bims-climfi Biomed News
on Cerebellar cortical circuitry
Issue of 2025–11–02
two papers selected by
Jun Maruta, Mount Sinai Health System



  1. Front Physiol. 2025 ;16 1671271
      Cerebellar Purkinje cells are one of the most complex neurons in the central nervous system and are well known for their extensive dendritic tree dotted by dendritic spines. PC spines receive excitatory synapses from parallel and climbing fibers and, although their morphological properties are comparable to those of other neuronal types, they show distinct extracellular and intracellular regulatory properties. Purkinje cell spine protrusion and helical patterning do not require nearby axons, as e.g., in pyramidal cells. Instead, Purkinje cell spines require structural proteins located on parallel and climbing fibers for their stabilisation and maintenance. The total spine number is influenced by scaffold proteins and eventually reflects the total dendritic length and local spine density. Purkinje cell spines were supposed to range up to over 105 in rodents and 106 in humans, but recent experimental data show that spines are less numerous than initially thought. Instead, they are endowed with mechanisms designed to improve their efficiency and differentiation. Some spines are double-headed, thereby enhancing Purkinje cell responses when the companion parallel fiber is stimulated. Other spines are single-headed and presumably endowed with slow neurotransmission mechanisms. Latest experimental data showed that glial cells modulate spines activity after a task or learning. Eventually, these multiple mechanisms can make each spine crucial in its own way for synaptic pattern recognition. In this review, we present the most recent advancements on Purkinje cell spines spanning their biochemical, structural, and functional properties, both in mice and humans, and propose a recalculation of the effective complement of spines and their activation by parallel fibers.
    Keywords:  Purkinje cell; cerebellum; history; parallel fibers; spines; synapses
    DOI:  https://doi.org/10.3389/fphys.2025.1671271
  2. Int J Mol Sci. 2025 Oct 14. pii: 9973. [Epub ahead of print]26(20):
      17β-estradiol (E2) enhances the cerebellar molecular layer interneurons (MLIs)-Purkinje cells (PCs) synaptic transmission via activation of the Erβ in vivo in mice. Whether E2 regulates cerebellar MLI-PC synaptic plasticity is unknown. To investigate the mechanism of E2, we evaluated the modulation of facial stimulation-evoked MLI-PC long-term plasticity in mice. Cell-attached recordings from PCs of Crus II were performed using an Axopatch-700B patch-clamp amplifier. The MLI-PC synaptic transmission was evoked by facial stimulation. Immunohistochemistry was used to detect the expression of ERβ. Under control conditions, 1 Hz facial stimuli induced long-term depression (LTD) at MLI-PC synapses, characterized by a sustained reduction in P1 amplitude and a simple spike (SS) pause. The facial stimulus-induced MLI-PC LTD was completely prevented by E2, but this effect was reversed by a selective ERα/ERβ antagonist, ICI182780. Blockade of cannabinoid receptor 1 (CB1R) eliminated the MLI-PC LTD under control conditions, but revealed an E2-triggered long-term potentiation (LTP). The E2-triggered MLI-PC LTP persisted in the presence of an ERα antagonist but was absent in the presence of an ERβ antagonist PHTPP. The E2-triggered MLI-PC LTP remained unaffected by protein kinase A inhibition but was abolished by inhibition of protein kinase C (PKC) and intracellular Ca2+ depletion. Moreover, ERβ immunoreactivity was abundantly distributed around dendrites and somas of PCs in the Crus II region of the mouse cerebellar cortex. The present results suggest that E2 activates ERβ, thereby triggering facial stimulation-induced MLI-PC LTP via the PKC signaling cascade, which occludes CB1R-dependent MLI-PC LTD in the cerebellar cortex of mice in vivo.
    Keywords:  cerebellar molecular layer interneuron–Purkinje cell synaptic transmission; estrogen receptors; in vivo cell-attached recording; protein kinase C (PKC); sensory stimulation
    DOI:  https://doi.org/10.3390/ijms26209973