bims-cytox1 Biomed News
on Cytochrome oxidase subunit 1
Issue of 2023‒11‒19
two papers selected by
Gavin McStay, Liverpool John Moores University



  1. Biochim Biophys Acta Mol Cell Res. 2023 Jul 04. pii: S0167-4889(23)00101-5. [Epub ahead of print] 119529
      Mitochondria import 1000-1300 different precursor proteins from the cytosol. The main mitochondrial entry gate is formed by the translocase of the outer membrane (TOM complex). Molecular coupling and modification of TOM subunits control and modulate protein import in response to cellular signaling. The TOM complex functions as regulatory hub to integrate mitochondrial protein biogenesis and quality control into the cellular proteostasis network.
    Keywords:  Mitochondria; Protein sorting; Proteostasis; Quality control; Stress response; TOM complex
    DOI:  https://doi.org/10.1016/j.bbamcr.2023.119529
  2. bioRxiv. 2023 Nov 02. pii: 2023.10.31.564750. [Epub ahead of print]
      The mammalian mitochondrial genome encodes thirteen oxidative phosphorylation system proteins, crucial in aerobic energy transduction. These proteins are translated from 9 monocistronic and 2 bicistronic transcripts, whose native structures remain unexplored, leaving fundamental molecular determinants of mitochondrial gene expression unknown. To address this gap, we developed a mitoDMS-MaPseq approach and used DREEM clustering to resolve the native human mitochondrial mt-mRNA structurome. We gained insights into mt-mRNA biology and translation regulatory mechanisms, including a unique programmed ribosomal frameshifting for the ATP8/ATP6 transcript. Furthermore, absence of the mt-mRNA maintenance factor LRPPRC led to a mitochondrial transcriptome structured differently, with specific mRNA regions exhibiting increased or decreased structuredness. This highlights the role of LRPPRC in maintaining mRNA folding to promote mt-mRNA stabilization and efficient translation. In conclusion, our mt-mRNA folding maps reveal novel mitochondrial gene expression mechanisms, serving as a detailed reference and tool for studying them in different physiological and pathological contexts.
    DOI:  https://doi.org/10.1101/2023.10.31.564750