bims-ciryme Biomed News
on Circadian rhythms and metabolism
Issue of 2020‒11‒29
two papers selected by
Gabriela Da Silva Xavier
University of Birmingham


  1. J Neurochem. 2020 Nov 22.
    Flanagan A, Bechtold D, Pot GK, Johnston JD.
      The circadian timing system governs daily biological rhythms, synchronising physiology and behaviour to the temporal world. External time cues, including the light-dark cycle and timing of food intake, provide daily signals for entrainment of the central, master circadian clock in the hypothalamic suprachiasmatic nuclei (SCN), and of metabolic rhythms in peripheral tissues, respectively. Chrono-nutrition is an emerging field building on the relationship between temporal eating patterns, circadian rhythms, and metabolic health. Evidence from both animal and human research demonstrates adverse metabolic consequences of circadian disruption. Conversely, a growing body of evidence indicates that aligning food intake to periods of the day when circadian rhythms in metabolic processes are optimised for nutrition may be effective for improving metabolic health. Circadian rhythms in glucose and lipid homeostasis, insulin responsiveness and sensitivity, energy expenditure, and postprandial metabolism, may favour eating patterns characterised by earlier temporal distribution of energy. This review details the molecular basis for metabolic clocks, the regulation of feeding behaviour, and the evidence for meal timing as an entraining signal for the circadian system in animal models. The epidemiology of temporal eating patterns in humans is examined, together with evidence from human intervention studies investigating the metabolic effects of morning compared to evening energy intake, and emerging chrono-nutrition interventions such as time-restricted feeding. Chrono-nutrition may have therapeutic application for individuals with and at-risk of metabolic disease and convey health benefits within the general population.
    Keywords:  circadian; clock gene; energy balance; meal timing; metabolism; time-restricted feeding
    DOI:  https://doi.org/10.1111/jnc.15246
  2. Proc Natl Acad Sci U S A. 2020 Nov 23. pii: 202012450. [Epub ahead of print]
    Kelu JJ, Pipalia TG, Hughes SM.
      Muscle tissue shows diurnal variations in function, physiology, and metabolism. Whether such variations are dependent on the circadian clock per se or are secondary to circadian differences in physical activity and feeding pattern is unclear. By measuring muscle growth over 12-h periods in live prefeeding larval zebrafish, we show that muscle grows more during day than night. Expression of dominant negative CLOCK (ΔCLK), which inhibits molecular clock function, ablates circadian differences and reduces muscle growth. Inhibition of muscle contraction reduces growth in both day and night, but does not ablate the day/night difference. The circadian clock and physical activity are both required to promote higher muscle protein synthesis during the day compared to night, whereas markers of protein degradation, murf messenger RNAs, are higher at night. Proteasomal inhibitors increase muscle growth at night, irrespective of physical activity, but have no effect during the day. Although physical activity enhances TORC1 activity, and the TORC1 inhibitor rapamycin inhibits clock-driven daytime growth, no effect on muscle growth at night was detected. Importantly, day/night differences in 1) muscle growth, 2) protein synthesis, and 3) murf expression all persist in entrained larvae under free-running constant conditions, indicating circadian drive. Removal of circadian input by exposure to either permanent darkness or light leads to suboptimal muscle growth. We conclude that diurnal variations in muscle growth and metabolism are a circadian property that is independent of, but augmented by, physical activity, at least during development.
    Keywords:  circadian rhythm; muscle; zebrafish
    DOI:  https://doi.org/10.1073/pnas.2012450117