behaviors of NSCLC cells. Also, SLC1A5 overexpression abolished the inhibition effect of miR-1827 on NSCLC cell progression. In addition, circ_0000808/miR-1827/SLC1A5 axis positively regulated the glutamine metabolism process in NSCLC cells. Moreover, circ_0000808 knockdown reduced the NSCLC tumor growth in vivo.
    CONCLUSION: In summary, our data showed that circ_0000808 enhanced the progression of NSCLC by promoting glutamine metabolism through the miR-1827/SLC1A5 axis.
    Keywords:  Non-small cell lung cancer; SLC1A5; circ_0000808; miR-1827
    DOI:  https://doi.org/10.1186/s12957-022-02777-x
  3. Front Oncol. 2022 ;12 975517
      Growing cancer cells are addicted to glutamine. Glutamate dehydrogenase 1 (GLUD1) is one of key enzymes in glutamine metabolism and plays a critical role in the malignancy of diverse tumors. However, its role and molecular mechanism in clear cell renal cell carcinoma (ccRCC) development and progression remain unknown. In this study, analysis results of the GEO/TCGA/UALCAN database showed that GLUD1 level was downregulated in ccRCC tissues. Immunohistochemistry and western blotting results further validated the downregulation of GLUD1 level in ccRCC tissues. GLUD1 level was gradually decreased as ccRCC stage and grade progressed. Low GLUD1 level was associated with a shorter survival and higher IC50 value for tyrosine kinase inhibitors (TKIs) in ccRCC, reminding that GLUD1 level could predict the prognosis and TKIs sensitivity of ccRCC patients. High level of methylation in GLUD1 promoter was positively correlated with the downregulation of GLUD1 level and was negatively correlated with survival of ccRCC patients. GLUD1 overexpression suppressed RCC cell proliferation, colony formation and migration by inhibiting PI3K/Akt/mTOR pathway activation. Low GLUD1 level correlated with suppressive immune microenvironment (TIME) in ccRCC. Together, we found a novel tumor-suppressing role of GLUD1 in ccRCC which was different from that in other tumors and a new mechanism for inhibiting PI3K/Akt/mTOR activation and TIME in ccRCC. These results provide a theoretical basis for GLUD1 as a therapeutic target and prognostic marker in ccRCC.
    Keywords:  GLUD1; PI3K/Akt/mTOR; methylation; prognosis; renal cell carcinoma
    DOI:  https://doi.org/10.3389/fonc.2022.975517
  4. Anticancer Drugs. 2022 Oct 06.
      Circular RNAs (circRNAs) have been shown to play important regulatory roles in human malignancies. However, the role of circRNA ArfGAP with FG repeats 1 (circ-AGFG1) in esophageal squamous cell carcinoma (ESCC) progression and its associated mechanism are still largely undefined. Cell proliferation was analyzed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and 5-ethynyl-2'-deoxyuridine assay. Cell apoptosis was assessed by flow cytometry analysis. Transwell assay and wound healing assay were used to analyze cell invasion and migration abilities. The uptake of glutamine and the production of α-ketoglutarate and glutamate were analyzed using Glutamine Determination Kit, α-ketoglutarate Assay Kit and Glutamate Determination Kit. A xenograft tumor model was used to analyze the biological role of circ-AGFG1 in vivo. The interaction between microRNA-497-5p (miR-497-5p) and circ-AGFG1 or solute carrier family 1 member 5 (SLC1A5) was verified by dual-luciferase reporter assay. Circ-AGFG1 expression was upregulated in ESCC tissues and cell lines. Circ-AGFG1 silencing suppressed the proliferation, migration, invasion and glutaminolysis and triggered the apoptosis of ESCC cells. Circ-AGFG1 knockdown significantly slowed down tumor growth in vivo. Circ-AGFG1 acted as a sponge for miR-497-5p, and miR-497-5p interacted with the 3' untranslated region (3'UTR) of SLC1A5. miR-497-5p silencing largely abolished circ-AGFG1 silencing-induced effects in ESCC cells. miR-497-5p overexpression-mediated influences in ESCC cells were largely reversed by the addition of SLC1A5 expressing plasmid. Circ-AGFG1 could upregulate SLC1A5 expression by sponging miR-497-5p. In summary, circ-AGFG1 acted as an oncogene to elevate the malignant potential and promote the glutamine catabolism of ESCC cells by targeting the miR-497-5p/SLC1A5 axis.
    DOI:  https://doi.org/10.1097/CAD.0000000000001400
  5. Anticancer Drugs. 2022 Oct 06.
      Melanoma is a kind of aggressive skin neoplasms with high mortality. The purpose of this present research was to investigate the effects and potential mechanisms of long-noncoding RNA (lncRNA) MSC antisense RNA 1 (MSC-AS1) in melanoma. MSC-AS1, miR-330-3p and YAP1 expression levels in melanoma tissues and cells were assessed by quantitative real-time polymerase chain reaction. Melanoma cells were evaluated using cell count kit-8, clone formation and ELISA in vitro. The relationship among MSC-AS1, YAP1 and miR-330-3p was validated by pull-down and luciferase reporter assays. Finally, the role of MSC-AS1 in vivo was determined by the xenograft model. Results showed that lncRNA MSC-AS1 was upregulated in melanoma tissues and cells. High expression of MAS-AS1 was positively correlated with a poor prognosis. Pull-down and luciferase reporter demonstrated that miR-330-3p specifically binds directly to YAP1 and MSC-AS1, respectively. MSC-AS1 promoted the expression of YAP1 by downregulating miR-330-3p. Functional experiments suggested that knockdown of MSC-AS1 suppressed the proliferation of melanoma cells and decreased the levels of glutamine, glutamate and α-ketoglutarate, glutaminase and glutamine transporter alanine-serine-cysteine transporter 2. Upregulation of miR-330-3p alleviated the promotion effect of MSC-AS1 overexpression on the proliferation and glutaminolysis of melanoma cells. The above changes could be reversed by YAP1 overexpression. In addition, knockdown of MSC-AS1 dramatically restrained the growth of melanoma cells in xenograft model. In conclusion, our results revealed that MSC-AS1 facilitated the proliferation and glutaminolysis of melanoma cells by regulating miR-330-3p/YAP1 pathway, suggesting that MSC-AS1 could provide a new idea for the treatment of melanoma.
    DOI:  https://doi.org/10.1097/CAD.0000000000001390
  6. World J Gastrointest Oncol. 2022 Sep 15. 14(9): 1887-1891
      Hepatocellular carcinoma (HCC) is the most common type of liver cancer and the third leading cause of cancer-related death worldwide. Factors including carcinogens, infection of hepatitis viruses, alcohol abuse, and metabolic disorders such as non-alcoholic fatty liver disease mainly contribute to HCC initiation and progression. Immunotherapy is one of the most powerful tools for unresectable HCC treatment in patients. CD8+ T cells are a major immune component in the tumor microenvironment with cytotoxic effects against cancer cells. However, these CD8+ T cells commonly display an exhaustion phenotype with high expression of programmed cell death protein 1, T-cell immunoglobulin and mucin-domain containing-3, and/or lymphocyte-activation gene 3, producing low levels of perforin (PRF1) and granzyme B (GZMB), as well as anti-tumor cytokines, such as interferon gamma and tumor necrosis factor alpha. In the referenced study, the authors also showed that deprivation of glutamine decreased the antitumor function of CD8+ T cells, as well as the production of PRF1 and GZMB. However, the role of each amino acid in T cell function and exhaustion may depend on tumor type and tumor microenvironment, including the source of other nutrients. Overall, amino acids or other nutrient metabolites in the tumor microenvironment play a pivotal role in both tumor growth and immune response.
    Keywords:  Amino acids; Hepatocellular carcinoma; Metabolism; T cell function; Tumor microenvironment
    DOI:  https://doi.org/10.4251/wjgo.v14.i9.1887
  7. J Colloid Interface Sci. 2022 May 27. pii: S0021-9797(22)00828-1. [Epub ahead of print]629(Pt B): 773-784
      The efficiency of reactive oxygen species (ROS)-based photodynamic therapy (PDT) is far from satisfactory, because cancer cells can adapt to PDT by upregulating glutathione (GSH) levels. The GSH levels in tumor cells are determined based on glutamine availability via alanine-serine-cysteine transporter 2 (ASCT2)-mediated entry into cells. Herein, we develop co-assembled nanoparticles (PPa/V-9302 NPs) of the photosensitizer pyropheophorbide a (PPa) and V-9302 (a known inhibitor of ASCT2) in a 1:1 M ratio using a one-step precipitation method to auto-enhance photodynamic therapy. The computational simulations revealed that PPa and V-9302 could self-assemble through different driving forces, such as π-π stacking, hydrophobic interactions, and ionic bonds. Such PPa/V-9302 NPs could disrupt the intracellular redox homeostasis due to enhanced ROS production via PPa-induced PDT and reduced GSH synthesis via inhibition of the ASCT2-mediated glutamine flux by V-9302. The in vivo assays reveal that PPa/V-9302 NPs could increase the drug accumulation in tumor sites and suppress tumor growth in BALB/c mice bearing mouse breast carcinoma (4 T1) tumor. Our findings provide a new paradigm for the rational design of the PDT-based combinational cancer therapy.
    Keywords:  Alanine-serine-cysteine transporter 2; Photodynamic therapy; enhanced ROS production; reduced GSH synthesis
    DOI:  https://doi.org/10.1016/j.jcis.2022.05.044
  8. Rinsho Ketsueki. 2022 ;63(9): 1046-1051
      In the bone marrow (BM) microenvironment, acute myeloid leukemia (AML) cells constantly regulate their metabolic state based on extracellular signaling and nutrient availability by making "decisions," such as quiescence, proliferation, and differentiation. AML cells survive by meeting the biochemical demands of increased cell proliferation and continually adapting to changes in nutrient and oxygen availability. In addition, changes in the metabolism of amino acids, which are intermediate metabolites that fuel multiple biosynthetic pathways, as well as protein components, are another modality for meeting these demands. AML cells rewire metabolic pathways to adapt to increased nutritional demands for energy, reduced equivalents, and cell biosynthesis in the BM microenvironment. Furthermore, BM stromal cells and adipocytes play a role in preventing nutrient starvation-induced apoptosis of AML cells. Therefore, targeting metabolic abnormalities in AML cells is a promising novel therapeutic approach. Thus, this review describes the metabolic and molecular mechanisms of mitochondrial oxidative phosphorylation, fatty acid oxidation, and amino acid metabolism in AML cells under the BM microenvironment.
    Keywords:  Acute myeloid leukemia; Bone marrow microenvironment; Energy metabolism
    DOI:  https://doi.org/10.11406/rinketsu.63.1046
  9. Biol Direct. 2022 Oct 01. 17(1): 26
      Metabolic reprogramming is commonly recognized as one important hallmark of cancers. Cancer cells present significant alteration of glucose metabolism, oxidative phosphorylation, and lipid metabolism. Recent findings demonstrated that long non-coding RNAs control cancer development and progression by modulating cell metabolism. Here, we give an overview of breast cancer metabolic reprogramming and the role of long non-coding RNAs in driving cancer-specific metabolic alteration.
    Keywords:  Breast cancer; Cell metabolism; Long non-coding RNAs
    DOI:  https://doi.org/10.1186/s13062-022-00341-x
  10. Front Oncol. 2022 ;12 1000106
      Multiple myeloma (MM) is a plasma cell dyscrasia characterized by the clonal proliferation of antibody producing plasma cells. Despite the use of next generation proteasome inhibitors (PI), immunomodulatory agents (IMiDs) and immunotherapy, the development of therapy refractory disease is common, with approximately 20% of MM patients succumbing to aggressive treatment-refractory disease within 2 years of diagnosis. A large emphasis is placed on understanding inter/intra-tumoral genetic, epigenetic and transcriptomic changes contributing to relapsed/refractory disease, however, the contribution of cellular metabolism and intrinsic/extrinsic metabolites to therapy sensitivity and resistance mechanisms is less well understood. Cancer cells depend on specific metabolites for bioenergetics, duplication of biomass and redox homeostasis for growth, proliferation, and survival. Cancer therapy, importantly, largely relies on targeting cellular growth, proliferation, and survival. Thus, understanding the metabolic changes intersecting with a drug's mechanism of action can inform us of methods to elicit deeper responses and prevent acquired resistance. Knowledge of the Warburg effect and elevated aerobic glycolysis in cancer cells, including MM, has allowed us to capitalize on this phenomenon for diagnostics and prognostics. The demonstration that mitochondria play critical roles in cancer development, progression, and therapy sensitivity despite the inherent preference of cancer cells to engage aerobic glycolysis has re-invigorated deeper inquiry into how mitochondrial metabolism regulates tumor biology and therapy efficacy. Mitochondria are the sole source for coupled respiration mediated ATP synthesis and a key source for the anabolic synthesis of amino acids and reducing equivalents. Beyond their core metabolic activities, mitochondria facilitate apoptotic cell death, impact the activation of the cytosolic integrated response to stress, and through nuclear and cytosolic retrograde crosstalk maintain cell fitness and survival. Here, we hope to shed light on key mitochondrial functions that shape MM development and therapy sensitivity.
    Keywords:  B cell; metabolism; mitochondria; multiple myeloma; therapy
    DOI:  https://doi.org/10.3389/fonc.2022.1000106
  11. Stem Cell Res Ther. 2022 Oct 04. 13(1): 494
      BACKGROUND: Hepatic fibrosis is a common pathologic stage in chronic liver disease development, which might ultimately lead to liver cirrhosis. Accumulating evidence suggests that adipose-derived stromal cells (ADSCs)-based therapies show excellent therapeutic potential in liver injury disease owing to its superior properties, including tissue repair ability and immunomodulation effect. However, cell-based therapy still limits to several problems, such as engraftment efficiency and immunoreaction, which impede the ADSCs-based therapeutics development. So, ADSCs-derived extracellular vesicles (EVs), especially for exosomes (ADSC-EXO), emerge as a promise cell-free therapeutics to ameliorate liver fibrosis. The effect and underlying mechanisms of ADSC-EXO in liver fibrosis remains blurred.METHODS: Hepatic fibrosis murine model was established by intraperitoneal sequential injecting the diethylnitrosamine (DEN) for two weeks and then carbon tetrachloride (CCl4) for six weeks. Subsequently, hepatic fibrosis mice were administrated with ADSC-EXO (10 μg/g) or PBS through tail vein infusion for three times in two weeks. To evaluate the anti-fibrotic capacity of ADSC-EXO, we detected liver morphology by histopathological examination, ECM deposition by serology test and Sirius Red staining, profibrogenic markers by qRT-PCR assay. LX-2 cells treated with TGF-β (10 ng/ml) for 12 h were conducted for evaluating ADSC-EXO effect on activated hepatic stellate cells (HSCs). RNA-seq was performed for further analysis of the underlying regulatory mechanisms of ADSC-EXO in liver fibrosis.
    RESULTS: In this study, we obtained isolated ADSCs, collected and separated ADSCs-derived exosomes. We found that ADSC-EXO treatment could efficiently ameliorate DEN/CCl4-induced hepatic fibrosis by improving mice liver function and lessening hepatic ECM deposition. Moreover, ADSC-EXO intervention could reverse profibrogenic phenotypes both in vivo and in vitro, including HSCs activation depressed and profibrogenic markers inhibition. Additionally, RNA-seq analysis further determined that decreased glutamine synthetase (Glul) of perivenous hepatocytes in hepatic fibrosis mice could be dramatically up-regulated by ADSC-EXO treatment; meanwhile, glutamine and ammonia metabolism-associated key enzyme OAT was up-regulated and GLS2 was down-regulated by ADSC-EXO treatment in mice liver. In addition, glutamine synthetase inhibitor would erase ADSC-EXO therapeutic effect on hepatic fibrosis.
    CONCLUSIONS: These findings demonstrated that ADSC-derived exosomes could efficiently alleviate hepatic fibrosis by suppressing HSCs activation and remodeling glutamine and ammonia metabolism mediated by hepatocellular glutamine synthetase, which might be a novel and promising anti-fibrotic therapeutics for hepatic fibrosis disease.
    Keywords:  Adipose-derived stromal cells; Exosomes; Glutamine synthetase; Hepatic fibrosis
    DOI:  https://doi.org/10.1186/s13287-022-03049-x
  12. Front Cell Dev Biol. 2022 ;10 1013885
      Cancer cells and immune cells all undergo remarkably metabolic reprogramming during the oncogenesis and tumor immunogenic killing processes. The increased dependency on glycolysis is the most typical trait, profoundly involved in the tumor immune microenvironment and cancer immunity regulation. However, how to best utilize glycolytic targets to boost anti-tumor immunity and improve immunotherapies are not fully illustrated. In this review, we describe the glycolytic remodeling of various immune cells within the tumor microenvironment (TME) and the deleterious effects of limited nutrients and acidification derived from enhanced tumor glycolysis on immunological anti-tumor capacity. Moreover, we elucidate the underlying regulatory mechanisms of glycolytic reprogramming, including the crosstalk between metabolic pathways and immune checkpoint signaling. Importantly, we summarize the potential glycolysis-related targets that are expected to improve immunotherapy benefits. Our understanding of metabolic effects on anti-tumor immunity will be instrumental for future therapeutic regimen development.
    Keywords:  TME; cancer metabolism; glycolysis; immunity regulation; immunotherapy
    DOI:  https://doi.org/10.3389/fcell.2022.1013885