bims-ciryme Biomed News
on Circadian rhythms and metabolism
Issue of 2019‒02‒10
two papers selected by
Gabriela Da Silva Xavier
University of Birmingham

  1. Chronobiol Int. 2019 Feb 03. 1-25
      Gluconeogenesis is de novo glucose synthesis from substrates such as amino acids and is vital when glucose is lacking in the diurnal nutritional fluctuation. Accordingly, genes for hepatic gluconeogenic enzymes exhibit daily expression rhythms, whose detailed regulations under nutritional variations remain elusive. As a first step, we performed general systematic characterization of daily expression profiles of gluconeogenic enzyme genes for phosphoenolpyruvate carboxykinase (PEPCK), cytosolic form (Pck1), glucose-6-phosphatase (G6Pase), catalytic subunit (G6pc), and tyrosine aminotransferase (TAT) (Tat) in the mouse liver. On a standard diet fed ad libitum, mRNA levels of these genes showed robust daily rhythms with a peak or an elevation phase during the late sleep-fasting period in the diurnal feeding/fasting (wake/sleep) cycle. The rhythmicity was preserved in constant darkness, modulated with prolonged fasting, attenuated by Clock mutation, and entrained to varied photoperiods and time-restricted feedings. These results are concordant with the notion that gluconeogenic enzyme genes are under the control of the intrinsic circadian oscillator, which is entrained by the light/dark cycle, and which in turn entrains the feeding/fasting cycle and also drives systemic signaling pathways such as the hypothalamic-pituitary-adrenal axis. On the other hand, time-restricted feedings also showed that the ingestion schedule, when separated from the light/dark cycle, can serve as an independent entrainer to daily expression rhythms of gluconeogenic enzyme genes. Moreover, nutritional changes dramatically modified expression profiles of the genes. In addition to prolonged fasting, a high-fat diet and a high-carbohydrate (no-protein) diet caused modification of daily expression rhythms of the genes, with characteristic changes in profiles of glucoregulatory hormones such as corticosterone, glucagon, and insulin, as well as their modulators including ghrelin, leptin, resistin, glucose-dependent insulinotropic polypeptide (GIP), and glucagon-like peptide-1 (GLP-1). Remarkably, high-protein (60% casein or soy-protein) diets activated the gluconeogenic enzyme genes atypically during the wake-feeding period, with paradoxical up-regulation of glucagon, which frequently formed correlation networks with other humoral factors. Based on these results, we propose that daily expression rhythms of gluconeogenic enzyme genes are under the control of systemic oscillator-driven and nutrient-responsive hormones.
    Keywords:  Circadian rhythm; blood glucose; clock genes; hyperglycemia; hypoglycemia
  2. Diabetologia. 2019 Feb 09.
      AIMS/HYPOTHESIS: Animal studies have indicated that disturbed diurnal rhythms of clock gene expression in adipose tissue can induce obesity and type 2 diabetes. The importance of the circadian timing system for energy metabolism is well established, but little is known about the diurnal regulation of (clock) gene expression in obese individuals with type 2 diabetes. In this study we aimed to identify key disturbances in the diurnal rhythms of the white adipose tissue transcriptome in obese individuals with type 2 diabetes.METHODS: In a case-control design, we included six obese individuals with type 2 diabetes and six healthy, lean control individuals. All participants were provided with three identical meals per day for 3 days at zeitgeber time (ZT, with ZT 0:00 representing the time of lights on) 0:30, 6:00 and 11:30. Four sequential subcutaneous abdominal adipose tissue samples were obtained, on day 2 at ZT 15:30, and on day 3 at ZT 0:15, ZT 5:45 and ZT 11:15. Gene expression was measured using RNA sequencing.
    RESULTS: The core clock genes showed reduced amplitude oscillations in the individuals with type 2 diabetes compared with the healthy control individuals. Moreover, in individuals with type 2 diabetes, only 1.8% (303 genes) of 16,818 expressed genes showed significant diurnal rhythmicity, compared with 8.4% (1421 genes) in healthy control individuals. Enrichment analysis revealed a loss of rhythm in individuals with type 2 diabetes of canonical metabolic pathways involved in the regulation of lipolysis. Enrichment analysis of genes with an altered mesor in individuals with type 2 diabetes showed decreased activity of the translation initiating pathway 'EIF2 signaling'. Individuals with type 2 diabetes showed a reduced diurnal rhythm in postprandial glucose concentrations.
    CONCLUSIONS/INTERPRETATION: Diurnal clock and metabolic gene expression rhythms are decreased in subcutaneous adipose tissue of obese individuals with type 2 diabetes compared with lean control participants. Future investigation is needed to explore potential treatment targets as identified by our study, including clock enhancement and induction of EIF2 signalling.
    DATA AVAILABILITY: The raw sequencing data and supplementary files for rhythmic expression analysis and Ingenuity Pathway Analysis have been deposited in NCBI Gene Expression Omnibus (GEO series accession number GSE104674).
    Keywords:  Circadian rhythms; Clock genes; Glucose tolerance; Lipolysis; Metabolic syndrome; Obesity; RNA sequencing; Transcriptomics; Type 2 diabetes; White adipose tissue