bims-ciryme Biomed News
on Circadian rhythms and metabolism
Issue of 2022‒01‒02
two papers selected by
Gabriela Da Silva Xavier
University of Birmingham

  1. PLoS Biol. 2021 Dec;19(12): e3001492
      Rhythmicity of biological processes can be elicited either in response to environmental cycles or driven by endogenous oscillators. In mammals, the circadian clock drives about 24-hour rhythms of multitude metabolic and physiological processes in anticipation to environmental daily oscillations. Also at the intersection of environment and metabolism is the protein kinase-AKT. It conveys extracellular signals, primarily feeding-related signals, to regulate various key cellular functions. Previous studies in mice identified rhythmicity in AKT activation (pAKT) with elevated levels in the fed state. However, it is still unknown whether rhythmic AKT activation can be driven through intrinsic mechanisms. Here, we inspected temporal changes in pAKT levels both in cultured cells and animal models. In cultured cells, pAKT levels showed circadian oscillations similar to those observed in livers of wild-type mice under free-running conditions. Unexpectedly, in livers of Per1,2-/- but not of Bmal1-/- mice we detected ultradian (about 16 hours) oscillations of pAKT levels. Importantly, the liver transcriptome of Per1,2-/- mice also showed ultradian rhythms, corresponding to pAKT rhythmicity and consisting of AKT-related genes and regulators. Overall, our findings reveal ultradian rhythms in liver gene expression and AKT phosphorylation that emerge in the absence of environmental rhythms and Per1,2-/- genes.
  2. Nutrients. 2021 Dec 15. pii: 4487. [Epub ahead of print]13(12):
      It is suggested that clock genes link the circadian rhythm to glucose and lipid metabolism. In this study, we explored the role of the clock gene Bmal1 in the hypothalamic paraventricular nucleus (PVN) in glucose metabolism. The Sim1-Cre-mediated deletion of Bmal1 markedly reduced insulin secretion, resulting in impaired glucose tolerance. The pancreatic islets' responses to glucose, sulfonylureas (SUs) and arginine vasopressin (AVP) were well maintained. To specify the PVN neuron subpopulation targeted by Bmal1, the expression of neuropeptides was examined. In these knockout (KO) mice, the mRNA expression of Avp in the PVN was selectively decreased, and the plasma AVP concentration was also decreased. However, fasting suppressed Avp expression in both KO and Cre mice. These results demonstrate that PVN BMAL1 maintains Avp expression in the PVN and release to the circulation, possibly providing islet β-cells with more AVP. This action helps enhance insulin release and, consequently, glucose tolerance. In contrast, the circadian variation of Avp expression is regulated by feeding, but not by PVN BMAL1.
    Keywords:  BMAL1; circadian; glucose metabolism; insulin release; paraventricular nucleus; vasopressin