bims-drudre Biomed News
on Targeted drug delivery and programmed release mechanisms
Issue of 2021‒08‒01
eleven papers selected by
Ceren Kimna
Technical University of Munich

  1. J Control Release. 2021 Jul 22. pii: S0168-3659(21)00377-1. [Epub ahead of print]
      Currently there are no specific therapies addressing the distinctive biology of human papillomavirus (HPV)-induced cancer approved for clinical use. Short interfering RNA (siRNA) has much potential for therapeutic manipulation of HPV E6/E7 oncoproteins. Lipid-based nanoparticles (LNPs) can be utilized for systemic transportation and delivery of siRNA at target site. We recently developed a recombinant protein linker that enables uniform conjugation of targeting antibodies to the LNPs. Herein, we demonstrate the therapeutic efficacy of anti-E6/E7 siRNA delivered via targeted LNPs (tLNPs) in a xenograft HPV-positive tumor model. We show that anti-epidermal growth factor receptor (EGFR) antibodies, anchored to the LNPs as targeting moieties, facilitate cargo delivery but also mediate anti-tumor activity. Treatment with siE6 via tLNPs resulted in 50% greater reduction of tumor volume compared to treatment with siControl encapsulated in isoLNPs (coated with isotype control antibodies). We demonstrate superior suppression of HPV oncogenes and higher induction of apoptosis by the tLNPs both in vitro and in vivo. Altogether, the coupling of inhibitory siE6 with anti-EGFR antibodies, that further elicited anti-tumor effects, successfully restricted tumor progression. This system that combines potent siRNA and therapeutically functional tLNPs can be modulated against various cancer models.
    Keywords:  HPV; Head and neck cancer; Lipid-based nanoparticle; Targeting; siRNA
  2. Adv Drug Deliv Rev. 2021 Jul 26. pii: S0169-409X(21)00277-5. [Epub ahead of print] 113885
      Gene therapy is a promising novel method of tissue regeneration by stimulating or inhibiting key signaling pathways. However, their therapeutic applications in vivo are largely limited by several physiological obstacles, such as degradation of nucleases, impermeability of cell membranes, and transport to the desired intracellular compartments. Biomaterial-based gene delivery systems can overcome the problems of stability and local drug delivery, and can temporarily control the overexpression of therapeutic genes, leading to the local production of physiologically relevant levels of regulatory factors. But the gene delivery of biomaterials for tissue regeneration relies on multi-factor design. This review aims to outline the impact of gene delivery methods, therapeutic genes and biomaterials selection on this strategy, emphatically introduce the latest developments in the design of gene delivery vehicles based on biomaterials, summarize the mechanism of nucleic acid for tissue regeneration, and explore the strategies of nucleic acid delivery vehicles for various tissue regeneration.
    Keywords:  Biomaterial; Drug delivery; Nucleic acid; Tissue regeneration
  3. Nat Biomed Eng. 2021 Jul 29.
      Engineered bacteria for therapeutic applications would benefit from control mechanisms that confine the growth of the bacteria within specific tissues or regions in the body. Here we show that the tropism of engineered bacteria can be enhanced by coupling bacterial growth with genetic circuits that sense oxygen, pH or lactate through the control of the expression of essential genes. Bacteria that were engineered with pH or oxygen sensors showed preferential growth in physiologically relevant acidic or oxygen conditions, and reduced growth outside the permissive environments when orally delivered to mice. In syngeneic mice bearing subcutaneous tumours, bacteria engineered with both hypoxia and lactate biosensors coupled through an AND gate showed increased tumour specificity. The multiplexing of genetic circuits may be more broadly applicable for enhancing the localization of bacteria to specified niches.
  4. Adv Sci (Weinh). 2021 07;8(14): 2100540
      Gene therapy provides a promising strategy for curing monogenetic disorders and complex diseases. However, there are challenges associated with the use of viral delivery vectors. The advent of nanomedicine represents a quantum leap in the application of gene therapy. Recent advances in stimulus-responsive nonviral nanocarriers indicate that they are efficient delivery systems for loading and unloading of therapeutic nucleic acids. Some nanocarriers are responsive to cues derived from the internal environment, such as changes in pH, redox potential, enzyme activity, reactive oxygen species, adenosine triphosphate, and hypoxia. Others are responsive to external stimulations, including temperature gradients, light irradiation, ultrasonic energy, and magnetic field. Multiple stimuli-responsive strategies have also been investigated recently for experimental gene therapy.
    Keywords:  gene therapy; nonviral vector; stimulus‐responsive nanocarriers; viral vector
  5. Adv Sci (Weinh). 2021 Jul 31. e2004721
      Uveal melanoma (UM) is the most prevalent primary intraocular malignant tumor with a high lethal rate. Patients who undergo conventional enucleation treatments consistently suffer permanent blindness, facial defects, and mental disorders, therefore, novel therapeutic modalities are urgently required. Herein, an injectable and stimuli-responsive drug delivery antibacterial hydrogel (CP@Au@DC_AC50) is constructed via a facile grinding method that is inspired by the preparation process of traditional Chinese medicine. The incorporation of gold nanorods can enhance the mechanical strength of the hydrogel and realize photothermal therapy (PTT) and thermosensitive gel-sol transformation to release the gene-targeted drug DC_AC50 on demand in response to low-density near-infrared (NIR) light. The orthotopic model of UM is built successfully and indicates the excellent efficiency of CP@Au@DC_AC50 in killing tumors without damage to normal tissue because of its synergistic mild temperature PTT and gene-targeted therapy. Moreover, the eyeball infection model reveals the remarkable antibacterial properties of the hydrogel which can prevent endophthalmitis in the eyeball. There is negligible difference between the CP@Au@DC_AC50+NIR group and normal group. This NIR light-triggered gene-targeted therapy/PTT/antibacterial treatment pattern provides a promising strategy for building multifunctional therapeutic platform against intraocular tumors and exhibits great potential for the clinical treatment of UM.
    Keywords:  antibacterial activity; gene-targeted therapy; injectable hydrogel; intelligent release; photothermal therapy; uveal melanoma
  6. Adv Healthc Mater. 2021 Jul 28. e2101043
      The incidence of inflammatory bowel diseases (IBD), including Crohn's diseases and ulcerative colitis, is increasing by time and showing a trend of younger age. Precise diagnosis and effective treatments for IBD have attracted growing attention in recent years. However, diagnosing and locating inflammatory lesions remain a great challenge for IBD. In this study, assisted by a kind of aggregation-induced emission (AIE) nanoprobes (BPN-BBTD nanoparticles [NPs]), the second near-infrared (NIR-II) fluorescence imaging is first utilized to accurately trace inflammatory lesions, monitor inflammation severity and detect the response to the drug intervention in IBD mouse models. Through the advantages of high signal-to-background ratio (SBR) and sharp spatial resolution of bio-imaging in NIR-II region, the NIR-II fluorescence imaging-guided surgery can help to achieve a complete resection of severe inflammatory bowls and a secure surgical anastomosis. In addition, with the help of NIR-II fluorescence wide-field microscopy, the distribution of BPN-BBTD NPs can be directly detected in tissue level and found to be mainly accumulated in mucosa and submucosa layers. This study highlights that AIE NPs-assisted NIR-II fluorescence imaging hold a great potential value for future diagnosis and imaging-guided surgery in IBD.
    Keywords:  NIR-II fluorescence imaging; aggregation-induced emission; imaging diagnosis; imaging-guided surgery; inflammatory bowel disease
  7. ACS Nano. 2021 Jul 30.
      Osteoporosis is one of the most common diseases affecting bone metabolism. Nitric oxide (NO), an endogenous gas molecule involved in osteogenesis, can effectively promote the proliferation and differentiation of osteoblasts. Although exogenous NO can reverse osteoporosis to a certain extent, the transitory half-life and short diffusion radius of NO severely limit its application. In this work, a gas generation nanoplatform of NO with bone targeting property (UCPA) is developed based on the upconversion nanoparticles (UCNPs) that can convert 808 nm near-infrared (NIR) light into UV/blue light, and further stimulate the NO donor (BNN) to release NO. With an adjustment of the output power of the 808 nm NIR, the amount of released NO can be precisely controlled. Both in vitro and in vivo experiments demonstrate the favorable affinity of UCPA to bone due to the modification of alendronate; thus, it can directly release NO in bone and reverse osteoporosis. In addition, the cellular uptake of nanocomposites and intracellular NO release can be observed in preosteoblasts, thereby promoting their differentiation efficiently.
    Keywords:  808 nm NIR; bone targeting; nitric oxide; osteoporosis; upconversion
  8. J Am Chem Soc. 2021 Jul 26.
      Imparting porosity to inorganic nanoparticle assemblies to build up self-assembled open porous nanoparticle superstructures represents one of the most challenging issues and will reshape the property and application scope of traditional inorganic nanoparticle solids. Herein, we discovered how to engineer open pores into diverse ordered nanoparticle superstructures via their inclusion-induced assembly within 1D nanotubes, akin to the molecular host-guest complexation. The open porous structure of self-assembled composites is generated from nonclose-packing of nanoparticles in 1D confined space. Tuning the size ratios of the tube-to-nanoparticle enables the structural modulation of these porous nanoparticle superstructures, with symmetries such as C1, zigzag, C2, C4, and C5. Moreover, when the internal surface of the nanotubes is blocked by molecular additives, the nanoparticles would switch their assembly pathway and self-assemble on the external surface of the nanotubes without the formation of porous nanoparticle assemblies. We also show that the open porous nanoparticle superstructures can be ideal candidate for catalysis with accelerated reaction rates.
  9. Adv Mater Technol. 2021 Jul;6(7): 2001307
      Skin and soft tissue infections (SSTIs) caused by methicillin-resistant Staphylococcus aureus (MRSA) are a major healthcare burden, often treated with intravenous injection of the glycopeptide antibiotic vancomycin (VAN). However, low local drug concentration in the skin limits its treatment efficiency, while systemic exposure promotes the development of resistant bacterial strains. Topical administration of VAN on skin is ineffective as its high molecular weight prohibits transdermal penetration. In order to implement a local VAN delivery, microneedle (MN) arrays with a water-insoluble support layer for the controlled administration of VAN into the skin are developed. The utilization of such a support layer results in water-insoluble needle shafts surrounded by drug-loaded water-soluble tips with high drug encapsulation. The developed MN arrays can penetrate the dermal barriers of both porcine and fresh human skin. Permeation studies on porcine skin reveal that the majority of the delivered VAN is retained within the skin. It is shown that the VAN-MN array reduces MRSA growth both in vitro and ex vivo on skin. The developed VAN-MN arrays may be extended to several drugs and may facilitate localized treatment of MRSA-caused skin infections while minimizing adverse systemic effects.
    Keywords:  MRSA; PMMA; antibiotic; local delivery; microneedle patch
  10. Adv Funct Mater. 2020 Dec 01. pii: 2005531. [Epub ahead of print]30(49):
      The healing of large bone defects represents a clinical challenge, often requiring some form of grafting. Three-dimensional (3D) nanofiber aerogels could be a promising bone graft due to their biomimetic morphology and controlled porous structures and composition. miR-26a has been reported to induce the differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) and facilitate bone formation. Introducing miR-26a with a suitable polymeric vector targeting BMSCs could improve and enhance the functions of 3D nanofiber aerogels for bone regeneration. Herein, we first developed the comb-shaped polycation (HA-SS-PGEA) carrying a targeting component, biocleavable groups and short ethanolamine (EA)-decorated poly(glycidyl methacrylate) (PGMA) (abbreviated as PGEA) arms as miR-26a delivery vector. We then assessed the cytotoxicity and transfection efficiency of this polycation and cellular response to miR-26a-incorporated nanoparticles (NPs) in vitro. HA-SS-PGEA exhibited a stronger ability to transport miR-26a and exert its functions than the gold standard polyethyleneimine (PEI) and low-molecular-weight linear PGEA. We finally examined the efficacy of HA-SS-PGEA/miR-26a NPs loaded 3D hybrid nanofiber aerogels showing a positive effect on the cranial bone defect healing. Together, the combination of 3D nanofiber aerogels and functional NPs consisting of a biodegradable and targeting polycation and therapeutic miRNA could be a promising approach for bone regeneration.
    Keywords:  aerogel; bone regeneration; electrospun nanofibers; miRNA delivery; poly(glycidyl methacrylate)
  11. Adv Drug Deliv Rev. 2021 Jul 21. pii: S0169-409X(21)00276-3. [Epub ahead of print] 113884
      Design of micro- or nanocarriers for drug delivery has primarily been focused on properties such as hydrophobicity, biodegradability, size, shape, surface charge, and toxicity, so that they can achieve optimal delivery with respect to drug loading, release kinetics, biodistribution, cellular uptake, and biocompatibility. Incorporation of stimulus-sensitive moieties into the carriers would lead to "smart" delivery systems. A further evolution would be to endow the carrier with a therapeutic function such that it no longer serves as a mere passive entity to release the drug at the target tissue but can be viewed as a therapeutic agent in itself. In this review, we will discuss recent and ongoing efforts over the past decade to design therapeutic drug carriers that confer a biological benefit, including ROS scavenging or generating, pro- or anti-inflammatory, and immuno-evasive properties, to enhance the overall therapeutic efficacy of the delivery systems.
    Keywords:  Anti-bacterial; Anti-fibrotic; Anti-inflammatory; Anti-microbial; Drug delivery; Immunoadjuvant; ROS generation; ROS scavenging; Therapeutic carriers