bims-ciryme Biomed News
on Circadian rhythms and metabolism
Issue of 2020‒04‒19
two papers selected by
Gabriela Da Silva Xavier
University of Birmingham

  1. Nutrients. 2020 Apr 10. pii: E1053. [Epub ahead of print]12(4):
      Nightshift work is associated with adverse health outcomes, which may be related to eating during the biological night, when circadian rhythms and food intake are misaligned. Nurses often undertake nightshift work, and we aimed to investigate patterns of energy distribution and dietary intake across 14 days in 20 UK National Health Service (NHS) nurses working rotational shifts. We hypothesised that the proportion of daily energy consumed during the nightshift would increase over consecutive nights. Primary and secondary outcome measures included intakes of energy and macronutrients. Our results show that nurses consumed the same total daily energy on nightshifts and non-nightshifts, but redistributed energy to the nightshift period in increasing proportions with a significant difference between Night 1 and 2 in the proportion of total daily energy consumed (26.0 ± 15.7% vs. 33.5 ± 20.2%, mean ± SD; p < 0.01). This finding indicates that, rather than increasing total energy intake, nurses redistribute energy consumed during nightshifts as a behavioural response to consecutive nightshifts. This finding informs our understanding of how the intake of energy during the biological night can influence adverse health outcomes of nightshift work.
    Keywords:  circadian misalignment; circadian rhythms; diet; nutrition; shift work
  2. Life Sci Alliance. 2020 May;pii: e201900535. [Epub ahead of print]3(5):
      Mammals optimize their physiology to the light-dark cycle by synchronization of the master circadian clock in the brain with peripheral clocks in the rest of the tissues of the body. Circadian oscillations rely on a negative feedback loop exerted by the molecular clock that is composed by transcriptional activators Bmal1 and Clock, and their negative regulators Period and Cryptochrome. Components of the molecular clock are expressed during early development, but onset of robust circadian oscillations is only detected later during embryogenesis. Here, we have used naïve pluripotent mouse embryonic stem cells (mESCs) to study the role of Bmal1 during early development. We found that, compared to wild-type cells, Bmal1-/- mESCs express higher levels of Nanog protein and altered expression of pluripotency-associated signalling pathways. Importantly, Bmal1-/- mESCs display deficient multi-lineage cell differentiation capacity during the formation of teratomas and gastrula-like organoids. Overall, we reveal that Bmal1 regulates pluripotent cell differentiation and propose that the molecular clock is an hitherto unrecognized regulator of mammalian development.