bims-cytox1 Biomed News
on Cytochrome oxidase subunit 1
Issue of 2018‒06‒17
two papers selected by
Gavin McStay
Staffordshire University


  1. Biochim Biophys Acta. 2018 Jun 07. pii: S0005-2728(18)30150-6. [Epub ahead of print]
      Mitochondrial cytochrome c oxidase (COX, respiratory chain complex IV), contributes to ATP production via oxidative phosphorylation (OXPHOS). Clinical presentation of COX deficiency is heterogeneous ranging from mild to severe neuromuscular diseases. Anemia is among the symptoms and we have previously reported Fanconi anemia like features in COX4-1 deficiency, suggesting genomic instability and our preliminary results detected nuclear double stranded DNA breaks (DSB). We now quantified the DSB by phospho histone H2AX Ser139 staining of COX4-1 and COX6B1 deficient fibroblasts (225% and 215% of normal, respectively) and confirmed their occurrence by neutral comet assay. We further explored the mechanism of DNA damage by studying normal fibroblasts treated with micromolar concentrations of cyanide (KCN). Present results demonstrate elevated nuclear DSB in cells treated with 50 μM KCN for 24 h (170% of normal) in high-glucose medium conditions where ROS and ATP remain normal, although Glutathione content was partially decreased. In glucose-free and serum-free medium, where growth is hampered, DSB were not elevated. Additionally we demonstrate the benefit of nicotinamide riboside (NR) which ameliorated DSB in COX4-1, COX6B1 and KCN treated cells (130%, 154% and 87% of normal cells, respectively). Conversely a negative effect of a poly[ADP-ribose] polymerase (PARP) inhibitor was found. Although additional investigation is needed, our findings raise the possibility that the pathomechanism of COX deficiency and possibly also in other OXPHOS defects, include nuclear DNA damage resulting from nicotinamide adenine dinucleotide (NAD+) deficit combined with a replicative state, rather than oxidative stress and energy depletion.
    Keywords:  Cytochrome c oxidase; DNA double stranded breaks; Mitochondria; Mitochondrial disease; OXPHOS; Respiratory chain
    DOI:  https://doi.org/10.1016/j.bbabio.2018.06.004
  2. Cell Cycle. 2018 Jun 09.
      Unraveling the key mechanisms governing the retention versus loss of the cancer stem cell (CSC) state would open new therapeutic avenues to eradicate cancer. Mitochondria are increasingly recognized key drivers in the origin and development of CSC functional traits. We here propose the new term "mitostemness" to designate the mitochondria-dependent signaling functions that, evolutionary rooted in the bacterial origin of mitochondria, regulate the maintenance of CSC self-renewal and resistance to differentiation. Mitostemness traits, namely mitonuclear communication, mitoproteome components, and mitochondrial fission/fusion dynamics, can be therapeutically exploited to target the CSC state. We briefly review the pre-clinical evidence of action of investigational compounds on mitostemness traits and discuss ongoing strategies to accelerate the clinical translation of new mitostemness drugs. The recognition that the bacterial origin of present-day mitochondria can drive decision-making signaling phenomena may open up a new therapeutic dimension against life-threating CSCs. New therapeutics aimed to target mitochondria not only as biochemical but also as biophysical and morpho-physiological hallmarks of CSC might certainly guide improvements to cancer treatment.
    Keywords:  Cancer stem cells; metabolism; mitochondria
    DOI:  https://doi.org/10.1080/15384101.2018.1467679