bims-glucam Biomed News
on Glutamine cancer metabolism
Issue of 2020‒11‒22
eleven papers selected by
Sreeparna Banerjee
Middle East Technical University


  1. Biochem Biophys Res Commun. 2020 Nov 16. pii: S0006-291X(20)32062-3. [Epub ahead of print]
    Watanabe K, Nagao M, Toh R, Irino Y, Shinohara M, Iino T, Yoshikawa S, Tanaka H, Satomi-Kobayashi S, Ishida T, Hirata KI.
      BACKGROUND: Metabolic remodeling in cardiomyocytes is deeply associated with the pathogenesis of heart failure (HF). Glutaminolysis is an anaplerotic pathway that incorporates α-ketoglutarate (αKG) derived from glutamine into the tricarboxylic acid (TCA) cycle. It is well known that cancer cells depend on glutamine for their increased energy demand and proliferation; however, the physiological roles of glutamine metabolism in failing hearts remain unclear.OBJECTIVE: To investigate the regulatory mechanisms and biological effects of glutamine metabolism in oxidative stress-induced failing myocardium.
    METHODS AND RESULTS: The intracellular levels of glutamine, glutamate, and αKG were significantly decreased by H2O2 stimulation in rat neonatal cardiomyocytes (RNCMs). To better understand the metabolic flux in failing myocardium, we performed a stable isotope tracing study and found that glutaminolysis was upregulated in RNCMs under oxidative stress. Consistent with this, the enzymatic activity of glutaminase (Gls), which converts glutamine to glutamate, was augmented in RNCMs treated with H2O2. These findings suggest that glutamine anaplerosis is enhanced in cardiomyocytes under oxidative stress to compensate for the reduction of αKG. Furthermore, the inhibition of Gls reduced cardiac cell viability, ATP production, and glutathione (GSH) synthesis in RNCMs with H2O2 stimulation. Finally, we evaluated the effects of αKG on failing myocardium and observed that dimethyl α-ketoglutarate (DMKG) suppressed oxidative stress-induced cell death likely due to the enhancement of intracellular ATP and GSH levels.
    CONCLUSION: Our study demonstrates that under oxidative stress, glutaminolysis is upregulated to compensate for the loss of αKG and its replenishment into the TCA cycle, thereby exerting cardioprotective effects by maintaining ATP and GSH levels. Modulation of glutamine metabolism in failing hearts might provide a new therapeutic strategy for HF.
    Keywords:  Glutaminase; Glutaminolysis; Glutathione; Metabolic remodeling; Oxidative stress; α-ketoglutarate
    DOI:  https://doi.org/10.1016/j.bbrc.2020.11.018
  2. Front Oncol. 2020 ;10 589508
    Wang Z, Liu F, Fan N, Zhou C, Li D, Macvicar T, Dong Q, Bruns CJ, Zhao Y.
      Metabolism rewiring is an important hallmark of cancers. Being one of the most abundant free amino acids in the human blood, glutamine supports bioenergetics and biosynthesis, tumor growth, and the production of antioxidants through glutaminolysis in cancers. In glutamine dependent cancer cells, more than half of the tricarboxylic/critic acid (TCA) metabolites are derived from glutamine. Glutaminolysis controls the process of converting glutamine into TCA cycle metabolites through the regulation of multiple enzymes, among which the glutaminase shows the importance as the very first step in this process. Targeting glutaminolysis via glutaminase inhibition emerges as a promising strategy to disrupt cancer metabolism and tumor progression. Here, we review the regulation of glutaminase and the role of glutaminase in cancer metabolism and metastasis. Furthermore, we highlight the glutaminase inhibitor based metabolic therapy strategy and their potential applications in clinical scenarios.
    Keywords:  cancer metabolism; combination therapy; glutaminase inhibitor; glutaminolysis; metastasis
    DOI:  https://doi.org/10.3389/fonc.2020.589508
  3. Mol Oncol. 2020 Nov 18.
    Guo X, Wang A, Wang W, Wang Y, Chen H, Liu X, Xia T, Zhang A, Chen D, Qi H, Ling T, Piao HL, Wang HJ.
      Dependence on glutamine and acceleration of fatty acid oxidation (FAO) are both metabolic characteristics of triple-negative breast cancer (TNBC). With the rapid growth of tumors, accelerated glutamine catabolism depletes local glutamine, resulting in glutamine deficiency. Studies have shown that the use of alternative energy sources, such as fatty acids, enables tumor cells to continue to proliferate rapidly in a glutamine-deficient microenvironment. However, the detailed mechanisms behind this metabolic change are still unclear. Herein, we identified HRD1 as a regulatory protein for FAO that specifically inhibits TNBC cell proliferation under glutamine-deficient conditions. Furthermore, we observed that HRD1 expression is significantly downregulated under glutamine deprivation and HRD1 directly ubiquitinates and stabilizes CPT2 through K48-linked ubiquitination. In addition, the inhibition of CPT2 expression dramatically suppresses TNBC cell proliferation mediated by HRD1 knockdown in vitro and in vivo. Finally, we found that the glutaminase (GLS) inhibitor CB839 significantly inhibited TNBC cells tumor growth, but not in the HRD1 knock-downed TNBC cells. These findings provide an invaluable insight into HRD1 as a regulator of lipid metabolism and have important implications for TNBC therapeutic targeting.
    Keywords:  CPT2; FAO; HRD1; TNBC; ubiquitination
    DOI:  https://doi.org/10.1002/1878-0261.12856
  4. Mol Cell. 2020 Nov 19. pii: S1097-2765(20)30783-8. [Epub ahead of print]80(4): 555-557
    Matias MI, Dardalhon V, Taylor N.
      In this issue of Molecular Cell, Byun et al. (2020) find that the dual targeting of glutamine metabolism and the PD-L1 checkpoint inhibitor augments anti-tumor immunity. Mechanistically, decreased glutamine availability attenuated S-glutathionylation of SERCA, resulting in an increase in cytosolic calcium, enhanced NF-κB activity, and upregulation of programmed death-ligand 1.
    DOI:  https://doi.org/10.1016/j.molcel.2020.11.005
  5. Int J Mol Sci. 2020 Nov 12. pii: E8502. [Epub ahead of print]21(22):
    Rai V, Agrawal S.
      Pancreatic ductal adenocarcinoma (PDAC), an extremely aggressive invasive cancer, is the fourth most common cause of cancer-related death in the United States. The higher mortality in PDAC is often attributed to the inability to detect it until it has reached advanced stages. The major challenge in tackling PDAC is due to its elusive pathology, minimal effectiveness, and resistance to existing therapeutics. The aggressiveness of PDAC is due to the capacity of tumor cells to alter their metabolism, utilize the diverse available fuel sources to adapt and grow in a hypoxic and harsh environment. Therapeutic resistance is due to the presence of thick stroma with poor angiogenesis, thus making drug delivery to tumor cells difficult. Investigating the metabolic mediators and enzymes involved in metabolic reprogramming may lead to the identification of novel therapeutic targets. The metabolic mediators of glucose, glutamine, lipids, nucleotides, amino acids and mitochondrial metabolism have emerged as novel therapeutic targets. Additionally, the role of autophagy, macropinocytosis, lysosomal transport, recycling, amino acid transport, lipid transport, and the role of reactive oxygen species has also been discussed. The role of various pro-inflammatory cytokines and immune cells in the pathogenesis of PDAC and the metabolites involved in the signaling pathways as therapeutic targets have been previously discussed. This review focuses on the therapeutic potential of metabolic mediators in PDAC along with stemness due to metabolic alterations and their therapeutic importance.
    Keywords:  PDAC; metabolic mediators; metabolomics; therapeutic targets
    DOI:  https://doi.org/10.3390/ijms21228502
  6. Mol Cancer Ther. 2020 Nov 17. pii: molcanther.0480.2020. [Epub ahead of print]
    Geeraerts SL, Kampen KR, Rinaldi G, Gupta P, Planque M, Louros N, Heylen E, De Cremer K, De Brucker K, Vereecke S, Verbelen B, Vermeersch P, Schymkowitz J, Rousseau F, Cassiman D, Fendt SM, Voet A, Cammue BPA, Thevissen K, De Keersmaecker K.
      Metabolic rewiring is a hallmark of cancer that supports tumor growth, survival and chemotherapy resistance. While normal cells often rely on extracellular serine and glycine supply, a significant subset of cancers becomes addicted to intracellular serine/glycine synthesis, offering an attractive drug target. Previously developed inhibitors of serine/glycine synthesis enzymes did not reach clinical trials due to unfavorable pharmacokinetic profiles, implying that further efforts to identify clinically applicable drugs targeting this pathway are required. In this study, we aimed to develop therapies that can rapidly enter the clinical practice by focusing on drug repurposing, as their safety and cost-effectiveness have been optimized before. Using a yeast model system, we repurposed two compounds, sertraline and thimerosal, for their selective toxicity against serine/glycine synthesis addicted breast cancer and T-cell acute lymphoblastic leukemia cell lines. Isotope tracer metabolomics, computational docking, enzymatic assays and drug-target interaction studies revealed that sertraline and thimerosal inhibit serine/glycine synthesis enzymes serine hydroxymethyltransferase and phosphoglycerate dehydrogenase, respectively. In addition, we demonstrated that sertraline's anti-proliferative activity was further aggravated by mitochondrial inhibitors, such as the antimalarial artemether, by causing G1-S cell cycle arrest. Most notably, this combination also resulted in serine-selective antitumor activity in breast cancer mouse xenografts. Collectively, this study provides molecular insights into the repurposed mode-of-action of the antidepressant sertraline and allows to delineate a hitherto unidentified group of cancers being particularly sensitive to treatment with sertraline. Furthermore, we highlight the simultaneous inhibition of serine/glycine synthesis and mitochondrial metabolism as a novel treatment strategy for serine/glycine synthesis addicted cancers.
    DOI:  https://doi.org/10.1158/1535-7163.MCT-20-0480
  7. Nutr Res. 2020 Sep 19. pii: S0271-5317(20)30529-7. [Epub ahead of print]
    Dohl J, Passos MEP, Foldi J, Chen Y, Pithon-Curi T, Curi R, Gorjao R, Deuster PA, Yu T.
      Glutamine and glucose are both oxidized in the mitochondria to supply the majority of usable energy for processes of cellular function. Low levels of plasma and skeletal muscle glutamine are associated with severe illness. We hypothesized that glutamine deficiency would disrupt mitochondrial integrity and impair cell function. C2C12 mouse myoblasts were cultured in control media supplemented with 5.6 mmol/L glucose and 2 mmol/L glutamine, glutamine depletion (Gln-) or glucose depletion (Glc-) media. We compared mitochondrial morphology and function, as well as cell proliferation, myogenic differentiation, and heat-shock response in these cells. Glc- cells exhibited slightly elongated mitochondrial networks and increased mitochondrial mass, with normal membrane potential (ΔΨm). Mitochondria in Gln- cells became hyperfused and swollen, which were accompanied by severe disruption of cristae and decreases in ΔΨm, mitochondrial mass, the inner mitochondrial membrane remodeling protein OPA1, electron transport chain complex IV protein expression, and markers of mitochondrial biogenesis and bioenergetics. In addition, Gln- increased the autophagy marker LC3B-II on the mitochondrial membrane. Notably, basal mitochondrial respiration was increased in Glc- cells as compared to control cells, whereas maximal respiration remained unchanged. In contrast, basal respiration, maximal respiration and reserve capacity were all decreased in Gln- cells. Consistent with the aforementioned mitochondrial deficits, Gln- cells had lower growth rates and myogenic differentiation, as well as a higher rate of cell death under heat stress conditions than Glc- and control cells. We conclude that glutamine is essential for mitochondrial integrity and function; glutamine depletion impairs myoblast proliferation, differentiation, and the heat-shock response.
    Keywords:  mitochondrial bioenergetics; mitochondrial biogenesis; mitochondrial fission; mitochondrial fusion; mitophagy; nutrient depletion; oxidative phosphorylation
    DOI:  https://doi.org/10.1016/j.nutres.2020.09.006
  8. Environ Int. 2020 Nov 13. pii: S0160-4120(20)32197-8. [Epub ahead of print]146 106242
    Torres S, Samino S, Ràfols P, Martins-Green M, Correig X, Ramírez N.
      BACKGROUND: Thirdhand smoke (THS) is the accumulation of tobacco smoke gases and particles that become embedded in materials. Previous studies concluded that THS exposure induces oxidative stress and hepatic steatosis in liver. Despite the knowledge of the increasing danger of THS exposure, the metabolic disorders caused in liver are still not well defined.OBJECTIVES: The aim of this study is to investigate the metabolic disorders caused by THS exposure in liver of male mice and to evaluate the effects of an antioxidant treatment in the exposed mice.
    METHODS: We investigated liver from three mice groups: non-exposed mice, exposed to THS in conditions that mimic human exposure and THS-exposed treated with antioxidants. Liver samples were analyzed using a multiplatform untargeted metabolomics approach including nuclear magnetic resonance (1H NMR), liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) and laser desorption/ionization mass spectrometry imaging (MSI), able to map lipids in liver tissues.
    RESULTS: Our multiplatform approach allowed the annotation of eighty-eight metabolites altered by THS exposure, including amino acids, nucleotides and several types of lipids. The main dysregulated pathways by THS exposure were D-glutamine and D-glutamate metabolism, glycerophospholipid metabolism and oxidative phosphorylation and glutathione metabolism, being the last two related to oxidative stress. THS-exposed mice also presented higher lipid accumulation and decrease of metabolites involved in the phosphocholine synthesis, as well as choline deficiency, which is related to Non-Alcoholic Fatty Liver Disease and steatohepatitis. Interestingly, the antioxidant treatment of THS-exposed mice reduced the accumulation of some lipids, but could not revert all the metabolic alterations, including some related to the impairment of the mitochondrial function.
    CONCLUSIONS: THS alters liver function at a molecular level, dysregulating many metabolic pathways. The molecular evidences provided here confirm that THS is a new factor for liver steatosis and provide the basis for future research in this respect.
    Keywords:  LC-based metabolomics; Liver damage; Mass Spectrometry Imaging; NAFLD; NMR-based metabolomics; Thirdhand smoke
    DOI:  https://doi.org/10.1016/j.envint.2020.106242
  9. Leukemia. 2020 Nov 16.
    Emadi A, Kapadia B, Bollino D, Bhandary B, Baer MR, Niyongere S, Strovel ET, Kaizer H, Chang E, Choi EY, Ma X, Tighe KM, Carter-Cooper B, Moses BS, Civin CI, Mahurkar A, Shetty AC, Gartenhaus RB, Kamangar F, Lapidus RG.
      Complex karyotype acute myeloid leukemia (CK-AML) has a dismal outcome with current treatments, underscoring the need for new therapies. Here, we report synergistic anti-leukemic activity of the BCL-2 inhibitor venetoclax (Ven) and the asparaginase formulation Pegylated Crisantaspase (PegC) in CK-AML in vitro and in vivo. Ven-PegC combination inhibited growth of multiple AML cell lines and patient-derived primary CK-AML cells in vitro. In vivo, Ven-PegC showed potent reduction of leukemia burden and improved survival, compared with each agent alone, in a primary patient-derived CK-AML xenograft. Superiority of Ven-PegC, compared to single drugs, and, importantly, the clinically utilized Ven-azacitidine combination, was also demonstrated in vivo in CK-AML. We hypothesized that PegC-mediated plasma glutamine depletion inhibits 4EBP1 phosphorylation, decreases the expression of proteins such as MCL-1, whose translation is cap dependent, synergizing with the BCL-2 inhibitor Ven. Ven-PegC treatment decreased cellular MCL-1 protein levels in vitro by enhancing eIF4E-4EBP1 interaction on the cap-binding complex via glutamine depletion. In vivo, Ven-PegC treatment completely depleted plasma glutamine and asparagine and inhibited mRNA translation and cellular protein synthesis. Since this novel mechanistically-rationalized regimen combines two drugs already in use in acute leukemia treatment, we plan a clinical trial of the Ven-PegC combination in relapsed/refractory CK-AML.
    DOI:  https://doi.org/10.1038/s41375-020-01080-6
  10. Vaccines (Basel). 2020 Nov 16. pii: E685. [Epub ahead of print]8(4):
    Monteiro FR, Roseira T, Amaral JB, Paixão V, Almeida EB, Foster R, Sperandio A, Rossi M, Amirato GR, Apostólico JS, Santos CAF, Felismino ES, Leal FB, Thomazelli LM, Durigon EL, Oliveira DBL, Vieira RP, Santos JMB, Bachi ALL.
      BACKGROUND: Since aging affects the immune responses against vaccination, the present study evaluated the effects of L-glutamine (Gln) supplementation in the humoral and cellular immune responses in elderly subjects, practitioners or not, of physical exercise training.METHODS: Eighty-four elderly people (aged 72.6 ± 6.1), non-practitioners (NP, n = 31), and practitioners of combined-exercise training (CET, n = 53) were submitted to Influenza virus vaccination and supplemented with Gln (0.3 g/kg of weight + 10 g of maltodextrin, groups: NP-Gln (n = 14), and CET-Gln (n = 26)), or placebo (10 g of maltodextrin, groups: NP-PL (n = 17), and CET-PL (n = 27)). Blood samples were collected pre (baseline) and 30 days post-vaccination and supplementation.
    RESULTS: Comparing with the baseline values, whereas the NP-Gln and CET-PL groups showed higher specific-IgM levels, the CET-Gln group showed higher specific-IgM and IgA levels post-vaccination. The titer rate of hemagglutination inhibition was higher in the CET-Gln, NP-PL, and NP-Gln groups post-vaccination than baseline values. The absolute number of naive and effector CD4+ T cells was higher especially in the NP-Gln and CET-Gln groups, whilst activated CD4+ T cells were higher in CET subgroups post-vaccination.
    CONCLUSION: Our results showed that both l-glutamine supplementation and combined-exercise training can improve the immune responses to the Influenza virus vaccine in elderly subjects.
    Keywords:  amino acid; exercise training; flu vaccine; immunoglobulins; lymphocytes
    DOI:  https://doi.org/10.3390/vaccines8040685
  11. J Neurooncol. 2020 Nov;150(2): 269-359
    Farrell C, Shi W, Bodman A, Olson JJ.
      TARGET POPULATION: These recommendations apply to adult patients with newly diagnosed or suspected glioblastoma.IMAGING: Question What imaging modalities are in development that may be able to provide improvements in diagnosis, and therapeutic guidance for individuals with newly diagnosed glioblastoma?
    RECOMMENDATION: Level III: It is suggested that techniques utilizing magnetic resonance imaging for diffusion weighted imaging, and to measure cerebral blood and magnetic spectroscopic resonance imaging of N-acetyl aspartate, choline and the choline to N-acetyl aspartate index to assist in diagnosis and treatment planning in patients with newly diagnosed or suspected glioblastoma.
    SURGERY: Question What new surgical techniques can be used to provide improved tumor definition and resectability to yield better tumor control and prognosis for individuals with newly diagnosed glioblastoma?
    RECOMMENDATIONS: Level II: The use of 5-aminolevulinic acid is recommended to improve extent of tumor resection in patients with newly diagnosed glioblastoma. Level II: The use of 5-aminolevulinic acid is recommended to improve median survival and 2 year survival in newly diagnosed glioblastoma patients with clinical characteristics suggesting poor prognosis. Level III: It is suggested that, when available, patients be enrolled in properly designed clinical trials assessing the value of diffusion tensor imaging in improving the safety of patients with newly diagnosed glioblastoma undergoing surgery.
    NEUROPATHOLOGY: Question What new pathology techniques and measurement of biomarkers in tumor tissue can be used to provide improved diagnostic ability, and determination of therapeutic responsiveness and prognosis for patients with newly diagnosed glioblastomas?
    RECOMMENDATIONS: Level II: Assessment of tumor MGMT promoter methylation status is recommended as a significant predictor of a longer progression free survival and overall survival in patients with newly diagnosed with glioblastoma. Level II: Measurement of tumor expression of neuron-glia-2, neurofilament protein, glutamine synthetase and phosphorylated STAT3 is recommended as a predictor of overall survival in patients with newly diagnosed with glioblastoma. Level III: Assessment of tumor IDH1 mutation status is suggested as a predictor of longer progression free survival and overall survival in patients with newly diagnosed with glioblastoma. Level III: Evaluation of tumor expression of Phosphorylated Mitogen-Activated Protein Kinase protein, EGFR protein, and Insulin-like Growth Factor-Binding Protein-3 is suggested as a predictor of overall survival in patients with newly diagnosed with glioblastoma.
    RADIATION: Question What radiation therapy techniques are in development that may be used to provide improved tumor control and prognosis for individuals with newly diagnosed glioblastomas?
    RECOMMENDATIONS: Level III: It is suggested that patients with newly diagnosed glioblastoma undergo pretreatment radio-labeled amino acid tracer positron emission tomography to assess areas at risk for tumor recurrence to assist in radiation treatment planning. Level III: It is suggested that, when available, patients be with newly diagnosed glioblastomas be enrolled in properly designed clinical trials of radiation dose escalation, altered fractionation, or new radiation delivery techniques.
    CHEMOTHERAPY: Question What emerging chemotherapeutic agents or techniques are available to provide better tumor control and prognosis for patients with newly diagnosed glioblastomas?
    RECOMMENDATION: Level III: As no emerging chemotherapeutic agents or techniques were identified in this review that improved tumor control and prognosis it is suggested that, when available, patients with newly diagnosed glioblastomas be enrolled in properly designed clinical trials of chemotherapy.
    MOLECULAR AND TARGETED THERAPY: Question What new targeted therapy agents are available to provide better tumor control and prognosis for individuals with newly diagnosed glioblastomas?
    RECOMMENDATION: Level III: As no new molecular and targeted therapies have clearly provided better tumor control and prognosis it is suggested that, when available, patients with newly diagnosed glioblastomas be enrolled in properly designed clinical trials of molecular and targeted therapies IMMUNOTHERAPY: Question What emerging immunotherapeutic agents or techniques are available to provide better tumor control and prognosis for patients with newly diagnosed glioblastomas?
    RECOMMENDATION: Level III: As no immunotherapeutic agents have clearly provided better tumor control and prognosis it is suggested that, when available, patients with newly diagnosed glioblastomas be enrolled in properly designed clinical trials of immunologically-based therapies.
    NOVEL THERAPIES: Question What novel therapies or techniques are in development to provide better tumor control and prognosis for individuals with newly diagnosed glioblastomas?
    RECOMMENDATIONS: Level II: The use of tumor-treating fields is recommended for patients with newly diagnosed glioblastoma who have undergone surgical debulking and completed concurrent chemoradiation without progression of disease at the time of tumor-treating field therapy initiation. Level II: It is suggested that, when available, enrollment in properly designed studies of vector containing herpes simplex thymidine kinase gene and prodrug therapies be considered in patients with newly diagnosed glioblastoma.
    Keywords:  Chemotherapy; Glioblastoma; Imaging; Immunotherapy; Neuropathology; Radiation therapy; Surgery; Targeted therapy
    DOI:  https://doi.org/10.1007/s11060-020-03607-4