bims-cytox1 Biomed News
on Cytochrome oxidase subunit 1
Issue of 2020‒10‒04
three papers selected by
Gavin McStay
Staffordshire University


  1. Int J Mol Sci. 2020 Sep 30. pii: E7254. [Epub ahead of print]21(19):
    Watson SA, McStay GP.
      Cytochrome c oxidase is the terminal complex of eukaryotic oxidative phosphorylation in mitochondria. This process couples the reduction of electron carriers during metabolism to the reduction of molecular oxygen to water and translocation of protons from the internal mitochondrial matrix to the inter-membrane space. The electrochemical gradient formed is used to generate chemical energy in the form of adenosine triphosphate to power vital cellular processes. Cytochrome c oxidase and most oxidative phosphorylation complexes are the product of the nuclear and mitochondrial genomes. This poses a series of topological and temporal steps that must be completed to ensure efficient assembly of the functional enzyme. Many assembly factors have evolved to perform these steps for insertion of protein into the inner mitochondrial membrane, maturation of the polypeptide, incorporation of co-factors and prosthetic groups and to regulate this process. Much of the information about each of these assembly factors has been gleaned from use of the single cell eukaryote Saccharomyces cerevisiae and also mutations responsible for human disease. This review will focus on the assembly factors of cytochrome c oxidase to highlight some of the outstanding questions in the assembly of this vital enzyme complex.
    Keywords:  cytochrome c oxidase; electron transport chain; mitochondria; oxidative phosphorylation
    DOI:  https://doi.org/10.3390/ijms21197254
  2. STAR Protoc. 2020 Sep 18. pii: 100089. [Epub ahead of print]1(2):
    Timón-Gómez A, Pérez-Pérez R, Nyvltova E, Ugalde C, Fontanesi F, Barrientos A.
      By using negatively charged Coomassie brilliant blue G-250 dye to induce a charge shift on proteins, blue native polyacrylamide gel electrophoresis (BN-PAGE) allows resolution of enzymatically active multiprotein complexes extracted from cellular or subcellular lysates while retaining their native conformation. BN-PAGE was first developed to analyze the size, composition, and relative abundance of the complexes and supercomplexes that form the mitochondrial respiratory chain and OXPHOS system. Here, we present a detailed protocol of BN-PAGE to obtain robust and reproducible results. For complete details on the use and execution of this protocol, please refer to Lobo-Jarne et al. (2018) and Timón-Gómez et al. (2020).
    DOI:  https://doi.org/10.1016/j.xpro.2020.100089
  3. Elife. 2020 Sep 29. pii: e58108. [Epub ahead of print]9
    Cheng CC, Wooten J, Gibbs ZA, McGlynn K, Mishra P, Whitehurst AW.
      Cancer testis antigens (CTAs) are proteins whose expression is normally restricted to the testis but anomalously activated in human cancer. In sperm, a number of CTAs support energy generation, however whether they contribute to tumor metabolism is not understood. We describe human COX6B2, a component of cytochrome c oxidase (complex IV). COX6B2 is expressed in human lung adenocarcinoma (LUAD) and expression correlates with reduced survival time. COX6B2, but not its somatic isoform COX6B1, enhances activity of complex IV, increasing oxidative phosphorylation (OXPHOS) and NAD+ generation. Consequently, COX6B2-expressing cancer cells display a proliferative advantage, particularly in low oxygen. Conversely, depletion of COX6B2 attenuates OXPHOS and collapses mitochondrial membrane potential leading to cell death or senescence. COX6B2 is both necessary and sufficient for growth of human tumor xenografts in mice. Our findings reveal a previously unappreciated, tumor specific metabolic pathway hijacked from one of the most ATP-intensive processes in the animal kingdom: sperm motility.
    Keywords:  cancer biology; human
    DOI:  https://doi.org/10.7554/eLife.58108