bims-ectoca Biomed News
on Epigenetic control of tolerance in cancer
Issue of 2021‒09‒05
eighteen papers selected by
Ankita Daiya
BITS Pilani


  1. Biochim Biophys Acta Rev Cancer. 2021 Aug 26. pii: S0304-419X(21)00118-9. [Epub ahead of print]1876(2): 188620
      Cancer cells require high levels of transcription to survive and maintain their cancerous phenotype. For several years, global transcription inhibitors have been used in the treatment of cancer. However, recent advances in understanding the functioning of the basal transcription machinery and the discovery of new drugs that affect the components of this machinery have generated a new boom in the use of this type of drugs to treat cancer. Inhibiting transcription at the global level in the cell generates a stress situation in which the cancer cell responds by overexpressing hundreds of genes in response to this transcriptional stress. Many of these over-transcribed genes encode factors that may be involved in the selection of cells resistant to the treatment and with a greater degree of malignancy. In this study, we reviewed various examples of substances that inhibit global transcription, as well as their targets, that have a high potential to be used against cancer. We also analysed what kinds of genes are overexpressed in the response to transcriptional stress by different substances and finally we discuss what types of studies are necessary to understand this type of stress response to have more tools to fight cancer.
    Keywords:  Cancer therapy; Chemotherapy resistance; Pre-initiation complex; RNA polymerase II; Stress response; Transcription addiction; Transcription inhibitors
    DOI:  https://doi.org/10.1016/j.bbcan.2021.188620
  2. Crit Rev Clin Lab Sci. 2021 Sep 02. 1-18
      Despite significant progress in targeted therapies, cancer recurrence remains a major cause of mortality worldwide. Identification of accurate biomarkers, through molecular profiling in healthy and cancer patient samples, will improve diagnosis and promote personalized medicine. While genetic and epigenetic alterations of DNA are currently exploited as cancer biomarkers, their robustness is limited by tumor heterogeneity. Recently, cancer-associated changes in RNA marks have emerged as a promising source of diagnostic and prognostic biomarkers. RNA epigenetics (also known as epitranscriptomics) is an emerging field in which at least 150 chemical modifications in all types of RNA (mRNA, tRNA, lncRNA, rRNA, and microRNA) have been detected. These modifications fine-tune gene expression in both physiological and pathological processes. A growing number of studies have established links between specific modified nucleoside levels in solid/liquid biopsies, and cancer onset and progression. In this review, we highlight the potential role of epitranscriptomic markers in refining cancer diagnosis and/or prognosis. RNA modification patterns may contain important information for establishing an initial diagnosis, monitoring disease evolution, and predicting response to treatment. Furthermore, recent developments in mass spectrometry allow reliable quantification of RNA marks in solid biopsies and biological fluids. We discuss the great potential of mass spectrometry for identifying epitranscriptomic biomarker signatures in cancer diagnosis. While there are various methods to quantify modified nucleosides, most are unable to detect and quantify more than one type of RNA modification at a time. Mass spectrometry analyses, especially GC-MS/MS and LC-MS/MS, overcome this limitation and simultaneously detect modified nucleosides by multiple reaction monitoring. Indeed, several groups are currently validating mass spectrometry methods that quantify several nucleosides at one time in liquid biopsies. The challenge now is to exploit these powerful analytical tools to establish epitranscriptomic signatures that should open new perspectives in personalized medicine. This review summarizes the growing clinical field of analysis of RNA modifications and discusses pre-analytical and analytical approaches, focusing in particular on the development of new mass spectrometry tools and their clinical applications.
    Keywords:  Epitranscriptomics; biomarker; cancer; mass spectrometry
    DOI:  https://doi.org/10.1080/10408363.2021.1958743
  3. Nat Commun. 2021 Sep 02. 12(1): 5240
      β-actin is a crucial component of several chromatin remodeling complexes that control chromatin structure and accessibility. The mammalian Brahma-associated factor (BAF) is one such complex that plays essential roles in development and differentiation by regulating the chromatin state of critical genes and opposing the repressive activity of polycomb repressive complexes (PRCs). While previous work has shown that β-actin loss can lead to extensive changes in gene expression and heterochromatin organization, it is not known if changes in β-actin levels can directly influence chromatin remodeling activities of BAF and polycomb proteins. Here we conduct a comprehensive genomic analysis of β-actin knockout mouse embryonic fibroblasts (MEFs) using ATAC-Seq, HiC-seq, RNA-Seq and ChIP-Seq of various epigenetic marks. We demonstrate that β-actin levels can induce changes in chromatin structure by affecting the complex interplay between chromatin remodelers such as BAF/BRG1 and EZH2. Our results show that changes in β-actin levels and associated chromatin remodeling activities can not only impact local chromatin accessibility but also induce reversible changes in 3D genome architecture. Our findings reveal that β-actin-dependent chromatin remodeling plays a role in shaping the chromatin landscape and influences the regulation of genes involved in development and differentiation.
    DOI:  https://doi.org/10.1038/s41467-021-25596-2
  4. J Biol Chem. 2021 Aug 30. pii: S0021-9258(21)00946-7. [Epub ahead of print] 101145
      Bromodomains (BD) are conserved reader modules that bind acetylated lysine residues on histones. Although much has been learned regarding the in vitro properties of these domains, less is known about their function within chromatin complexes. SWI/SNF chromatin-remodeling complexes modulate transcription and contribute to DNA damage repair. Mutations in SWI/SNF subunits have been implicated in many cancers. Here we demonstrate that the BD of Caenorhabditis elegans SMARCA4/BRG1, a core SWI/SNF subunit, recognizes acetylated lysine 14 of histone H3 (H3K14ac), similar to its Homo sapiens ortholog. We identify the interactions of SMARCA4 with the acetylated histone peptide from a 1.29 Å-resolution crystal structure of the CeSMARCA4 BD-H3K14ac complex. Significantly, most of the SMARCA4 BD residues in contact with the histone peptide are conserved with other proteins containing family VIII bromodomains. Based on the premise that binding specificity is conserved among bromodomain orthologs, we propose that loop residues outside of the binding pocket position contact residues to recognize the H3K14ac sequence. CRISPR-Cas9-mediated mutations in the SMARCA4 BD that abolish H3K14ac binding in vitro had little or no effect on C. elegans viability or physiological function in vivo. However, combining SMARCA4 BD mutations with knockdown of the SWI/SNF accessory subunit PBRM-1 resulted in severe developmental defects in animals. In conclusion, we demonstrated an essential function for the SWI/SNF bromodomain in vivo and detected potential redundancy in epigenetic readers in regulating chromatin remodeling. These findings have implications for the development of small molecule BD inhibitors to treat cancers and other diseases.
    Keywords:  BRG1; C. elegans; CRISPR/Cas; H3K14ac; SMARCA4; SWI/SNF; bromodomain; chromatin regulation; epigenetics; gene deletion; protein microarray; protein structure
    DOI:  https://doi.org/10.1016/j.jbc.2021.101145
  5. Mol Oncol. 2021 Aug 28.
      Determination of tumour-specific transcription based on liquid biopsies possesses a large diagnostic and prognostic potential in non-small cell lung cancer (NSCLC). Cell-free DNA (cfDNA) packed in nucleosomes mirrors the histone modification profiles present in the cells of origin. H3 lysine 36 trimethylation (H3K36me3)-modified nucleosomes are associated with active genes and, therefore, cell-free chromatin immunoprecipitation (cfChIP) of H3K36me3-associated cfDNA has the potential to delineate whether transcription of a particular gene is occurring in the cells from which its cfDNA originates. We hypothesized that cfChIP can delineate transcriptional status of genes harbouring somatic cancer mutations and analysed the recurrently observed EGFR-L858R mutation as an example. In representative NSCLC cell lines, the relationship between wild type (WT) and mutated EGFR transcriptional activity and mRNA expression levels was analysed using H3K36me3 ChIP and EGFR mRNA reverse transcription quantitative PCR (RT-qPCR), respectively. The ChIP analysis showed that both WT and mutated EGFR are transcribed, and that mRNA is similarly expressed per EGFR copy. Based on this observation, we proceeded with EGFR cfChIP using blood plasma from NSCLC patients harbouring the EGFR-L858R mutation. EGFR-WT fragments can originate from both non-tumour cells with no or low EGFR transcription and tumour cells with active EGFR transcription, whereas EGFR-L858R fragments must specifically originate from tumour cells. H3K36me3 cfChIP followed by droplet digital PCR (ddPCR) revealed significantly higher enrichment of EGFR-L858R compared to EGFR-WT fragments. This is in alignment with EGFR-L858R being actively transcribed in the NSCLC tumour cells. This study is proof-of-principle that cfChIP can be used to identify tumour-specific transcriptional activity of mutated alleles, which can expand the utility of liquid-biopsy-based cfDNA analyses to enhance tumour diagnostics and therapeutics.
    Keywords:  ChIP; EGFR; cell-free-DNA; circulating-tumour DNA; diagnostics; liquid-biopsy
    DOI:  https://doi.org/10.1002/1878-0261.13093
  6. Trends Genet. 2021 Aug 27. pii: S0168-9525(21)00227-4. [Epub ahead of print]
      Genomic sequencing has provided insight into the genetic characterization of many organisms, and we are now seeing sequencing technologies turned towards phenotypic characterization of cells, tissues, and whole organisms. In particular, single-cell transcriptomic techniques are revolutionizing certain aspects of cell biology and enabling fundamental discoveries about cellular diversity, cell state, and cell type identity. I argue here that much of this progress depends on abstracting one's view of the cell to regard it as a 'bag of RNA'.
    DOI:  https://doi.org/10.1016/j.tig.2021.08.003
  7. Biophys Rev. 2021 Aug;13(4): 489-505
      The anchorage of Ras isoforms in the membrane and their nanocluster formations have been studied extensively, including their detailed interactions, sizes, preferred membrane environments, chemistry, and geometry. However, the staggering challenge of their epigenetics and chromatin accessibility in distinct cell states and types, which we propose is a major factor determining their specific expression, still awaits unraveling. Ras isoforms are distinguished by their C-terminal hypervariable region (HVR) which acts in intracellular transport, regulation, and membrane anchorage. Here, we review some isoform-specific activities at the plasma membrane from a structural dynamic standpoint. Inspired by physics and chemistry, we recognize that understanding functional specificity requires insight into how biomolecules can organize themselves in different cellular environments. Within this framework, we suggest that isoform-specific expression may largely be controlled by the chromatin density and physical compaction, which allow (or curb) access to "chromatinized DNA." Genes are preferentially expressed in tissues: proteins expressed in pancreatic cells may not be equally expressed in lung cells. It is the rule-not an exception, and it can be at least partly understood in terms of chromatin organization and accessibility state. Genes are expressed when they can be sufficiently exposed to the transcription machinery, and they are less so when they are persistently buried in dense chromatin. Notably, chromatin accessibility can similarly determine expression of drug resistance genes.
    Keywords:  Gene accessibility; HRAS; Inhibitor; K-RAS4A; K-RAS4B; KRAS; NRAS; Signaling
    DOI:  https://doi.org/10.1007/s12551-021-00817-6
  8. Nat Commun. 2021 Sep 01. 12(1): 5228
      EpiScanpy is a toolkit for the analysis of single-cell epigenomic data, namely single-cell DNA methylation and single-cell ATAC-seq data. To address the modality specific challenges from epigenomics data, epiScanpy quantifies the epigenome using multiple feature space constructions and builds a nearest neighbour graph using epigenomic distance between cells. EpiScanpy makes the many existing scRNA-seq workflows from scanpy available to large-scale single-cell data from other -omics modalities, including methods for common clustering, dimension reduction, cell type identification and trajectory learning techniques, as well as an atlas integration tool for scATAC-seq datasets. The toolkit also features numerous useful downstream functions, such as differential methylation and differential openness calling, mapping epigenomic features of interest to their nearest gene, or constructing gene activity matrices using chromatin openness. We successfully benchmark epiScanpy against other scATAC-seq analysis tools and show its outperformance at discriminating cell types.
    DOI:  https://doi.org/10.1038/s41467-021-25131-3
  9. Int J Cancer. 2021 Sep 03.
      Bladder cancer represents a highly heterogeneous disease characterized by distinct histological, molecular, and clinical phenotypes, and a detailed analysis of tumor cell invasion and crosstalks within bladder tumor cells has not been determined. Here, we applied droplet-based single-cell RNA sequencing (scRNA-seq) to acquire transcriptional profiles of 36 619 single cells isolated from 7 patients. Single cell transcriptional profiles matched well with the pathological basal/luminal subtypes. Notably, in T1 tumors diagnosed as luminal subtype, basal cells displayed characteristics of epithelial-mesenchymal transition (EMT) and mainly located at the tumor-stromal interface as well as micrometastases in the lamina propria. In one T3 tumor, muscle-invasive tumor showed significantly higher expression of cancer stem cell markers SOX9 and SOX2 than the primary tumor. We additionally analyzed communications between tumor cells and demonstrated its relevance to basal/luminal phenotypes. Overall, our single-cell study provides a deeper insight into the tumor cell heterogeneity associated with bladder cancer progression. This article is protected by copyright. All rights reserved.
    Keywords:  Single-cell RNA sequencing; bladder cancer; intratumoral heterogeneity; tumor cells communication; tumor invasion
    DOI:  https://doi.org/10.1002/ijc.33794
  10. Clin Epigenetics. 2021 Aug 28. 13(1): 167
      BACKGROUND: In an effort to contribute to overcoming the platinum resistance exhibited by most solid tumors, we performed an array of epigenetic approaches, integrating next-generation methodologies and public clinical data to identify new potential epi-biomarkers in ovarian cancer, which is considered the most devastating of gynecological malignancies.METHODS: We cross-analyzed data from methylome assessments and restoration of gene expression through microarray expression in a panel of four paired cisplatin-sensitive/cisplatin-resistant ovarian cancer cell lines, along with publicly available clinical data from selected individuals representing the state of chemoresistance. We validated the methylation state and expression levels of candidate genes in each cellular phenotype through Sanger sequencing and reverse transcription polymerase chain reaction, respectively. We tested the biological role of selected targets using an ectopic expression plasmid assay in the sensitive/resistant tumor cell lines, assessing the cell viability in the transfected groups. Epigenetic features were also assessed in 189 primary samples obtained from ovarian tumors and controls.
    RESULTS: We identified PAX9 and FKBP1B as potential candidate genes, which exhibited epigenetic patterns of expression regulation in the experimental approach. Re-establishment of FKBP1B expression in the resistant OVCAR3 phenotype in which this gene is hypermethylated and inhibited allowed it to achieve a degree of platinum sensitivity similar to the sensitive phenotype. The evaluation of these genes at a translational level revealed that PAX9 hypermethylation leads to a poorer prognosis in terms of overall survival. We also set a precedent for establishing a common epigenetic signature in which the validation of a single candidate, MEST, proved the accuracy of our computational pipelines.
    CONCLUSIONS: Epigenetic regulation of PAX9 and FKBP1B genes shows that methylation in non-promoter areas has the potential to control gene expression and thus biological consequences, such as the loss of platinum sensitivity. At the translational level, PAX9 behaves as a predictor of chemotherapy response to platinum in patients with ovarian cancer. This study revealed the importance of the transcript-specific study of each gene under potential epigenetic regulation, which would favor the identification of new markers capable of predicting each patient's progression and therapeutic response.
    Keywords:  FKBP1B; Methylation; Ovarian cancer; PAX9; Platinum; Predictive; Therapy
    DOI:  https://doi.org/10.1186/s13148-021-01149-8
  11. Proc Natl Acad Sci U S A. 2021 Sep 07. pii: e2105951118. [Epub ahead of print]118(36):
      Plasticity of cells, tissues, and organs is controlled by the coordinated transcription of biological programs. However, the mechanisms orchestrating such context-specific transcriptional networks mediated by the dynamic interplay of transcription factors and coregulators are poorly understood. The peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is a prototypical master regulator of adaptive transcription in various cell types. We now uncovered a central function of the C-terminal domain of PGC-1α to bind RNAs and assemble multiprotein complexes including proteins that control gene transcription and RNA processing. These interactions are important for PGC-1α recruitment to chromatin in transcriptionally active liquid-like nuclear condensates. Notably, such a compartmentalization of active transcription mediated by liquid-liquid phase separation was observed in mouse and human skeletal muscle, revealing a mechanism by which PGC-1α regulates complex transcriptional networks. These findings provide a broad conceptual framework for context-dependent transcriptional control of phenotypic adaptations in metabolically active tissues.
    Keywords:  RNA-binding protein; chromatin; gene transcription; liquid–liquid phase separation; transcriptional coactivator
    DOI:  https://doi.org/10.1073/pnas.2105951118
  12. Nanoscale Res Lett. 2021 Sep 03. 16(1): 139
      The application of cells as carriers to encapsulate chemotherapy drugs is of great significance in antitumor therapy. The advantages of reducing systemic toxicity, enhancing targeting and enhancing the penetrability of drugs to tumor cells make it have great potential for clinical application in the future. Many studies and advances have been made in the encapsulation of drugs by using erythrocytes, white blood cells, platelets, immune cells and even tumor cells. The results showed that the antitumor effect of cell encapsulation chemotherapy drugs was better than that of single chemotherapy drugs. In recent years, the application of cell-based vectors in cancer has become diversified. Both chemotherapeutic drugs and photosensitizers can be encapsulated, so as to achieve multiple antitumor effects of chemotherapy, photothermal therapy and photodynamic therapy. A variety of ways of coordinated treatment can produce ideal results even in the face of multidrug-resistant and metastatic tumors. However, it is regrettable that this technology is only used in vitro for the time being. Standard answers have not yet been obtained for the preservation of drug-loaded cells and the safe way of infusion into human body. Therefore, the successful application of drug delivery technology in clinical still faces many challenges in the future. In this paper, we discuss the latest development of different cell-derived drug delivery systems and the challenges it will face in the future.
    Keywords:  Cell; Drug delivery system; Tumor
    DOI:  https://doi.org/10.1186/s11671-021-03588-x
  13. Biochim Biophys Acta Gene Regul Mech. 2021 Aug 25. pii: S1874-9399(21)00066-3. [Epub ahead of print] 194748
      The SWI/SNF subfamily remodelers (SWI/SNF and RSC) generally promote gene expression by displacing or evicting nucleosomes at the promoter regions. Their action creates a nucleosome-depleted region where transcription machinery accesses the DNA. Their involvement has been shown critical for inducing stress-responsive transcription programs. Although the role of SWI/SNF and RSC complexes in transcription regulation of heat shock responsive genes is well studied, their involvement at other pathways such as unfolded protein response (UPR) and protein quality control (PQC) is less known. This study shows that SWI/SNF occupies promoters of UPR, HSP and PQC genes in response to unfolded protein stress, and its recruitment at UPR promoters depends on Hac1 transcription factor and other epigenetic factors like Ada2 and Ume6. Disruption of SWI/SNF's activity does not affect the remodeling of these promoters or gene expression. However, inactivation of RSC and SWI/SNF together diminishes expression of most of the UPR, HSP and PQC genes tested. Furthermore, RSC and SWI/SNF colocalize at these promoters, suggesting that these two remodelers functionally cooperate to induce stress-responsive genes under proteotoxic conditions.
    Keywords:  Chromatin remodeling complexes; ER stress; RSC; SWI/SNF; Transcription regulation; UPR
    DOI:  https://doi.org/10.1016/j.bbagrm.2021.194748
  14. Comput Biol Med. 2021 Aug 26. pii: S0010-4825(21)00602-8. [Epub ahead of print]137 104808
      Histone deacetylases (HDACs) as an important family of epigenetic regulatory enzymes are implicated in the onset and progression of carcinomas. As a result, HDAC inhibition has been proven as a compelling strategy for reversing the aberrant epigenetic changes associated with cancer. However, non-selective profile of most developed HDAC inhibitors (HDACIs) leads to the occurrence of various side effects, limiting their clinical utility. This evidence provides a solid ground for ongoing research aimed at identifying isoform-selective inhibitors. Among the isoforms, HDAC1 have particularly gained increased attention as a preferred target for the design of selective HDACIs. Accordingly, in this paper, we have developed a reliable virtual screening process, combining different ligand- and structure-based methods, to identify novel benzamide-based analogs with potential HDAC1 inhibitory activity. For this purpose, a focused library of 736,160 compounds from PubChem database was first compiled based on 80% structural similarity with four known benzamide-based HDAC1 inhibitors, Mocetinostat, Entinostat, Tacedinaline, and Chidamide. Our inclusive in-house 3D-QSAR model, derived from pharmacophore-based alignment, was then employed as a 3D-query to discriminate hits with the highest predicted HDAC1 inhibitory activity. The selected hits were subjected to subsequent structure-based approaches (induced-fit docking (IFD), MM-GBSA calculations and molecular dynamics (MD) simulation) to retrieve potential compounds with the highest binding affinity for HDAC1 active site. Additionally, in silico ADMET properties and PAINS filtration were also considered for selecting an enriched set of the best drug-like molecules. Finally, six top-ranked hit molecules, CID_38265326, CID_56064109, CID_8136932, CID_55802151, CID_133901641 and CID_18150975 were identified to expose the best stability profiles and binding mode in the HDAC1 active site. The IFD and MD results cooperatively confirmed the interactions of the promising selected hits with critical residues within HDAC1 active site. In summary, the presented computational approach can provide a set of guidelines for the further development of improved benzamide-based derivatives targeting HDAC1 isoform.
    Keywords:  Cancer; Drug design; HDAC1 inhibitors; Induced-fit docking; Molecular dynamics simulation; Virtual screening
    DOI:  https://doi.org/10.1016/j.compbiomed.2021.104808
  15. Nucleic Acids Res. 2021 Sep 01. pii: gkab733. [Epub ahead of print]
      microRNAs (miRNAs) are short (∼23nt) single-stranded non-coding RNAs that act as potent post-transcriptional gene expression regulators. Information about miRNA expression and distribution across cell types and tissues is crucial to the understanding of their function and for their translational use as biomarkers or therapeutic targets. DIANA-miTED is the most comprehensive and systematic collection of miRNA expression values derived from the analysis of 15 183 raw human small RNA-Seq (sRNA-Seq) datasets from the Sequence Read Archive (SRA) and The Cancer Genome Atlas (TCGA). Metadata quality maximizes the utility of expression atlases, therefore we manually curated SRA and TCGA-derived information to deliver a comprehensive and standardized set, incorporating in total 199 tissues, 82 anatomical sublocations, 267 cell lines and 261 diseases. miTED offers rich instant visualizations of the expression and sample distributions of requested data across variables, as well as study-wide diagrams and graphs enabling efficient content exploration. Queries also generate links towards state-of-the-art miRNA functional resources, deeming miTED an ideal starting point for expression retrieval, exploration, comparison, and downstream analysis, without requiring bioinformatics support or expertise. DIANA-miTED is freely available at http://www.microrna.gr/mited.
    DOI:  https://doi.org/10.1093/nar/gkab733
  16. Curr Opin Genet Dev. 2021 Aug 26. pii: S0959-437X(21)00104-0. [Epub ahead of print]71 136-142
      Replication stress (RS) is a hallmark of cancer cells that is associated with increased genomic instability. RS occurs when replication forks encounter obstacles along the DNA. Stalled forks are signaled by checkpoint kinases that prevent fork collapse and coordinate fork repair pathways. Fork restart also depends on chromatin remodelers to increase the accessibility of nascent chromatin to recombination and repair factors. In this review, we discuss recent findings on the causes and consequences of RS, with a focus on endogenous replication impediments and their impact on fork velocity. We also discuss recent studies on the interplay between stalled forks and innate immunity, which extends the RS response beyond cell boundaries and opens new avenues for cancer therapy.
    DOI:  https://doi.org/10.1016/j.gde.2021.08.004
  17. Elife. 2021 Aug 31. pii: e67312. [Epub ahead of print]10
      The YAP and TAZ paralogs are transcriptional co-activators recruited to target sites by TEAD proteins. Here, we show that YAP and TAZ are also recruited by JUNB (a member of the AP-1 family) and STAT3, key transcription factors that mediate an epigenetic switch linking inflammation to cellular transformation. YAP and TAZ directly interact with JUNB and STAT3 via a WW domain important for transformation, and they stimulate transcriptional activation by AP-1 proteins. JUNB, STAT3, and TEAD co-localize at virtually all YAP/TAZ target sites, yet many target sites only contain individual AP-1, TEAD, or STAT3 motifs. This observation and differences in relative crosslinking efficiencies of JUNB, TEAD, and STAT3 at YAP/TAZ target sites suggest that YAP/TAZ is recruited by different forms of an AP-1/STAT3/TEAD complex depending on the recruiting motif. The different classes of YAP/TAZ target sites are associated with largely non-overlapping genes with distinct functions. A small minority of target sites are YAP- or TAZ-specific, and they are associated with different sequence motifs and gene classes from shared YAP/TAZ target sites. Genes containing either the AP-1 or TEAD class of YAP/TAZ sites are associated with poor survival of breast cancer patients with the triple-negative form of the disease.
    Keywords:  cancer biology; chromosomes; gene expression; human
    DOI:  https://doi.org/10.7554/eLife.67312
  18. Database (Oxford). 2021 Aug 31. pii: baab053. [Epub ahead of print]2021
      Over the past few years, with the rapid growth of deep-sequencing technology and the development of computational prediction algorithms, a large number of long non-coding RNAs (lncRNAs) have been identified in various types of human cancers. Therefore, it has become critical to determine how to properly annotate the potential function of lncRNAs from RNA-sequencing (RNA-seq) data and arrange the robust information and analysis into a useful system readily accessible by biological and clinical researchers. In order to produce a collective interpretation of lncRNA functions, it is necessary to integrate different types of data regarding the important functional diversity and regulatory role of these lncRNAs. In this study, we utilized transcriptomic sequencing data to systematically observe and identify lncRNAs and their potential functions from 5034 The Cancer Genome Atlas RNA-seq datasets covering 24 cancers. Then, we constructed the 'lncExplore' database that was developed to comprehensively integrate various types of genomic annotation data for collective interpretation. The distinctive features in our lncExplore database include (i) novel lncRNAs verified by both coding potential and translation efficiency score, (ii) pan-cancer analysis for studying the significantly aberrant expression across 24 human cancers, (iii) genomic annotation of lncRNAs, such as cis-regulatory information and gene ontology, (iv) observation of the regulatory roles as enhancer RNAs and competing endogenous RNAs and (v) the findings of the potential lncRNA biomarkers for the user-interested cancers by integrating clinical information and disease specificity score. The lncExplore database is to our knowledge the first public lncRNA annotation database providing cancer-specific lncRNA expression profiles for not only known but also novel lncRNAs, enhancer RNAs annotation and clinical analysis based on pan-cancer analysis. lncExplore provides a more complete pathway to highly efficient, novel and more comprehensive translation of laboratory discoveries into the clinical context and will assist in reinterpreting the biological regulatory function of lncRNAs in cancer research. Database URL http://lncexplore.bmi.nycu.edu.tw.
    DOI:  https://doi.org/10.1093/database/baab053