bims-cytox1 Biomed News
on Cytochrome oxidase subunit 1
Issue of 2021‒05‒30
seven papers selected by
Gavin McStay
Staffordshire University

  1. Sci Rep. 2021 May 25. 11(1): 10897
      Mitochondrial diseases currently have no cure regardless of whether the cause is a nuclear or mitochondrial genome mutation. Mitochondrial dysfunction notably affects a wide range of disorders in aged individuals, including neurodegenerative diseases, cancers, and even senescence. Here, we present a procedure to generate mitochondrial DNA-replaced somatic cells with a combination of a temporal reduction in endogenous mitochondrial DNA and coincubation with exogeneous isolated mitochondria. Heteroplasmy in mitochondrial disease patient-derived fibroblasts in which the mutant genotype was dominant over the wild-type genotype was reversed. Mitochondrial disease patient-derived fibroblasts regained respiratory function and showed lifespan extension. Mitochondrial membranous components were utilized as a vehicle to deliver the genetic materials into endogenous mitochondria-like horizontal genetic transfer in prokaryotes. Mitochondrial DNA-replaced cells could be a resource for transplantation to treat maternal inherited mitochondrial diseases.
  2. Cell Rep. 2021 May 25. pii: S2211-1247(21)00525-8. [Epub ahead of print]35(8): 109180
      Mitochondrial respiratory complex subunits assemble in supercomplexes. Studies of supercomplexes have typically relied upon antibody-based quantification, often limited to a single subunit per respiratory complex. To provide a deeper insight into mitochondrial and supercomplex plasticity, we combine native electrophoresis and mass spectrometry to determine the supercomplexome of skeletal muscle from sedentary and exercise-trained mice. We quantify 422 mitochondrial proteins within 10 supercomplex bands in which we show the debated presence of complexes II and V. Exercise-induced mitochondrial biogenesis results in non-stoichiometric changes in subunits and incorporation into supercomplexes. We uncover the dynamics of supercomplex-related assembly proteins and mtDNA-encoded subunits after exercise. Furthermore, exercise affects the complexing of Lactb, an obesity-associated mitochondrial protein, and ubiquinone biosynthesis proteins. Knockdown of ubiquinone biosynthesis proteins leads to alterations in mitochondrial respiration. Our approach can be applied to broad biological systems. In this instance, comprehensively analyzing respiratory supercomplexes illuminates previously undetectable complexity in mitochondrial plasticity.
    Keywords:  complexome; exercise; mitochondrial respiratory complexes; mitochondrial supercomplexes; oxidative phosphorylation; protein complexes
  3. Sci Rep. 2021 May 27. 11(1): 11123
      Leigh syndrome (LS) is an early-onset progressive neurodegenerative disorder associated with mitochondrial deficiency. m.14597A>G (p.Ile26Thr) in the MT-ND6 gene was reported to cause Leber's hereditary optic neuropathy (LHON) or dementia/dysarthria. In previous reports, less than 90% heteroplasmy was shown to result in adult-onset disease. Here, by whole mitochondrial sequencing, we identified m.14597A>G mutation of a patient with LS. PCR-RFLP analysis on fibroblasts from the patient revealed a high mutation load (> 90% heteroplasmy). We performed functional assays using cybrid cell models generated by fusing mtDNA-less rho0 HeLa cells with enucleated cells from patient fibroblasts carrying the m.14597A>G variant. Cybrid cell lines bearing the m.14597A>G variant exhibited severe effects on mitochondrial complex I activity. Additionally, impairment of cell proliferation, decreased ATP production and reduced oxygen consumption rate were observed in the cybrid cell lines bearing the m.14597A>G variant when the cells were metabolically stressed in medium containing galactose, indicating mitochondrial respiratory chain defects. These results suggest that a high mutation load of m.14597A>G leads to LS via a mitochondrial complex I defect, rather than LHON or dementia/dysarthria.
  4. J Biol Chem. 2021 May 20. pii: S0021-9258(21)00612-8. [Epub ahead of print] 100816
      Mitochondrial tRNA 3'-end metabolism is critical for the formation of functional tRNAs. Deficient mitochondrial tRNA 3'-end metabolism is linked to an array of human diseases, including optic neuropathy, but their pathophysiology remains poorly understood. In this report, we investigated the molecular mechanism underlying the Leber's hereditary optic neuropathy (LHON)-associated tRNAAla 5587A>G mutation, which changes a highly conserved adenosine at position 73 (A73) to guanine (G73) on the 3'-end of the tRNA acceptor stem. The m.5587A>G mutation was identified in three Han Chinese families with suggested maternal inheritance of LHON. We hypothesized that the m.5877A>G mutation altered tRNAAla 3'-end metabolism and mitochondrial function. In vitro processing experiments showed that the m.5587A>G mutation impaired the 3'-end processing of tRNAAla precursors by RNase Z, and inhibited the addition of CCA by tRNA nucleotidyltransferase (TRNT1). Northern blot analysis revealed that the m.5587A>G mutation perturbed tRNAAla aminoacylation, as evidenced by decreased efficiency of aminoacylation and faster electrophoretic mobility of mutated tRNAAla in these cells. The impact of m.5587A>G mutation on tRNAAla function was further supported by increased melting temperature, conformational changes, and reduced levels of this tRNA. Failures in tRNAAla metabolism impaired mitochondrial translation, perturbed assembly and activity of oxidative phosphorylation complexes, diminished ATP production and membrane potential, and increased production of reactive oxygen species. These pleiotropic defects elevated apoptotic cell death and promoted mitophagy in cells carrying the m.5587A>G mutation, thereby contributing to visual impairment. Our findings may provide new insights into the pathophysiology of LHON arising from mitochondrial tRNA 3'-end metabolism deficiency.
    Keywords:  Leber’s hereditary optic neuropathy; Mitochondrial tRNA 3’-end metabolisms; apoptosis; autophagy; oxidative phosphorylation
  5. Annu Rev Genomics Hum Genet. 2021 May 26.
      Mitochondria are unusual organelles in that they contain their own genomes, which are kept apart from the rest of the DNA in the cell. While mitochondrial DNA (mtDNA) is essential for respiration and most multicellular life, maintaining a genome outside the nucleus brings with it a number of challenges. Chief among these is preserving mtDNA genomic integrity from one generation to the next. In this review, we discuss what is known about negative (purifying) selection mechanisms that prevent deleterious mutations from accumulating in mtDNA in the germline. Throughout, we focus on the female germline, as it is the tissue through which mtDNA is inherited in most organisms and, therefore, the tissue that most profoundly shapes the genome. We discuss recent progress in uncovering the mechanisms of germline mtDNA selection, from humans to invertebrates. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 22 is August 2021. Please see for revised estimates.
  6. Elife. 2021 May 26. pii: e67624. [Epub ahead of print]10
      Dysfunction of the mitochondrial electron transport chain (mETC) is a major cause of human mitochondrial diseases. To identify determinants of mETC function, we screened a genome-wide human CRISPRi library under oxidative metabolic conditions with selective inhibition of mitochondrial Complex III and identified ovarian carcinoma immunoreactive antigen (OCIA) domain-containing protein 1 (OCIAD1) as a Complex III assembly factor. We find that OCIAD1 is an inner mitochondrial membrane protein that forms a complex with supramolecular prohibitin assemblies. Our data indicate that OCIAD1 is required for maintenance of normal steady-state levels of Complex III and the proteolytic processing of the catalytic subunit cytochrome c1 (CYC1). In OCIAD1 depleted mitochondria, unprocessed CYC1 is hemylated and incorporated into Complex III. We propose that OCIAD1 acts as an adaptor within prohibitin assemblies to stabilize and/or chaperone CYC1 and to facilitate its proteolytic processing by the IMMP2L protease.
    Keywords:  Complex III; cell biology; cytochrome c1; electron transport chain; human; mitochondria; prohibitin; protease